• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
15//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19  // Transformation function: get the low 32 bits.
20  return getI32Imm((unsigned)N->getZExtValue(), SDLoc(N));
21}]>;
22
23def GetLo8XForm : SDNodeXForm<imm, [{
24  // Transformation function: get the low 8 bits.
25  return getI8Imm((uint8_t)N->getZExtValue(), SDLoc(N));
26}]>;
27
28
29//===----------------------------------------------------------------------===//
30// Random Pseudo Instructions.
31
32// PIC base construction.  This expands to code that looks like this:
33//     call  $next_inst
34//     popl %destreg"
35let hasSideEffects = 0, isNotDuplicable = 1, Uses = [ESP] in
36  def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
37                      "", []>;
38
39
40// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
41// a stack adjustment and the codegen must know that they may modify the stack
42// pointer before prolog-epilog rewriting occurs.
43// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
44// sub / add which can clobber EFLAGS.
45let Defs = [ESP, EFLAGS], Uses = [ESP] in {
46def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
47                           "#ADJCALLSTACKDOWN",
48                           []>,
49                          Requires<[NotLP64]>;
50def ADJCALLSTACKUP32   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
51                           "#ADJCALLSTACKUP",
52                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
53                          Requires<[NotLP64]>;
54}
55def : Pat<(X86callseq_start timm:$amt1),
56          (ADJCALLSTACKDOWN32 i32imm:$amt1, 0)>, Requires<[NotLP64]>;
57
58
59// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
60// a stack adjustment and the codegen must know that they may modify the stack
61// pointer before prolog-epilog rewriting occurs.
62// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
63// sub / add which can clobber EFLAGS.
64let Defs = [RSP, EFLAGS], Uses = [RSP] in {
65def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
66                           "#ADJCALLSTACKDOWN",
67                           []>,
68                          Requires<[IsLP64]>;
69def ADJCALLSTACKUP64   : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
70                           "#ADJCALLSTACKUP",
71                           [(X86callseq_end timm:$amt1, timm:$amt2)]>,
72                          Requires<[IsLP64]>;
73}
74def : Pat<(X86callseq_start timm:$amt1),
75          (ADJCALLSTACKDOWN64 i32imm:$amt1, 0)>, Requires<[IsLP64]>;
76
77
78// x86-64 va_start lowering magic.
79let usesCustomInserter = 1, Defs = [EFLAGS] in {
80def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
81                              (outs),
82                              (ins GR8:$al,
83                                   i64imm:$regsavefi, i64imm:$offset,
84                                   variable_ops),
85                              "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
86                              [(X86vastart_save_xmm_regs GR8:$al,
87                                                         imm:$regsavefi,
88                                                         imm:$offset),
89                               (implicit EFLAGS)]>;
90
91// The VAARG_64 pseudo-instruction takes the address of the va_list,
92// and places the address of the next argument into a register.
93let Defs = [EFLAGS] in
94def VAARG_64 : I<0, Pseudo,
95                 (outs GR64:$dst),
96                 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
97                 "#VAARG_64 $dst, $ap, $size, $mode, $align",
98                 [(set GR64:$dst,
99                    (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
100                  (implicit EFLAGS)]>;
101
102
103// When using segmented stacks these are lowered into instructions which first
104// check if the current stacklet has enough free memory. If it does, memory is
105// allocated by bumping the stack pointer. Otherwise memory is allocated from
106// the heap.
107
108let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
109def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size),
110                      "# variable sized alloca for segmented stacks",
111                      [(set GR32:$dst,
112                         (X86SegAlloca GR32:$size))]>,
113                    Requires<[NotLP64]>;
114
115let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
116def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size),
117                      "# variable sized alloca for segmented stacks",
118                      [(set GR64:$dst,
119                         (X86SegAlloca GR64:$size))]>,
120                    Requires<[In64BitMode]>;
121}
122
123// Dynamic stack allocation yields a _chkstk or _alloca call for all Windows
124// targets.  These calls are needed to probe the stack when allocating more than
125// 4k bytes in one go. Touching the stack at 4K increments is necessary to
126// ensure that the guard pages used by the OS virtual memory manager are
127// allocated in correct sequence.
128// The main point of having separate instruction are extra unmodelled effects
129// (compared to ordinary calls) like stack pointer change.
130
131let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
132def WIN_ALLOCA_32 : I<0, Pseudo, (outs), (ins GR32:$size),
133                     "# dynamic stack allocation",
134                     [(X86WinAlloca GR32:$size)]>,
135                     Requires<[NotLP64]>;
136
137let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in
138def WIN_ALLOCA_64 : I<0, Pseudo, (outs), (ins GR64:$size),
139                     "# dynamic stack allocation",
140                     [(X86WinAlloca GR64:$size)]>,
141                     Requires<[In64BitMode]>;
142
143
144//===----------------------------------------------------------------------===//
145// EH Pseudo Instructions
146//
147let SchedRW = [WriteSystem] in {
148let isTerminator = 1, isReturn = 1, isBarrier = 1,
149    hasCtrlDep = 1, isCodeGenOnly = 1 in {
150def EH_RETURN   : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
151                    "ret\t#eh_return, addr: $addr",
152                    [(X86ehret GR32:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
153
154}
155
156let isTerminator = 1, isReturn = 1, isBarrier = 1,
157    hasCtrlDep = 1, isCodeGenOnly = 1 in {
158def EH_RETURN64   : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
159                     "ret\t#eh_return, addr: $addr",
160                     [(X86ehret GR64:$addr)], IIC_RET>, Sched<[WriteJumpLd]>;
161
162}
163
164let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
165    isCodeGenOnly = 1, isReturn = 1 in {
166  def CLEANUPRET : I<0, Pseudo, (outs), (ins), "# CLEANUPRET", [(cleanupret)]>;
167
168  // CATCHRET needs a custom inserter for SEH.
169  let usesCustomInserter = 1 in
170    def CATCHRET : I<0, Pseudo, (outs), (ins brtarget32:$dst, brtarget32:$from),
171                     "# CATCHRET",
172                     [(catchret bb:$dst, bb:$from)]>;
173}
174
175let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1,
176    usesCustomInserter = 1 in
177def CATCHPAD : I<0, Pseudo, (outs), (ins), "# CATCHPAD", [(catchpad)]>;
178
179// This instruction is responsible for re-establishing stack pointers after an
180// exception has been caught and we are rejoining normal control flow in the
181// parent function or funclet. It generally sets ESP and EBP, and optionally
182// ESI. It is only needed for 32-bit WinEH, as the runtime restores CSRs for us
183// elsewhere.
184let hasSideEffects = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in
185def EH_RESTORE : I<0, Pseudo, (outs), (ins), "# EH_RESTORE", []>;
186
187let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1,
188    usesCustomInserter = 1 in {
189  def EH_SjLj_SetJmp32  : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf),
190                            "#EH_SJLJ_SETJMP32",
191                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
192                          Requires<[Not64BitMode]>;
193  def EH_SjLj_SetJmp64  : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf),
194                            "#EH_SJLJ_SETJMP64",
195                            [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>,
196                          Requires<[In64BitMode]>;
197  let isTerminator = 1 in {
198  def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf),
199                            "#EH_SJLJ_LONGJMP32",
200                            [(X86eh_sjlj_longjmp addr:$buf)]>,
201                          Requires<[Not64BitMode]>;
202  def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf),
203                            "#EH_SJLJ_LONGJMP64",
204                            [(X86eh_sjlj_longjmp addr:$buf)]>,
205                          Requires<[In64BitMode]>;
206  }
207}
208} // SchedRW
209
210let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in {
211  def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst),
212                        "#EH_SjLj_Setup\t$dst", []>;
213}
214
215//===----------------------------------------------------------------------===//
216// Pseudo instructions used by unwind info.
217//
218let isPseudo = 1 in {
219  def SEH_PushReg : I<0, Pseudo, (outs), (ins i32imm:$reg),
220                            "#SEH_PushReg $reg", []>;
221  def SEH_SaveReg : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
222                            "#SEH_SaveReg $reg, $dst", []>;
223  def SEH_SaveXMM : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$dst),
224                            "#SEH_SaveXMM $reg, $dst", []>;
225  def SEH_StackAlloc : I<0, Pseudo, (outs), (ins i32imm:$size),
226                            "#SEH_StackAlloc $size", []>;
227  def SEH_SetFrame : I<0, Pseudo, (outs), (ins i32imm:$reg, i32imm:$offset),
228                            "#SEH_SetFrame $reg, $offset", []>;
229  def SEH_PushFrame : I<0, Pseudo, (outs), (ins i1imm:$mode),
230                            "#SEH_PushFrame $mode", []>;
231  def SEH_EndPrologue : I<0, Pseudo, (outs), (ins),
232                            "#SEH_EndPrologue", []>;
233  def SEH_Epilogue : I<0, Pseudo, (outs), (ins),
234                            "#SEH_Epilogue", []>;
235}
236
237//===----------------------------------------------------------------------===//
238// Pseudo instructions used by segmented stacks.
239//
240
241// This is lowered into a RET instruction by MCInstLower.  We need
242// this so that we don't have to have a MachineBasicBlock which ends
243// with a RET and also has successors.
244let isPseudo = 1 in {
245def MORESTACK_RET: I<0, Pseudo, (outs), (ins),
246                          "", []>;
247
248// This instruction is lowered to a RET followed by a MOV.  The two
249// instructions are not generated on a higher level since then the
250// verifier sees a MachineBasicBlock ending with a non-terminator.
251def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins),
252                                  "", []>;
253}
254
255//===----------------------------------------------------------------------===//
256// Alias Instructions
257//===----------------------------------------------------------------------===//
258
259// Alias instruction mapping movr0 to xor.
260// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
261let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
262    isPseudo = 1, AddedComplexity = 20 in
263def MOV32r0  : I<0, Pseudo, (outs GR32:$dst), (ins), "",
264                 [(set GR32:$dst, 0)], IIC_ALU_NONMEM>, Sched<[WriteZero]>;
265
266// Other widths can also make use of the 32-bit xor, which may have a smaller
267// encoding and avoid partial register updates.
268def : Pat<(i8 0), (EXTRACT_SUBREG (MOV32r0), sub_8bit)>;
269def : Pat<(i16 0), (EXTRACT_SUBREG (MOV32r0), sub_16bit)>;
270def : Pat<(i64 0), (SUBREG_TO_REG (i64 0), (MOV32r0), sub_32bit)> {
271  let AddedComplexity = 20;
272}
273
274let Predicates = [OptForSize, NotSlowIncDec, Not64BitMode],
275    AddedComplexity = 15 in {
276  // Pseudo instructions for materializing 1 and -1 using XOR+INC/DEC,
277  // which only require 3 bytes compared to MOV32ri which requires 5.
278  let Defs = [EFLAGS], isReMaterializable = 1, isPseudo = 1 in {
279    def MOV32r1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
280                        [(set GR32:$dst, 1)]>;
281    def MOV32r_1 : I<0, Pseudo, (outs GR32:$dst), (ins), "",
282                        [(set GR32:$dst, -1)]>;
283  }
284
285  // MOV16ri is 4 bytes, so the instructions above are smaller.
286  def : Pat<(i16 1), (EXTRACT_SUBREG (MOV32r1), sub_16bit)>;
287  def : Pat<(i16 -1), (EXTRACT_SUBREG (MOV32r_1), sub_16bit)>;
288}
289
290let isReMaterializable = 1, isPseudo = 1, AddedComplexity = 10 in {
291// AddedComplexity higher than MOV64ri but lower than MOV32r0 and MOV32r1.
292// FIXME: Add itinerary class and Schedule.
293def MOV32ImmSExti8 : I<0, Pseudo, (outs GR32:$dst), (ins i32i8imm:$src), "",
294                       [(set GR32:$dst, i32immSExt8:$src)]>,
295                     Requires<[OptForMinSize, NotWin64WithoutFP]>;
296def MOV64ImmSExti8 : I<0, Pseudo, (outs GR64:$dst), (ins i64i8imm:$src), "",
297                       [(set GR64:$dst, i64immSExt8:$src)]>,
298                     Requires<[OptForMinSize, NotWin64WithoutFP]>;
299}
300
301// Materialize i64 constant where top 32-bits are zero. This could theoretically
302// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
303// that would make it more difficult to rematerialize.
304let isReMaterializable = 1, isAsCheapAsAMove = 1,
305    isPseudo = 1, hasSideEffects = 0 in
306def MOV32ri64 : I<0, Pseudo, (outs GR32:$dst), (ins i64i32imm:$src), "", []>;
307
308// This 64-bit pseudo-move can be used for both a 64-bit constant that is
309// actually the zero-extension of a 32-bit constant and for labels in the
310// x86-64 small code model.
311def mov64imm32 : ComplexPattern<i64, 1, "selectMOV64Imm32", [imm, X86Wrapper]>;
312
313let AddedComplexity = 1 in
314def : Pat<(i64 mov64imm32:$src),
315          (SUBREG_TO_REG (i64 0), (MOV32ri64 mov64imm32:$src), sub_32bit)>;
316
317// Use sbb to materialize carry bit.
318let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1, SchedRW = [WriteALU] in {
319// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
320// However, Pat<> can't replicate the destination reg into the inputs of the
321// result.
322def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "",
323                 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
324def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "",
325                 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
326def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "",
327                 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
328def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "",
329                 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
330} // isCodeGenOnly
331
332
333def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
334          (SETB_C16r)>;
335def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
336          (SETB_C32r)>;
337def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
338          (SETB_C64r)>;
339
340def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
341          (SETB_C16r)>;
342def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
343          (SETB_C32r)>;
344def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
345          (SETB_C64r)>;
346
347// We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and
348// will be eliminated and that the sbb can be extended up to a wider type.  When
349// this happens, it is great.  However, if we are left with an 8-bit sbb and an
350// and, we might as well just match it as a setb.
351def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1),
352          (SETBr)>;
353
354// (add OP, SETB) -> (adc OP, 0)
355def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op),
356          (ADC8ri GR8:$op, 0)>;
357def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op),
358          (ADC32ri8 GR32:$op, 0)>;
359def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op),
360          (ADC64ri8 GR64:$op, 0)>;
361
362// (sub OP, SETB) -> (sbb OP, 0)
363def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
364          (SBB8ri GR8:$op, 0)>;
365def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
366          (SBB32ri8 GR32:$op, 0)>;
367def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)),
368          (SBB64ri8 GR64:$op, 0)>;
369
370// (sub OP, SETCC_CARRY) -> (adc OP, 0)
371def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))),
372          (ADC8ri GR8:$op, 0)>;
373def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))),
374          (ADC32ri8 GR32:$op, 0)>;
375def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))),
376          (ADC64ri8 GR64:$op, 0)>;
377
378//===----------------------------------------------------------------------===//
379// String Pseudo Instructions
380//
381let SchedRW = [WriteMicrocoded] in {
382let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
383def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
384                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
385                   Requires<[Not64BitMode]>;
386def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
387                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
388                   Requires<[Not64BitMode]>;
389def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
390                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
391                   Requires<[Not64BitMode]>;
392}
393
394let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in {
395def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
396                    [(X86rep_movs i8)], IIC_REP_MOVS>, REP,
397                   Requires<[In64BitMode]>;
398def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
399                    [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize16,
400                   Requires<[In64BitMode]>;
401def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
402                    [(X86rep_movs i32)], IIC_REP_MOVS>, REP, OpSize32,
403                   Requires<[In64BitMode]>;
404def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
405                    [(X86rep_movs i64)], IIC_REP_MOVS>, REP,
406                   Requires<[In64BitMode]>;
407}
408
409// FIXME: Should use "(X86rep_stos AL)" as the pattern.
410let Defs = [ECX,EDI], isCodeGenOnly = 1 in {
411  let Uses = [AL,ECX,EDI] in
412  def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
413                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
414                     Requires<[Not64BitMode]>;
415  let Uses = [AX,ECX,EDI] in
416  def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
417                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
418                     Requires<[Not64BitMode]>;
419  let Uses = [EAX,ECX,EDI] in
420  def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
421                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
422                     Requires<[Not64BitMode]>;
423}
424
425let Defs = [RCX,RDI], isCodeGenOnly = 1 in {
426  let Uses = [AL,RCX,RDI] in
427  def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
428                      [(X86rep_stos i8)], IIC_REP_STOS>, REP,
429                     Requires<[In64BitMode]>;
430  let Uses = [AX,RCX,RDI] in
431  def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
432                      [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize16,
433                     Requires<[In64BitMode]>;
434  let Uses = [RAX,RCX,RDI] in
435  def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
436                      [(X86rep_stos i32)], IIC_REP_STOS>, REP, OpSize32,
437                     Requires<[In64BitMode]>;
438
439  let Uses = [RAX,RCX,RDI] in
440  def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
441                      [(X86rep_stos i64)], IIC_REP_STOS>, REP,
442                     Requires<[In64BitMode]>;
443}
444} // SchedRW
445
446//===----------------------------------------------------------------------===//
447// Thread Local Storage Instructions
448//
449
450// ELF TLS Support
451// All calls clobber the non-callee saved registers. ESP is marked as
452// a use to prevent stack-pointer assignments that appear immediately
453// before calls from potentially appearing dead.
454let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
455            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
456            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
457            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
458            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
459    usesCustomInserter = 1, Uses = [ESP] in {
460def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
461                  "# TLS_addr32",
462                  [(X86tlsaddr tls32addr:$sym)]>,
463                  Requires<[Not64BitMode]>;
464def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
465                  "# TLS_base_addr32",
466                  [(X86tlsbaseaddr tls32baseaddr:$sym)]>,
467                  Requires<[Not64BitMode]>;
468}
469
470// All calls clobber the non-callee saved registers. RSP is marked as
471// a use to prevent stack-pointer assignments that appear immediately
472// before calls from potentially appearing dead.
473let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
474            FP0, FP1, FP2, FP3, FP4, FP5, FP6, FP7,
475            ST0, ST1, ST2, ST3, ST4, ST5, ST6, ST7,
476            MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
477            XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
478            XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
479    usesCustomInserter = 1, Uses = [RSP] in {
480def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
481                   "# TLS_addr64",
482                  [(X86tlsaddr tls64addr:$sym)]>,
483                  Requires<[In64BitMode]>;
484def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
485                   "# TLS_base_addr64",
486                  [(X86tlsbaseaddr tls64baseaddr:$sym)]>,
487                  Requires<[In64BitMode]>;
488}
489
490// Darwin TLS Support
491// For i386, the address of the thunk is passed on the stack, on return the
492// address of the variable is in %eax.  %ecx is trashed during the function
493// call.  All other registers are preserved.
494let Defs = [EAX, ECX, EFLAGS],
495    Uses = [ESP],
496    usesCustomInserter = 1 in
497def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
498                "# TLSCall_32",
499                [(X86TLSCall addr:$sym)]>,
500                Requires<[Not64BitMode]>;
501
502// For x86_64, the address of the thunk is passed in %rdi, but the
503// pseudo directly use the symbol, so do not add an implicit use of
504// %rdi. The lowering will do the right thing with RDI.
505// On return the address of the variable is in %rax.  All other
506// registers are preserved.
507let Defs = [RAX, EFLAGS],
508    Uses = [RSP],
509    usesCustomInserter = 1 in
510def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
511                  "# TLSCall_64",
512                  [(X86TLSCall addr:$sym)]>,
513                  Requires<[In64BitMode]>;
514
515
516//===----------------------------------------------------------------------===//
517// Conditional Move Pseudo Instructions
518
519// CMOV* - Used to implement the SELECT DAG operation.  Expanded after
520// instruction selection into a branch sequence.
521multiclass CMOVrr_PSEUDO<RegisterClass RC, ValueType VT> {
522  def CMOV#NAME  : I<0, Pseudo,
523                    (outs RC:$dst), (ins RC:$t, RC:$f, i8imm:$cond),
524                    "#CMOV_"#NAME#" PSEUDO!",
525                    [(set RC:$dst, (VT (X86cmov RC:$t, RC:$f, imm:$cond,
526                                                EFLAGS)))]>;
527}
528
529let usesCustomInserter = 1, Uses = [EFLAGS] in {
530  // X86 doesn't have 8-bit conditional moves. Use a customInserter to
531  // emit control flow. An alternative to this is to mark i8 SELECT as Promote,
532  // however that requires promoting the operands, and can induce additional
533  // i8 register pressure.
534  defm _GR8 : CMOVrr_PSEUDO<GR8, i8>;
535
536  let Predicates = [NoCMov] in {
537    defm _GR32 : CMOVrr_PSEUDO<GR32, i32>;
538    defm _GR16 : CMOVrr_PSEUDO<GR16, i16>;
539  } // Predicates = [NoCMov]
540
541  // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no
542  // SSE1/SSE2.
543  let Predicates = [FPStackf32] in
544    defm _RFP32 : CMOVrr_PSEUDO<RFP32, f32>;
545
546  let Predicates = [FPStackf64] in
547    defm _RFP64 : CMOVrr_PSEUDO<RFP64, f64>;
548
549  defm _RFP80 : CMOVrr_PSEUDO<RFP80, f80>;
550
551  defm _FR32   : CMOVrr_PSEUDO<FR32, f32>;
552  defm _FR64   : CMOVrr_PSEUDO<FR64, f64>;
553  defm _FR128  : CMOVrr_PSEUDO<FR128, f128>;
554  defm _V4F32  : CMOVrr_PSEUDO<VR128, v4f32>;
555  defm _V2F64  : CMOVrr_PSEUDO<VR128, v2f64>;
556  defm _V2I64  : CMOVrr_PSEUDO<VR128, v2i64>;
557  defm _V8F32  : CMOVrr_PSEUDO<VR256, v8f32>;
558  defm _V4F64  : CMOVrr_PSEUDO<VR256, v4f64>;
559  defm _V4I64  : CMOVrr_PSEUDO<VR256, v4i64>;
560  defm _V8I64  : CMOVrr_PSEUDO<VR512, v8i64>;
561  defm _V8F64  : CMOVrr_PSEUDO<VR512, v8f64>;
562  defm _V16F32 : CMOVrr_PSEUDO<VR512, v16f32>;
563  defm _V8I1   : CMOVrr_PSEUDO<VK8,  v8i1>;
564  defm _V16I1  : CMOVrr_PSEUDO<VK16, v16i1>;
565  defm _V32I1  : CMOVrr_PSEUDO<VK32, v32i1>;
566  defm _V64I1  : CMOVrr_PSEUDO<VK64, v64i1>;
567} // usesCustomInserter = 1, Uses = [EFLAGS]
568
569//===----------------------------------------------------------------------===//
570// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
571//===----------------------------------------------------------------------===//
572
573// FIXME: Use normal instructions and add lock prefix dynamically.
574
575// Memory barriers
576
577// TODO: Get this to fold the constant into the instruction.
578let isCodeGenOnly = 1, Defs = [EFLAGS] in
579def OR32mrLocked  : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
580                      "or{l}\t{$zero, $dst|$dst, $zero}", [],
581                      IIC_ALU_MEM>, Requires<[Not64BitMode]>, OpSize32, LOCK,
582                    Sched<[WriteALULd, WriteRMW]>;
583
584let hasSideEffects = 1 in
585def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
586                     "#MEMBARRIER",
587                     [(X86MemBarrier)]>, Sched<[WriteLoad]>;
588
589// RegOpc corresponds to the mr version of the instruction
590// ImmOpc corresponds to the mi version of the instruction
591// ImmOpc8 corresponds to the mi8 version of the instruction
592// ImmMod corresponds to the instruction format of the mi and mi8 versions
593multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8,
594                           Format ImmMod, SDPatternOperator Op, string mnemonic> {
595let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
596    SchedRW = [WriteALULd, WriteRMW] in {
597
598def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
599                  RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 },
600                  MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
601                  !strconcat(mnemonic, "{b}\t",
602                             "{$src2, $dst|$dst, $src2}"),
603                  [(set EFLAGS, (Op addr:$dst, GR8:$src2))],
604                  IIC_ALU_NONMEM>, LOCK;
605
606def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
607                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
608                   MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
609                   !strconcat(mnemonic, "{w}\t",
610                              "{$src2, $dst|$dst, $src2}"),
611                   [(set EFLAGS, (Op addr:$dst, GR16:$src2))],
612                   IIC_ALU_NONMEM>, OpSize16, LOCK;
613
614def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
615                   RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
616                   MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
617                   !strconcat(mnemonic, "{l}\t",
618                              "{$src2, $dst|$dst, $src2}"),
619                   [(set EFLAGS, (Op addr:$dst, GR32:$src2))],
620                   IIC_ALU_NONMEM>, OpSize32, LOCK;
621
622def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4},
623                    RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 },
624                    MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
625                    !strconcat(mnemonic, "{q}\t",
626                               "{$src2, $dst|$dst, $src2}"),
627                    [(set EFLAGS, (Op addr:$dst, GR64:$src2))],
628                    IIC_ALU_NONMEM>, LOCK;
629
630def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
631                    ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 },
632                    ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2),
633                    !strconcat(mnemonic, "{b}\t",
634                               "{$src2, $dst|$dst, $src2}"),
635                    [(set EFLAGS, (Op addr:$dst, (i8 imm:$src2)))],
636                    IIC_ALU_MEM>, LOCK;
637
638def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
639                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
640                      ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2),
641                      !strconcat(mnemonic, "{w}\t",
642                                 "{$src2, $dst|$dst, $src2}"),
643                      [(set EFLAGS, (Op addr:$dst, (i16 imm:$src2)))],
644                      IIC_ALU_MEM>, OpSize16, LOCK;
645
646def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
647                      ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
648                      ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2),
649                      !strconcat(mnemonic, "{l}\t",
650                                 "{$src2, $dst|$dst, $src2}"),
651                      [(set EFLAGS, (Op addr:$dst, (i32 imm:$src2)))],
652                      IIC_ALU_MEM>, OpSize32, LOCK;
653
654def NAME#64mi32 : RIi32S<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4},
655                          ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 },
656                          ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2),
657                          !strconcat(mnemonic, "{q}\t",
658                                     "{$src2, $dst|$dst, $src2}"),
659                          [(set EFLAGS, (Op addr:$dst, i64immSExt32:$src2))],
660                          IIC_ALU_MEM>, LOCK;
661
662def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
663                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
664                      ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2),
665                      !strconcat(mnemonic, "{w}\t",
666                                 "{$src2, $dst|$dst, $src2}"),
667                      [(set EFLAGS, (Op addr:$dst, i16immSExt8:$src2))],
668                      IIC_ALU_MEM>, OpSize16, LOCK;
669
670def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
671                      ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
672                      ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2),
673                      !strconcat(mnemonic, "{l}\t",
674                                 "{$src2, $dst|$dst, $src2}"),
675                      [(set EFLAGS, (Op addr:$dst, i32immSExt8:$src2))],
676                      IIC_ALU_MEM>, OpSize32, LOCK;
677
678def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4},
679                       ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 },
680                       ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2),
681                       !strconcat(mnemonic, "{q}\t",
682                                  "{$src2, $dst|$dst, $src2}"),
683                       [(set EFLAGS, (Op addr:$dst, i64immSExt8:$src2))],
684                       IIC_ALU_MEM>, LOCK;
685
686}
687
688}
689
690defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, X86lock_add, "add">;
691defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, X86lock_sub, "sub">;
692defm LOCK_OR  : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, X86lock_or , "or">;
693defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, X86lock_and, "and">;
694defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, X86lock_xor, "xor">;
695
696multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form,
697                          int Increment, string mnemonic> {
698let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1,
699    SchedRW = [WriteALULd, WriteRMW], Predicates = [NotSlowIncDec] in {
700def NAME#8m  : I<Opc8, Form, (outs), (ins i8mem :$dst),
701                 !strconcat(mnemonic, "{b}\t$dst"),
702                 [(set EFLAGS, (X86lock_add addr:$dst, (i8 Increment)))],
703                  IIC_UNARY_MEM>, LOCK;
704def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst),
705                 !strconcat(mnemonic, "{w}\t$dst"),
706                 [(set EFLAGS, (X86lock_add addr:$dst, (i16 Increment)))],
707                 IIC_UNARY_MEM>, OpSize16, LOCK;
708def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst),
709                 !strconcat(mnemonic, "{l}\t$dst"),
710                 [(set EFLAGS, (X86lock_add addr:$dst, (i32 Increment)))],
711                 IIC_UNARY_MEM>, OpSize32, LOCK;
712def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst),
713                  !strconcat(mnemonic, "{q}\t$dst"),
714                  [(set EFLAGS, (X86lock_add addr:$dst, (i64 Increment)))],
715                  IIC_UNARY_MEM>, LOCK;
716}
717}
718
719defm LOCK_INC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m,  1, "inc">;
720defm LOCK_DEC    : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, -1, "dec">;
721
722// Atomic compare and swap.
723multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic,
724                         SDPatternOperator frag, X86MemOperand x86memop,
725                         InstrItinClass itin> {
726let isCodeGenOnly = 1 in {
727  def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr),
728               !strconcat(mnemonic, "\t$ptr"),
729               [(frag addr:$ptr)], itin>, TB, LOCK;
730}
731}
732
733multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form,
734                          string mnemonic, SDPatternOperator frag,
735                          InstrItinClass itin8, InstrItinClass itin> {
736let isCodeGenOnly = 1, SchedRW = [WriteALULd, WriteRMW] in {
737  let Defs = [AL, EFLAGS], Uses = [AL] in
738  def NAME#8  : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap),
739                  !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"),
740                  [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK;
741  let Defs = [AX, EFLAGS], Uses = [AX] in
742  def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap),
743                  !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"),
744                  [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize16, LOCK;
745  let Defs = [EAX, EFLAGS], Uses = [EAX] in
746  def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap),
747                  !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"),
748                  [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, OpSize32, LOCK;
749  let Defs = [RAX, EFLAGS], Uses = [RAX] in
750  def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap),
751                   !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"),
752                   [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK;
753}
754}
755
756let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX],
757    SchedRW = [WriteALULd, WriteRMW] in {
758defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b",
759                                X86cas8, i64mem,
760                                IIC_CMPX_LOCK_8B>;
761}
762
763// This pseudo must be used when the frame uses RBX as
764// the base pointer. Indeed, in such situation RBX is a reserved
765// register and the register allocator will ignore any use/def of
766// it. In other words, the register will not fix the clobbering of
767// RBX that will happen when setting the arguments for the instrucion.
768//
769// Unlike the actual related instuction, we mark that this one
770// defines EBX (instead of using EBX).
771// The rationale is that we will define RBX during the expansion of
772// the pseudo. The argument feeding EBX is ebx_input.
773//
774// The additional argument, $ebx_save, is a temporary register used to
775// save the value of RBX accross the actual instruction.
776//
777// To make sure the register assigned to $ebx_save does not interfere with
778// the definition of the actual instruction, we use a definition $dst which
779// is tied to $rbx_save. That way, the live-range of $rbx_save spans accross
780// the instruction and we are sure we will have a valid register to restore
781// the value of RBX.
782let Defs = [EAX, EDX, EBX, EFLAGS], Uses = [EAX, ECX, EDX],
783    SchedRW = [WriteALULd, WriteRMW], isCodeGenOnly = 1, isPseudo = 1,
784    Constraints = "$ebx_save = $dst", usesCustomInserter = 1 in {
785def LCMPXCHG8B_SAVE_EBX :
786    I<0, Pseudo, (outs GR32:$dst),
787      (ins i64mem:$ptr, GR32:$ebx_input, GR32:$ebx_save),
788      !strconcat("cmpxchg8b", "\t$ptr"),
789      [(set GR32:$dst, (X86cas8save_ebx addr:$ptr, GR32:$ebx_input,
790                                        GR32:$ebx_save))],
791      IIC_CMPX_LOCK_8B>;
792}
793
794
795let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX],
796    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW] in {
797defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b",
798                                 X86cas16, i128mem,
799                                 IIC_CMPX_LOCK_16B>, REX_W;
800}
801
802// Same as LCMPXCHG8B_SAVE_RBX but for the 16 Bytes variant.
803let Defs = [RAX, RDX, RBX, EFLAGS], Uses = [RAX, RCX, RDX],
804    Predicates = [HasCmpxchg16b], SchedRW = [WriteALULd, WriteRMW],
805    isCodeGenOnly = 1, isPseudo = 1, Constraints = "$rbx_save = $dst",
806    usesCustomInserter = 1 in {
807def LCMPXCHG16B_SAVE_RBX :
808    I<0, Pseudo, (outs GR64:$dst),
809      (ins i128mem:$ptr, GR64:$rbx_input, GR64:$rbx_save),
810      !strconcat("cmpxchg16b", "\t$ptr"),
811      [(set GR64:$dst, (X86cas16save_rbx addr:$ptr, GR64:$rbx_input,
812                                                    GR64:$rbx_save))],
813      IIC_CMPX_LOCK_16B>;
814}
815
816defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg",
817                               X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>;
818
819// Atomic exchange and add
820multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic,
821                             string frag,
822                             InstrItinClass itin8, InstrItinClass itin> {
823  let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1,
824      SchedRW = [WriteALULd, WriteRMW] in {
825    def NAME#8  : I<opc8, MRMSrcMem, (outs GR8:$dst),
826                    (ins GR8:$val, i8mem:$ptr),
827                    !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"),
828                    [(set GR8:$dst,
829                          (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))],
830                    itin8>;
831    def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst),
832                    (ins GR16:$val, i16mem:$ptr),
833                    !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"),
834                    [(set
835                       GR16:$dst,
836                       (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))],
837                    itin>, OpSize16;
838    def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst),
839                    (ins GR32:$val, i32mem:$ptr),
840                    !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"),
841                    [(set
842                       GR32:$dst,
843                       (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))],
844                    itin>, OpSize32;
845    def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst),
846                     (ins GR64:$val, i64mem:$ptr),
847                     !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"),
848                     [(set
849                        GR64:$dst,
850                        (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))],
851                     itin>;
852  }
853}
854
855defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add",
856                               IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>,
857             TB, LOCK;
858
859/* The following multiclass tries to make sure that in code like
860 *    x.store (immediate op x.load(acquire), release)
861 * and
862 *    x.store (register op x.load(acquire), release)
863 * an operation directly on memory is generated instead of wasting a register.
864 * It is not automatic as atomic_store/load are only lowered to MOV instructions
865 * extremely late to prevent them from being accidentally reordered in the backend
866 * (see below the RELEASE_MOV* / ACQUIRE_MOV* pseudo-instructions)
867 */
868multiclass RELEASE_BINOP_MI<SDNode op> {
869    def NAME#8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
870        "#BINOP "#NAME#"8mi PSEUDO!",
871        [(atomic_store_8 addr:$dst, (op
872            (atomic_load_8 addr:$dst), (i8 imm:$src)))]>;
873    def NAME#8mr : I<0, Pseudo, (outs), (ins i8mem:$dst, GR8:$src),
874        "#BINOP "#NAME#"8mr PSEUDO!",
875        [(atomic_store_8 addr:$dst, (op
876            (atomic_load_8 addr:$dst), GR8:$src))]>;
877    // NAME#16 is not generated as 16-bit arithmetic instructions are considered
878    // costly and avoided as far as possible by this backend anyway
879    def NAME#32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
880        "#BINOP "#NAME#"32mi PSEUDO!",
881        [(atomic_store_32 addr:$dst, (op
882            (atomic_load_32 addr:$dst), (i32 imm:$src)))]>;
883    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
884        "#BINOP "#NAME#"32mr PSEUDO!",
885        [(atomic_store_32 addr:$dst, (op
886            (atomic_load_32 addr:$dst), GR32:$src))]>;
887    def NAME#64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
888        "#BINOP "#NAME#"64mi32 PSEUDO!",
889        [(atomic_store_64 addr:$dst, (op
890            (atomic_load_64 addr:$dst), (i64immSExt32:$src)))]>;
891    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
892        "#BINOP "#NAME#"64mr PSEUDO!",
893        [(atomic_store_64 addr:$dst, (op
894            (atomic_load_64 addr:$dst), GR64:$src))]>;
895}
896let Defs = [EFLAGS] in {
897  defm RELEASE_ADD : RELEASE_BINOP_MI<add>;
898  defm RELEASE_AND : RELEASE_BINOP_MI<and>;
899  defm RELEASE_OR  : RELEASE_BINOP_MI<or>;
900  defm RELEASE_XOR : RELEASE_BINOP_MI<xor>;
901  // Note: we don't deal with sub, because substractions of constants are
902  //       optimized into additions before this code can run.
903}
904
905// Same as above, but for floating-point.
906// FIXME: imm version.
907// FIXME: Version that doesn't clobber $src, using AVX's VADDSS.
908// FIXME: This could also handle SIMD operations with *ps and *pd instructions.
909let usesCustomInserter = 1 in {
910multiclass RELEASE_FP_BINOP_MI<SDNode op> {
911    def NAME#32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, FR32:$src),
912        "#BINOP "#NAME#"32mr PSEUDO!",
913        [(atomic_store_32 addr:$dst,
914	   (i32 (bitconvert (op
915             (f32 (bitconvert (i32 (atomic_load_32 addr:$dst)))),
916	      FR32:$src))))]>, Requires<[HasSSE1]>;
917    def NAME#64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, FR64:$src),
918        "#BINOP "#NAME#"64mr PSEUDO!",
919        [(atomic_store_64 addr:$dst,
920	   (i64 (bitconvert (op
921             (f64 (bitconvert (i64 (atomic_load_64 addr:$dst)))),
922	      FR64:$src))))]>, Requires<[HasSSE2]>;
923}
924defm RELEASE_FADD : RELEASE_FP_BINOP_MI<fadd>;
925// FIXME: Add fsub, fmul, fdiv, ...
926}
927
928multiclass RELEASE_UNOP<dag dag8, dag dag16, dag dag32, dag dag64> {
929    def NAME#8m : I<0, Pseudo, (outs), (ins i8mem:$dst),
930        "#UNOP "#NAME#"8m PSEUDO!",
931        [(atomic_store_8 addr:$dst, dag8)]>;
932    def NAME#16m : I<0, Pseudo, (outs), (ins i16mem:$dst),
933        "#UNOP "#NAME#"16m PSEUDO!",
934        [(atomic_store_16 addr:$dst, dag16)]>;
935    def NAME#32m : I<0, Pseudo, (outs), (ins i32mem:$dst),
936        "#UNOP "#NAME#"32m PSEUDO!",
937        [(atomic_store_32 addr:$dst, dag32)]>;
938    def NAME#64m : I<0, Pseudo, (outs), (ins i64mem:$dst),
939        "#UNOP "#NAME#"64m PSEUDO!",
940        [(atomic_store_64 addr:$dst, dag64)]>;
941}
942
943let Defs = [EFLAGS] in {
944  defm RELEASE_INC : RELEASE_UNOP<
945      (add (atomic_load_8  addr:$dst), (i8 1)),
946      (add (atomic_load_16 addr:$dst), (i16 1)),
947      (add (atomic_load_32 addr:$dst), (i32 1)),
948      (add (atomic_load_64 addr:$dst), (i64 1))>, Requires<[NotSlowIncDec]>;
949  defm RELEASE_DEC : RELEASE_UNOP<
950      (add (atomic_load_8  addr:$dst), (i8 -1)),
951      (add (atomic_load_16 addr:$dst), (i16 -1)),
952      (add (atomic_load_32 addr:$dst), (i32 -1)),
953      (add (atomic_load_64 addr:$dst), (i64 -1))>, Requires<[NotSlowIncDec]>;
954}
955/*
956TODO: These don't work because the type inference of TableGen fails.
957TODO: find a way to fix it.
958let Defs = [EFLAGS] in {
959  defm RELEASE_NEG : RELEASE_UNOP<
960      (ineg (atomic_load_8  addr:$dst)),
961      (ineg (atomic_load_16 addr:$dst)),
962      (ineg (atomic_load_32 addr:$dst)),
963      (ineg (atomic_load_64 addr:$dst))>;
964}
965// NOT doesn't set flags.
966defm RELEASE_NOT : RELEASE_UNOP<
967    (not (atomic_load_8  addr:$dst)),
968    (not (atomic_load_16 addr:$dst)),
969    (not (atomic_load_32 addr:$dst)),
970    (not (atomic_load_64 addr:$dst))>;
971*/
972
973def RELEASE_MOV8mi : I<0, Pseudo, (outs), (ins i8mem:$dst, i8imm:$src),
974			"#RELEASE_MOV8mi PSEUDO!",
975			[(atomic_store_8 addr:$dst, (i8 imm:$src))]>;
976def RELEASE_MOV16mi : I<0, Pseudo, (outs), (ins i16mem:$dst, i16imm:$src),
977			"#RELEASE_MOV16mi PSEUDO!",
978			[(atomic_store_16 addr:$dst, (i16 imm:$src))]>;
979def RELEASE_MOV32mi : I<0, Pseudo, (outs), (ins i32mem:$dst, i32imm:$src),
980			"#RELEASE_MOV32mi PSEUDO!",
981			[(atomic_store_32 addr:$dst, (i32 imm:$src))]>;
982def RELEASE_MOV64mi32 : I<0, Pseudo, (outs), (ins i64mem:$dst, i64i32imm:$src),
983			"#RELEASE_MOV64mi32 PSEUDO!",
984			[(atomic_store_64 addr:$dst, i64immSExt32:$src)]>;
985
986def RELEASE_MOV8mr  : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src),
987                        "#RELEASE_MOV8mr PSEUDO!",
988                        [(atomic_store_8  addr:$dst, GR8 :$src)]>;
989def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src),
990                        "#RELEASE_MOV16mr PSEUDO!",
991                        [(atomic_store_16 addr:$dst, GR16:$src)]>;
992def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src),
993                        "#RELEASE_MOV32mr PSEUDO!",
994                        [(atomic_store_32 addr:$dst, GR32:$src)]>;
995def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src),
996                        "#RELEASE_MOV64mr PSEUDO!",
997                        [(atomic_store_64 addr:$dst, GR64:$src)]>;
998
999def ACQUIRE_MOV8rm  : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src),
1000                      "#ACQUIRE_MOV8rm PSEUDO!",
1001                      [(set GR8:$dst,  (atomic_load_8  addr:$src))]>;
1002def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src),
1003                      "#ACQUIRE_MOV16rm PSEUDO!",
1004                      [(set GR16:$dst, (atomic_load_16 addr:$src))]>;
1005def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src),
1006                      "#ACQUIRE_MOV32rm PSEUDO!",
1007                      [(set GR32:$dst, (atomic_load_32 addr:$src))]>;
1008def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src),
1009                      "#ACQUIRE_MOV64rm PSEUDO!",
1010                      [(set GR64:$dst, (atomic_load_64 addr:$src))]>;
1011
1012//===----------------------------------------------------------------------===//
1013// DAG Pattern Matching Rules
1014//===----------------------------------------------------------------------===//
1015
1016// Use AND/OR to store 0/-1 in memory when optimizing for minsize. This saves
1017// binary size compared to a regular MOV, but it introduces an unnecessary
1018// load, so is not suitable for regular or optsize functions.
1019let Predicates = [OptForMinSize] in {
1020def : Pat<(store (i16 0), addr:$dst), (AND16mi8 addr:$dst, 0)>;
1021def : Pat<(store (i32 0), addr:$dst), (AND32mi8 addr:$dst, 0)>;
1022def : Pat<(store (i64 0), addr:$dst), (AND64mi8 addr:$dst, 0)>;
1023def : Pat<(store (i16 -1), addr:$dst), (OR16mi8 addr:$dst, -1)>;
1024def : Pat<(store (i32 -1), addr:$dst), (OR32mi8 addr:$dst, -1)>;
1025def : Pat<(store (i64 -1), addr:$dst), (OR64mi8 addr:$dst, -1)>;
1026}
1027
1028// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
1029def : Pat<(i32 (X86Wrapper tconstpool  :$dst)), (MOV32ri tconstpool  :$dst)>;
1030def : Pat<(i32 (X86Wrapper tjumptable  :$dst)), (MOV32ri tjumptable  :$dst)>;
1031def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
1032def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
1033def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
1034def : Pat<(i32 (X86Wrapper mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1035def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
1036
1037def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
1038          (ADD32ri GR32:$src1, tconstpool:$src2)>;
1039def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
1040          (ADD32ri GR32:$src1, tjumptable:$src2)>;
1041def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
1042          (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
1043def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
1044          (ADD32ri GR32:$src1, texternalsym:$src2)>;
1045def : Pat<(add GR32:$src1, (X86Wrapper mcsym:$src2)),
1046          (ADD32ri GR32:$src1, mcsym:$src2)>;
1047def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
1048          (ADD32ri GR32:$src1, tblockaddress:$src2)>;
1049
1050def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1051          (MOV32mi addr:$dst, tglobaladdr:$src)>;
1052def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
1053          (MOV32mi addr:$dst, texternalsym:$src)>;
1054def : Pat<(store (i32 (X86Wrapper mcsym:$src)), addr:$dst),
1055          (MOV32mi addr:$dst, mcsym:$src)>;
1056def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
1057          (MOV32mi addr:$dst, tblockaddress:$src)>;
1058
1059// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
1060// code model mode, should use 'movabs'.  FIXME: This is really a hack, the
1061//  'movabs' predicate should handle this sort of thing.
1062def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1063          (MOV64ri tconstpool  :$dst)>, Requires<[FarData]>;
1064def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1065          (MOV64ri tjumptable  :$dst)>, Requires<[FarData]>;
1066def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1067          (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
1068def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1069          (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
1070def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1071          (MOV64ri mcsym:$dst)>, Requires<[FarData]>;
1072def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1073          (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
1074
1075// In kernel code model, we can get the address of a label
1076// into a register with 'movq'.  FIXME: This is a hack, the 'imm' predicate of
1077// the MOV64ri32 should accept these.
1078def : Pat<(i64 (X86Wrapper tconstpool  :$dst)),
1079          (MOV64ri32 tconstpool  :$dst)>, Requires<[KernelCode]>;
1080def : Pat<(i64 (X86Wrapper tjumptable  :$dst)),
1081          (MOV64ri32 tjumptable  :$dst)>, Requires<[KernelCode]>;
1082def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
1083          (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
1084def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
1085          (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
1086def : Pat<(i64 (X86Wrapper mcsym:$dst)),
1087          (MOV64ri32 mcsym:$dst)>, Requires<[KernelCode]>;
1088def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
1089          (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
1090
1091// If we have small model and -static mode, it is safe to store global addresses
1092// directly as immediates.  FIXME: This is really a hack, the 'imm' predicate
1093// for MOV64mi32 should handle this sort of thing.
1094def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
1095          (MOV64mi32 addr:$dst, tconstpool:$src)>,
1096          Requires<[NearData, IsNotPIC]>;
1097def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
1098          (MOV64mi32 addr:$dst, tjumptable:$src)>,
1099          Requires<[NearData, IsNotPIC]>;
1100def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
1101          (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
1102          Requires<[NearData, IsNotPIC]>;
1103def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
1104          (MOV64mi32 addr:$dst, texternalsym:$src)>,
1105          Requires<[NearData, IsNotPIC]>;
1106def : Pat<(store (i64 (X86Wrapper mcsym:$src)), addr:$dst),
1107          (MOV64mi32 addr:$dst, mcsym:$src)>,
1108          Requires<[NearData, IsNotPIC]>;
1109def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
1110          (MOV64mi32 addr:$dst, tblockaddress:$src)>,
1111          Requires<[NearData, IsNotPIC]>;
1112
1113def : Pat<(i32 (X86RecoverFrameAlloc mcsym:$dst)), (MOV32ri mcsym:$dst)>;
1114def : Pat<(i64 (X86RecoverFrameAlloc mcsym:$dst)), (MOV64ri mcsym:$dst)>;
1115
1116// Calls
1117
1118// tls has some funny stuff here...
1119// This corresponds to movabs $foo@tpoff, %rax
1120def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
1121          (MOV64ri32 tglobaltlsaddr :$dst)>;
1122// This corresponds to add $foo@tpoff, %rax
1123def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
1124          (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
1125
1126
1127// Direct PC relative function call for small code model. 32-bit displacement
1128// sign extended to 64-bit.
1129def : Pat<(X86call (i64 tglobaladdr:$dst)),
1130          (CALL64pcrel32 tglobaladdr:$dst)>;
1131def : Pat<(X86call (i64 texternalsym:$dst)),
1132          (CALL64pcrel32 texternalsym:$dst)>;
1133
1134// Tailcall stuff. The TCRETURN instructions execute after the epilog, so they
1135// can never use callee-saved registers. That is the purpose of the GR64_TC
1136// register classes.
1137//
1138// The only volatile register that is never used by the calling convention is
1139// %r11. This happens when calling a vararg function with 6 arguments.
1140//
1141// Match an X86tcret that uses less than 7 volatile registers.
1142def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off),
1143                             (X86tcret node:$ptr, node:$off), [{
1144  // X86tcret args: (*chain, ptr, imm, regs..., glue)
1145  unsigned NumRegs = 0;
1146  for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i)
1147    if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6)
1148      return false;
1149  return true;
1150}]>;
1151
1152def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1153          (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>,
1154          Requires<[Not64BitMode]>;
1155
1156// FIXME: This is disabled for 32-bit PIC mode because the global base
1157// register which is part of the address mode may be assigned a
1158// callee-saved register.
1159def : Pat<(X86tcret (load addr:$dst), imm:$off),
1160          (TCRETURNmi addr:$dst, imm:$off)>,
1161          Requires<[Not64BitMode, IsNotPIC]>;
1162
1163def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
1164          (TCRETURNdi tglobaladdr:$dst, imm:$off)>,
1165          Requires<[NotLP64]>;
1166
1167def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
1168          (TCRETURNdi texternalsym:$dst, imm:$off)>,
1169          Requires<[NotLP64]>;
1170
1171def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off),
1172          (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>,
1173          Requires<[In64BitMode]>;
1174
1175// Don't fold loads into X86tcret requiring more than 6 regs.
1176// There wouldn't be enough scratch registers for base+index.
1177def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off),
1178          (TCRETURNmi64 addr:$dst, imm:$off)>,
1179          Requires<[In64BitMode]>;
1180
1181def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
1182          (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
1183          Requires<[IsLP64]>;
1184
1185def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
1186          (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
1187          Requires<[IsLP64]>;
1188
1189// Normal calls, with various flavors of addresses.
1190def : Pat<(X86call (i32 tglobaladdr:$dst)),
1191          (CALLpcrel32 tglobaladdr:$dst)>;
1192def : Pat<(X86call (i32 texternalsym:$dst)),
1193          (CALLpcrel32 texternalsym:$dst)>;
1194def : Pat<(X86call (i32 imm:$dst)),
1195          (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
1196
1197// Comparisons.
1198
1199// TEST R,R is smaller than CMP R,0
1200def : Pat<(X86cmp GR8:$src1, 0),
1201          (TEST8rr GR8:$src1, GR8:$src1)>;
1202def : Pat<(X86cmp GR16:$src1, 0),
1203          (TEST16rr GR16:$src1, GR16:$src1)>;
1204def : Pat<(X86cmp GR32:$src1, 0),
1205          (TEST32rr GR32:$src1, GR32:$src1)>;
1206def : Pat<(X86cmp GR64:$src1, 0),
1207          (TEST64rr GR64:$src1, GR64:$src1)>;
1208
1209// Conditional moves with folded loads with operands swapped and conditions
1210// inverted.
1211multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
1212                  Instruction Inst64> {
1213  let Predicates = [HasCMov] in {
1214    def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
1215              (Inst16 GR16:$src2, addr:$src1)>;
1216    def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
1217              (Inst32 GR32:$src2, addr:$src1)>;
1218    def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
1219              (Inst64 GR64:$src2, addr:$src1)>;
1220  }
1221}
1222
1223defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
1224defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
1225defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
1226defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
1227defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
1228defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
1229defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
1230defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
1231defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
1232defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
1233defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
1234defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
1235defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
1236defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
1237defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
1238defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
1239
1240// zextload bool -> zextload byte
1241// i1 stored in one byte in zero-extended form.
1242// Upper bits cleanup should be executed before Store.
1243def : Pat<(zextloadi8i1  addr:$src), (MOV8rm addr:$src)>;
1244def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
1245def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
1246def : Pat<(zextloadi64i1 addr:$src),
1247          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1248
1249// extload bool -> extload byte
1250// When extloading from 16-bit and smaller memory locations into 64-bit
1251// registers, use zero-extending loads so that the entire 64-bit register is
1252// defined, avoiding partial-register updates.
1253
1254def : Pat<(extloadi8i1 addr:$src),   (MOV8rm      addr:$src)>;
1255def : Pat<(extloadi16i1 addr:$src),  (MOVZX16rm8  addr:$src)>;
1256def : Pat<(extloadi32i1 addr:$src),  (MOVZX32rm8  addr:$src)>;
1257def : Pat<(extloadi16i8 addr:$src),  (MOVZX16rm8  addr:$src)>;
1258def : Pat<(extloadi32i8 addr:$src),  (MOVZX32rm8  addr:$src)>;
1259def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
1260
1261// For other extloads, use subregs, since the high contents of the register are
1262// defined after an extload.
1263def : Pat<(extloadi64i1 addr:$src),
1264          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1265def : Pat<(extloadi64i8 addr:$src),
1266          (SUBREG_TO_REG (i64 0), (MOVZX32rm8 addr:$src), sub_32bit)>;
1267def : Pat<(extloadi64i16 addr:$src),
1268          (SUBREG_TO_REG (i64 0), (MOVZX32rm16 addr:$src), sub_32bit)>;
1269def : Pat<(extloadi64i32 addr:$src),
1270          (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>;
1271
1272// anyext. Define these to do an explicit zero-extend to
1273// avoid partial-register updates.
1274def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG
1275                                     (MOVZX32rr8 GR8 :$src), sub_16bit)>;
1276def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8  GR8 :$src)>;
1277
1278// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
1279def : Pat<(i32 (anyext GR16:$src)),
1280          (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
1281
1282def : Pat<(i64 (anyext GR8 :$src)),
1283          (SUBREG_TO_REG (i64 0), (MOVZX32rr8  GR8  :$src), sub_32bit)>;
1284def : Pat<(i64 (anyext GR16:$src)),
1285          (SUBREG_TO_REG (i64 0), (MOVZX32rr16 GR16 :$src), sub_32bit)>;
1286def : Pat<(i64 (anyext GR32:$src)),
1287          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1288
1289
1290// Any instruction that defines a 32-bit result leaves the high half of the
1291// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
1292// be copying from a truncate. And x86's cmov doesn't do anything if the
1293// condition is false. But any other 32-bit operation will zero-extend
1294// up to 64 bits.
1295def def32 : PatLeaf<(i32 GR32:$src), [{
1296  return N->getOpcode() != ISD::TRUNCATE &&
1297         N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1298         N->getOpcode() != ISD::CopyFromReg &&
1299         N->getOpcode() != ISD::AssertSext &&
1300         N->getOpcode() != X86ISD::CMOV;
1301}]>;
1302
1303// In the case of a 32-bit def that is known to implicitly zero-extend,
1304// we can use a SUBREG_TO_REG.
1305def : Pat<(i64 (zext def32:$src)),
1306          (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1307
1308//===----------------------------------------------------------------------===//
1309// Pattern match OR as ADD
1310//===----------------------------------------------------------------------===//
1311
1312// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1313// 3-addressified into an LEA instruction to avoid copies.  However, we also
1314// want to finally emit these instructions as an or at the end of the code
1315// generator to make the generated code easier to read.  To do this, we select
1316// into "disjoint bits" pseudo ops.
1317
1318// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1319def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1320  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1321    return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1322
1323  APInt KnownZero0, KnownOne0;
1324  CurDAG->computeKnownBits(N->getOperand(0), KnownZero0, KnownOne0, 0);
1325  APInt KnownZero1, KnownOne1;
1326  CurDAG->computeKnownBits(N->getOperand(1), KnownZero1, KnownOne1, 0);
1327  return (~KnownZero0 & ~KnownZero1) == 0;
1328}]>;
1329
1330
1331// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1332// Try this before the selecting to OR.
1333let AddedComplexity = 5, SchedRW = [WriteALU] in {
1334
1335let isConvertibleToThreeAddress = 1,
1336    Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1337let isCommutable = 1 in {
1338def ADD16rr_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1339                    "", // orw/addw REG, REG
1340                    [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1341def ADD32rr_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1342                    "", // orl/addl REG, REG
1343                    [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1344def ADD64rr_DB  : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1345                    "", // orq/addq REG, REG
1346                    [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
1347} // isCommutable
1348
1349// NOTE: These are order specific, we want the ri8 forms to be listed
1350// first so that they are slightly preferred to the ri forms.
1351
1352def ADD16ri8_DB : I<0, Pseudo,
1353                    (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1354                    "", // orw/addw REG, imm8
1355                    [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1356def ADD16ri_DB  : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1357                    "", // orw/addw REG, imm
1358                    [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1359
1360def ADD32ri8_DB : I<0, Pseudo,
1361                    (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1362                    "", // orl/addl REG, imm8
1363                    [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1364def ADD32ri_DB  : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1365                    "", // orl/addl REG, imm
1366                    [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1367
1368
1369def ADD64ri8_DB : I<0, Pseudo,
1370                    (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1371                    "", // orq/addq REG, imm8
1372                    [(set GR64:$dst, (or_is_add GR64:$src1,
1373                                                i64immSExt8:$src2))]>;
1374def ADD64ri32_DB : I<0, Pseudo,
1375                     (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1376                      "", // orq/addq REG, imm
1377                      [(set GR64:$dst, (or_is_add GR64:$src1,
1378                                                  i64immSExt32:$src2))]>;
1379}
1380} // AddedComplexity, SchedRW
1381
1382
1383//===----------------------------------------------------------------------===//
1384// Some peepholes
1385//===----------------------------------------------------------------------===//
1386
1387// Odd encoding trick: -128 fits into an 8-bit immediate field while
1388// +128 doesn't, so in this special case use a sub instead of an add.
1389def : Pat<(add GR16:$src1, 128),
1390          (SUB16ri8 GR16:$src1, -128)>;
1391def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1392          (SUB16mi8 addr:$dst, -128)>;
1393
1394def : Pat<(add GR32:$src1, 128),
1395          (SUB32ri8 GR32:$src1, -128)>;
1396def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1397          (SUB32mi8 addr:$dst, -128)>;
1398
1399def : Pat<(add GR64:$src1, 128),
1400          (SUB64ri8 GR64:$src1, -128)>;
1401def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1402          (SUB64mi8 addr:$dst, -128)>;
1403
1404// The same trick applies for 32-bit immediate fields in 64-bit
1405// instructions.
1406def : Pat<(add GR64:$src1, 0x0000000080000000),
1407          (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1408def : Pat<(store (add (loadi64 addr:$dst), 0x0000000080000000), addr:$dst),
1409          (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1410
1411// To avoid needing to materialize an immediate in a register, use a 32-bit and
1412// with implicit zero-extension instead of a 64-bit and if the immediate has at
1413// least 32 bits of leading zeros. If in addition the last 32 bits can be
1414// represented with a sign extension of a 8 bit constant, use that.
1415// This can also reduce instruction size by eliminating the need for the REX
1416// prefix.
1417
1418// AddedComplexity is needed to give priority over i64immSExt8 and i64immSExt32.
1419let AddedComplexity = 1 in {
1420def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm),
1421          (SUBREG_TO_REG
1422            (i64 0),
1423            (AND32ri8
1424              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1425              (i32 (GetLo8XForm imm:$imm))),
1426            sub_32bit)>;
1427
1428def : Pat<(and GR64:$src, i64immZExt32:$imm),
1429          (SUBREG_TO_REG
1430            (i64 0),
1431            (AND32ri
1432              (EXTRACT_SUBREG GR64:$src, sub_32bit),
1433              (i32 (GetLo32XForm imm:$imm))),
1434            sub_32bit)>;
1435} // AddedComplexity = 1
1436
1437
1438// AddedComplexity is needed due to the increased complexity on the
1439// i64immZExt32SExt8 and i64immZExt32 patterns above. Applying this to all
1440// the MOVZX patterns keeps thems together in DAGIsel tables.
1441let AddedComplexity = 1 in {
1442// r & (2^16-1) ==> movz
1443def : Pat<(and GR32:$src1, 0xffff),
1444          (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1445// r & (2^8-1) ==> movz
1446def : Pat<(and GR32:$src1, 0xff),
1447          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1448                                                             GR32_ABCD)),
1449                                      sub_8bit))>,
1450      Requires<[Not64BitMode]>;
1451// r & (2^8-1) ==> movz
1452def : Pat<(and GR16:$src1, 0xff),
1453           (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG
1454            (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)),
1455             sub_16bit)>,
1456      Requires<[Not64BitMode]>;
1457
1458// r & (2^32-1) ==> movz
1459def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1460          (SUBREG_TO_REG (i64 0),
1461                         (MOV32rr (EXTRACT_SUBREG GR64:$src, sub_32bit)),
1462                         sub_32bit)>;
1463// r & (2^16-1) ==> movz
1464def : Pat<(and GR64:$src, 0xffff),
1465          (SUBREG_TO_REG (i64 0),
1466                      (MOVZX32rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit))),
1467                      sub_32bit)>;
1468// r & (2^8-1) ==> movz
1469def : Pat<(and GR64:$src, 0xff),
1470          (SUBREG_TO_REG (i64 0),
1471                         (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit))),
1472                         sub_32bit)>;
1473// r & (2^8-1) ==> movz
1474def : Pat<(and GR32:$src1, 0xff),
1475           (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1476      Requires<[In64BitMode]>;
1477// r & (2^8-1) ==> movz
1478def : Pat<(and GR16:$src1, 0xff),
1479           (EXTRACT_SUBREG (MOVZX32rr8 (i8
1480            (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>,
1481      Requires<[In64BitMode]>;
1482} // AddedComplexity = 1
1483
1484
1485// sext_inreg patterns
1486def : Pat<(sext_inreg GR32:$src, i16),
1487          (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1488def : Pat<(sext_inreg GR32:$src, i8),
1489          (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1490                                                             GR32_ABCD)),
1491                                      sub_8bit))>,
1492      Requires<[Not64BitMode]>;
1493
1494def : Pat<(sext_inreg GR16:$src, i8),
1495           (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG
1496            (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))),
1497             sub_16bit)>,
1498      Requires<[Not64BitMode]>;
1499
1500def : Pat<(sext_inreg GR64:$src, i32),
1501          (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1502def : Pat<(sext_inreg GR64:$src, i16),
1503          (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1504def : Pat<(sext_inreg GR64:$src, i8),
1505          (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1506def : Pat<(sext_inreg GR32:$src, i8),
1507          (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1508      Requires<[In64BitMode]>;
1509def : Pat<(sext_inreg GR16:$src, i8),
1510           (EXTRACT_SUBREG (MOVSX32rr8
1511            (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>,
1512      Requires<[In64BitMode]>;
1513
1514// sext, sext_load, zext, zext_load
1515def: Pat<(i16 (sext GR8:$src)),
1516          (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>;
1517def: Pat<(sextloadi16i8 addr:$src),
1518          (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>;
1519def: Pat<(i16 (zext GR8:$src)),
1520          (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>;
1521def: Pat<(zextloadi16i8 addr:$src),
1522          (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>;
1523
1524// trunc patterns
1525def : Pat<(i16 (trunc GR32:$src)),
1526          (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1527def : Pat<(i8 (trunc GR32:$src)),
1528          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1529                          sub_8bit)>,
1530      Requires<[Not64BitMode]>;
1531def : Pat<(i8 (trunc GR16:$src)),
1532          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1533                          sub_8bit)>,
1534      Requires<[Not64BitMode]>;
1535def : Pat<(i32 (trunc GR64:$src)),
1536          (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1537def : Pat<(i16 (trunc GR64:$src)),
1538          (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1539def : Pat<(i8 (trunc GR64:$src)),
1540          (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1541def : Pat<(i8 (trunc GR32:$src)),
1542          (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1543      Requires<[In64BitMode]>;
1544def : Pat<(i8 (trunc GR16:$src)),
1545          (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1546      Requires<[In64BitMode]>;
1547
1548// h-register tricks
1549def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1550          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1551                          sub_8bit_hi)>,
1552      Requires<[Not64BitMode]>;
1553def : Pat<(i8 (trunc (srl_su (i32 (anyext GR16:$src)), (i8 8)))),
1554          (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1555                          sub_8bit_hi)>,
1556      Requires<[Not64BitMode]>;
1557def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1558          (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1559                          sub_8bit_hi)>,
1560      Requires<[Not64BitMode]>;
1561def : Pat<(srl GR16:$src, (i8 8)),
1562          (EXTRACT_SUBREG
1563            (MOVZX32rr8
1564              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1565                              sub_8bit_hi)),
1566            sub_16bit)>,
1567      Requires<[Not64BitMode]>;
1568def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1569          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1570                                                             GR16_ABCD)),
1571                                      sub_8bit_hi))>,
1572      Requires<[Not64BitMode]>;
1573def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1574          (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1575                                                             GR16_ABCD)),
1576                                      sub_8bit_hi))>,
1577      Requires<[Not64BitMode]>;
1578def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1579          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1580                                                             GR32_ABCD)),
1581                                      sub_8bit_hi))>,
1582      Requires<[Not64BitMode]>;
1583def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1584          (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1585                                                             GR32_ABCD)),
1586                                      sub_8bit_hi))>,
1587      Requires<[Not64BitMode]>;
1588
1589// h-register tricks.
1590// For now, be conservative on x86-64 and use an h-register extract only if the
1591// value is immediately zero-extended or stored, which are somewhat common
1592// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1593// from being allocated in the same instruction as the h register, as there's
1594// currently no way to describe this requirement to the register allocator.
1595
1596// h-register extract and zero-extend.
1597def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1598          (SUBREG_TO_REG
1599            (i64 0),
1600            (MOVZX32_NOREXrr8
1601              (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1602                              sub_8bit_hi)),
1603            sub_32bit)>;
1604def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1605          (MOVZX32_NOREXrr8
1606            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1607                            sub_8bit_hi))>,
1608      Requires<[In64BitMode]>;
1609def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1610          (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1611                                                                   GR32_ABCD)),
1612                                             sub_8bit_hi))>,
1613      Requires<[In64BitMode]>;
1614def : Pat<(srl GR16:$src, (i8 8)),
1615          (EXTRACT_SUBREG
1616            (MOVZX32_NOREXrr8
1617              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1618                              sub_8bit_hi)),
1619            sub_16bit)>,
1620      Requires<[In64BitMode]>;
1621def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1622          (MOVZX32_NOREXrr8
1623            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1624                            sub_8bit_hi))>,
1625      Requires<[In64BitMode]>;
1626def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1627          (MOVZX32_NOREXrr8
1628            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1629                            sub_8bit_hi))>,
1630      Requires<[In64BitMode]>;
1631def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1632          (SUBREG_TO_REG
1633            (i64 0),
1634            (MOVZX32_NOREXrr8
1635              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1636                              sub_8bit_hi)),
1637            sub_32bit)>;
1638def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1639          (SUBREG_TO_REG
1640            (i64 0),
1641            (MOVZX32_NOREXrr8
1642              (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1643                              sub_8bit_hi)),
1644            sub_32bit)>;
1645
1646// h-register extract and store.
1647def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1648          (MOV8mr_NOREX
1649            addr:$dst,
1650            (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1651                            sub_8bit_hi))>;
1652def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1653          (MOV8mr_NOREX
1654            addr:$dst,
1655            (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1656                            sub_8bit_hi))>,
1657      Requires<[In64BitMode]>;
1658def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1659          (MOV8mr_NOREX
1660            addr:$dst,
1661            (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1662                            sub_8bit_hi))>,
1663      Requires<[In64BitMode]>;
1664
1665
1666// (shl x, 1) ==> (add x, x)
1667// Note that if x is undef (immediate or otherwise), we could theoretically
1668// end up with the two uses of x getting different values, producing a result
1669// where the least significant bit is not 0. However, the probability of this
1670// happening is considered low enough that this is officially not a
1671// "real problem".
1672def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr  GR8 :$src1, GR8 :$src1)>;
1673def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1674def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1675def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1676
1677// Helper imms that check if a mask doesn't change significant shift bits.
1678def immShift32 : ImmLeaf<i8, [{
1679  return countTrailingOnes<uint64_t>(Imm) >= 5;
1680}]>;
1681def immShift64 : ImmLeaf<i8, [{
1682  return countTrailingOnes<uint64_t>(Imm) >= 6;
1683}]>;
1684
1685// Shift amount is implicitly masked.
1686multiclass MaskedShiftAmountPats<SDNode frag, string name> {
1687  // (shift x (and y, 31)) ==> (shift x, y)
1688  def : Pat<(frag GR8:$src1, (and CL, immShift32)),
1689            (!cast<Instruction>(name # "8rCL") GR8:$src1)>;
1690  def : Pat<(frag GR16:$src1, (and CL, immShift32)),
1691            (!cast<Instruction>(name # "16rCL") GR16:$src1)>;
1692  def : Pat<(frag GR32:$src1, (and CL, immShift32)),
1693            (!cast<Instruction>(name # "32rCL") GR32:$src1)>;
1694  def : Pat<(store (frag (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst),
1695            (!cast<Instruction>(name # "8mCL") addr:$dst)>;
1696  def : Pat<(store (frag (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst),
1697            (!cast<Instruction>(name # "16mCL") addr:$dst)>;
1698  def : Pat<(store (frag (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst),
1699            (!cast<Instruction>(name # "32mCL") addr:$dst)>;
1700
1701  // (shift x (and y, 63)) ==> (shift x, y)
1702  def : Pat<(frag GR64:$src1, (and CL, immShift64)),
1703            (!cast<Instruction>(name # "64rCL") GR64:$src1)>;
1704  def : Pat<(store (frag (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1705            (!cast<Instruction>(name # "64mCL") addr:$dst)>;
1706}
1707
1708defm : MaskedShiftAmountPats<shl, "SHL">;
1709defm : MaskedShiftAmountPats<srl, "SHR">;
1710defm : MaskedShiftAmountPats<sra, "SAR">;
1711defm : MaskedShiftAmountPats<rotl, "ROL">;
1712defm : MaskedShiftAmountPats<rotr, "ROR">;
1713
1714// (anyext (setcc_carry)) -> (setcc_carry)
1715def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1716          (SETB_C16r)>;
1717def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1718          (SETB_C32r)>;
1719def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1720          (SETB_C32r)>;
1721
1722
1723
1724
1725//===----------------------------------------------------------------------===//
1726// EFLAGS-defining Patterns
1727//===----------------------------------------------------------------------===//
1728
1729// add reg, reg
1730def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr  GR8 :$src1, GR8 :$src2)>;
1731def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1732def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1733
1734// add reg, mem
1735def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1736          (ADD8rm GR8:$src1, addr:$src2)>;
1737def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1738          (ADD16rm GR16:$src1, addr:$src2)>;
1739def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1740          (ADD32rm GR32:$src1, addr:$src2)>;
1741
1742// add reg, imm
1743def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri  GR8:$src1 , imm:$src2)>;
1744def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1745def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1746def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1747          (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1748def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1749          (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1750
1751// sub reg, reg
1752def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr  GR8 :$src1, GR8 :$src2)>;
1753def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1754def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1755
1756// sub reg, mem
1757def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1758          (SUB8rm GR8:$src1, addr:$src2)>;
1759def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1760          (SUB16rm GR16:$src1, addr:$src2)>;
1761def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1762          (SUB32rm GR32:$src1, addr:$src2)>;
1763
1764// sub reg, imm
1765def : Pat<(sub GR8:$src1, imm:$src2),
1766          (SUB8ri GR8:$src1, imm:$src2)>;
1767def : Pat<(sub GR16:$src1, imm:$src2),
1768          (SUB16ri GR16:$src1, imm:$src2)>;
1769def : Pat<(sub GR32:$src1, imm:$src2),
1770          (SUB32ri GR32:$src1, imm:$src2)>;
1771def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1772          (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1773def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1774          (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1775
1776// sub 0, reg
1777def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r  GR8 :$src)>;
1778def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>;
1779def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>;
1780def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>;
1781
1782// mul reg, reg
1783def : Pat<(mul GR16:$src1, GR16:$src2),
1784          (IMUL16rr GR16:$src1, GR16:$src2)>;
1785def : Pat<(mul GR32:$src1, GR32:$src2),
1786          (IMUL32rr GR32:$src1, GR32:$src2)>;
1787
1788// mul reg, mem
1789def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1790          (IMUL16rm GR16:$src1, addr:$src2)>;
1791def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1792          (IMUL32rm GR32:$src1, addr:$src2)>;
1793
1794// mul reg, imm
1795def : Pat<(mul GR16:$src1, imm:$src2),
1796          (IMUL16rri GR16:$src1, imm:$src2)>;
1797def : Pat<(mul GR32:$src1, imm:$src2),
1798          (IMUL32rri GR32:$src1, imm:$src2)>;
1799def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1800          (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1801def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1802          (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1803
1804// reg = mul mem, imm
1805def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1806          (IMUL16rmi addr:$src1, imm:$src2)>;
1807def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1808          (IMUL32rmi addr:$src1, imm:$src2)>;
1809def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1810          (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1811def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1812          (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1813
1814// Patterns for nodes that do not produce flags, for instructions that do.
1815
1816// addition
1817def : Pat<(add GR64:$src1, GR64:$src2),
1818          (ADD64rr GR64:$src1, GR64:$src2)>;
1819def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1820          (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1821def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1822          (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1823def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1824          (ADD64rm GR64:$src1, addr:$src2)>;
1825
1826// subtraction
1827def : Pat<(sub GR64:$src1, GR64:$src2),
1828          (SUB64rr GR64:$src1, GR64:$src2)>;
1829def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1830          (SUB64rm GR64:$src1, addr:$src2)>;
1831def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1832          (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1833def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1834          (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1835
1836// Multiply
1837def : Pat<(mul GR64:$src1, GR64:$src2),
1838          (IMUL64rr GR64:$src1, GR64:$src2)>;
1839def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1840          (IMUL64rm GR64:$src1, addr:$src2)>;
1841def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1842          (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1843def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1844          (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1845def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1846          (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1847def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1848          (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1849
1850// Increment/Decrement reg.
1851// Do not make INC/DEC if it is slow
1852let Predicates = [NotSlowIncDec] in {
1853  def : Pat<(add GR8:$src, 1),   (INC8r GR8:$src)>;
1854  def : Pat<(add GR16:$src, 1),  (INC16r GR16:$src)>;
1855  def : Pat<(add GR32:$src, 1),  (INC32r GR32:$src)>;
1856  def : Pat<(add GR64:$src, 1),  (INC64r GR64:$src)>;
1857  def : Pat<(add GR8:$src, -1),  (DEC8r GR8:$src)>;
1858  def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>;
1859  def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>;
1860  def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1861}
1862
1863// or reg/reg.
1864def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr  GR8 :$src1, GR8 :$src2)>;
1865def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1866def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1867def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1868
1869// or reg/mem
1870def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1871          (OR8rm GR8:$src1, addr:$src2)>;
1872def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1873          (OR16rm GR16:$src1, addr:$src2)>;
1874def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1875          (OR32rm GR32:$src1, addr:$src2)>;
1876def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1877          (OR64rm GR64:$src1, addr:$src2)>;
1878
1879// or reg/imm
1880def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri  GR8 :$src1, imm:$src2)>;
1881def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1882def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1883def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1884          (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1885def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1886          (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1887def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1888          (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1889def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1890          (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1891
1892// xor reg/reg
1893def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr  GR8 :$src1, GR8 :$src2)>;
1894def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1895def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1896def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1897
1898// xor reg/mem
1899def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1900          (XOR8rm GR8:$src1, addr:$src2)>;
1901def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1902          (XOR16rm GR16:$src1, addr:$src2)>;
1903def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1904          (XOR32rm GR32:$src1, addr:$src2)>;
1905def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1906          (XOR64rm GR64:$src1, addr:$src2)>;
1907
1908// xor reg/imm
1909def : Pat<(xor GR8:$src1, imm:$src2),
1910          (XOR8ri GR8:$src1, imm:$src2)>;
1911def : Pat<(xor GR16:$src1, imm:$src2),
1912          (XOR16ri GR16:$src1, imm:$src2)>;
1913def : Pat<(xor GR32:$src1, imm:$src2),
1914          (XOR32ri GR32:$src1, imm:$src2)>;
1915def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1916          (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1917def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1918          (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1919def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1920          (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1921def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1922          (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1923
1924// and reg/reg
1925def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr  GR8 :$src1, GR8 :$src2)>;
1926def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1927def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1928def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1929
1930// and reg/mem
1931def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1932          (AND8rm GR8:$src1, addr:$src2)>;
1933def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1934          (AND16rm GR16:$src1, addr:$src2)>;
1935def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1936          (AND32rm GR32:$src1, addr:$src2)>;
1937def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1938          (AND64rm GR64:$src1, addr:$src2)>;
1939
1940// and reg/imm
1941def : Pat<(and GR8:$src1, imm:$src2),
1942          (AND8ri GR8:$src1, imm:$src2)>;
1943def : Pat<(and GR16:$src1, imm:$src2),
1944          (AND16ri GR16:$src1, imm:$src2)>;
1945def : Pat<(and GR32:$src1, imm:$src2),
1946          (AND32ri GR32:$src1, imm:$src2)>;
1947def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1948          (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1949def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1950          (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1951def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1952          (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1953def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1954          (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
1955
1956// Bit scan instruction patterns to match explicit zero-undef behavior.
1957def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>;
1958def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>;
1959def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>;
1960def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>;
1961def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>;
1962def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;
1963
1964// When HasMOVBE is enabled it is possible to get a non-legalized
1965// register-register 16 bit bswap. This maps it to a ROL instruction.
1966let Predicates = [HasMOVBE] in {
1967 def : Pat<(bswap GR16:$src), (ROL16ri GR16:$src, (i8 8))>;
1968}
1969