1 //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SampleProfileLoader transformation. This pass
11 // reads a profile file generated by a sampling profiler (e.g. Linux Perf -
12 // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
13 // profile information in the given profile.
14 //
15 // This pass generates branch weight annotations on the IR:
16 //
17 // - prof: Represents branch weights. This annotation is added to branches
18 // to indicate the weights of each edge coming out of the branch.
19 // The weight of each edge is the weight of the target block for
20 // that edge. The weight of a block B is computed as the maximum
21 // number of samples found in B.
22 //
23 //===----------------------------------------------------------------------===//
24
25 #include "llvm/Transforms/SampleProfile.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/Analysis/AssumptionCache.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/PostDominators.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugInfo.h"
35 #include "llvm/IR/DiagnosticInfo.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/InstIterator.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Module.h"
45 #include "llvm/Pass.h"
46 #include "llvm/ProfileData/SampleProfReader.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorOr.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/IPO.h"
53 #include "llvm/Transforms/Utils/Cloning.h"
54 #include <cctype>
55
56 using namespace llvm;
57 using namespace sampleprof;
58
59 #define DEBUG_TYPE "sample-profile"
60
61 // Command line option to specify the file to read samples from. This is
62 // mainly used for debugging.
63 static cl::opt<std::string> SampleProfileFile(
64 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
65 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
66 static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
67 "sample-profile-max-propagate-iterations", cl::init(100),
68 cl::desc("Maximum number of iterations to go through when propagating "
69 "sample block/edge weights through the CFG."));
70 static cl::opt<unsigned> SampleProfileRecordCoverage(
71 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
72 cl::desc("Emit a warning if less than N% of records in the input profile "
73 "are matched to the IR."));
74 static cl::opt<unsigned> SampleProfileSampleCoverage(
75 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
76 cl::desc("Emit a warning if less than N% of samples in the input profile "
77 "are matched to the IR."));
78 static cl::opt<double> SampleProfileHotThreshold(
79 "sample-profile-inline-hot-threshold", cl::init(0.1), cl::value_desc("N"),
80 cl::desc("Inlined functions that account for more than N% of all samples "
81 "collected in the parent function, will be inlined again."));
82
83 namespace {
84 typedef DenseMap<const BasicBlock *, uint64_t> BlockWeightMap;
85 typedef DenseMap<const BasicBlock *, const BasicBlock *> EquivalenceClassMap;
86 typedef std::pair<const BasicBlock *, const BasicBlock *> Edge;
87 typedef DenseMap<Edge, uint64_t> EdgeWeightMap;
88 typedef DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>
89 BlockEdgeMap;
90
91 /// \brief Sample profile pass.
92 ///
93 /// This pass reads profile data from the file specified by
94 /// -sample-profile-file and annotates every affected function with the
95 /// profile information found in that file.
96 class SampleProfileLoader {
97 public:
SampleProfileLoader(StringRef Name=SampleProfileFile)98 SampleProfileLoader(StringRef Name = SampleProfileFile)
99 : DT(nullptr), PDT(nullptr), LI(nullptr), ACT(nullptr), Reader(),
100 Samples(nullptr), Filename(Name), ProfileIsValid(false),
101 TotalCollectedSamples(0) {}
102
103 bool doInitialization(Module &M);
104 bool runOnModule(Module &M);
setACT(AssumptionCacheTracker * A)105 void setACT(AssumptionCacheTracker *A) { ACT = A; }
106
dump()107 void dump() { Reader->dump(); }
108
109 protected:
110 bool runOnFunction(Function &F);
111 unsigned getFunctionLoc(Function &F);
112 bool emitAnnotations(Function &F);
113 ErrorOr<uint64_t> getInstWeight(const Instruction &I) const;
114 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB) const;
115 const FunctionSamples *findCalleeFunctionSamples(const CallInst &I) const;
116 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
117 bool inlineHotFunctions(Function &F);
118 void printEdgeWeight(raw_ostream &OS, Edge E);
119 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
120 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
121 bool computeBlockWeights(Function &F);
122 void findEquivalenceClasses(Function &F);
123 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
124 DominatorTreeBase<BasicBlock> *DomTree);
125 void propagateWeights(Function &F);
126 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
127 void buildEdges(Function &F);
128 bool propagateThroughEdges(Function &F);
129 void computeDominanceAndLoopInfo(Function &F);
130 unsigned getOffset(unsigned L, unsigned H) const;
131 void clearFunctionData();
132
133 /// \brief Map basic blocks to their computed weights.
134 ///
135 /// The weight of a basic block is defined to be the maximum
136 /// of all the instruction weights in that block.
137 BlockWeightMap BlockWeights;
138
139 /// \brief Map edges to their computed weights.
140 ///
141 /// Edge weights are computed by propagating basic block weights in
142 /// SampleProfile::propagateWeights.
143 EdgeWeightMap EdgeWeights;
144
145 /// \brief Set of visited blocks during propagation.
146 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
147
148 /// \brief Set of visited edges during propagation.
149 SmallSet<Edge, 32> VisitedEdges;
150
151 /// \brief Equivalence classes for block weights.
152 ///
153 /// Two blocks BB1 and BB2 are in the same equivalence class if they
154 /// dominate and post-dominate each other, and they are in the same loop
155 /// nest. When this happens, the two blocks are guaranteed to execute
156 /// the same number of times.
157 EquivalenceClassMap EquivalenceClass;
158
159 /// \brief Dominance, post-dominance and loop information.
160 std::unique_ptr<DominatorTree> DT;
161 std::unique_ptr<DominatorTreeBase<BasicBlock>> PDT;
162 std::unique_ptr<LoopInfo> LI;
163
164 AssumptionCacheTracker *ACT;
165
166 /// \brief Predecessors for each basic block in the CFG.
167 BlockEdgeMap Predecessors;
168
169 /// \brief Successors for each basic block in the CFG.
170 BlockEdgeMap Successors;
171
172 /// \brief Profile reader object.
173 std::unique_ptr<SampleProfileReader> Reader;
174
175 /// \brief Samples collected for the body of this function.
176 FunctionSamples *Samples;
177
178 /// \brief Name of the profile file to load.
179 StringRef Filename;
180
181 /// \brief Flag indicating whether the profile input loaded successfully.
182 bool ProfileIsValid;
183
184 /// \brief Total number of samples collected in this profile.
185 ///
186 /// This is the sum of all the samples collected in all the functions executed
187 /// at runtime.
188 uint64_t TotalCollectedSamples;
189 };
190
191 class SampleProfileLoaderLegacyPass : public ModulePass {
192 public:
193 // Class identification, replacement for typeinfo
194 static char ID;
195
SampleProfileLoaderLegacyPass(StringRef Name=SampleProfileFile)196 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile)
197 : ModulePass(ID), SampleLoader(Name) {
198 initializeSampleProfileLoaderLegacyPassPass(
199 *PassRegistry::getPassRegistry());
200 }
201
dump()202 void dump() { SampleLoader.dump(); }
203
doInitialization(Module & M)204 bool doInitialization(Module &M) override {
205 return SampleLoader.doInitialization(M);
206 }
getPassName() const207 const char *getPassName() const override { return "Sample profile pass"; }
208 bool runOnModule(Module &M) override;
209
getAnalysisUsage(AnalysisUsage & AU) const210 void getAnalysisUsage(AnalysisUsage &AU) const override {
211 AU.addRequired<AssumptionCacheTracker>();
212 }
213 private:
214 SampleProfileLoader SampleLoader;
215 };
216
217 class SampleCoverageTracker {
218 public:
SampleCoverageTracker()219 SampleCoverageTracker() : SampleCoverage(), TotalUsedSamples(0) {}
220
221 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
222 uint32_t Discriminator, uint64_t Samples);
223 unsigned computeCoverage(unsigned Used, unsigned Total) const;
224 unsigned countUsedRecords(const FunctionSamples *FS) const;
225 unsigned countBodyRecords(const FunctionSamples *FS) const;
getTotalUsedSamples() const226 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
227 uint64_t countBodySamples(const FunctionSamples *FS) const;
clear()228 void clear() {
229 SampleCoverage.clear();
230 TotalUsedSamples = 0;
231 }
232
233 private:
234 typedef std::map<LineLocation, unsigned> BodySampleCoverageMap;
235 typedef DenseMap<const FunctionSamples *, BodySampleCoverageMap>
236 FunctionSamplesCoverageMap;
237
238 /// Coverage map for sampling records.
239 ///
240 /// This map keeps a record of sampling records that have been matched to
241 /// an IR instruction. This is used to detect some form of staleness in
242 /// profiles (see flag -sample-profile-check-coverage).
243 ///
244 /// Each entry in the map corresponds to a FunctionSamples instance. This is
245 /// another map that counts how many times the sample record at the
246 /// given location has been used.
247 FunctionSamplesCoverageMap SampleCoverage;
248
249 /// Number of samples used from the profile.
250 ///
251 /// When a sampling record is used for the first time, the samples from
252 /// that record are added to this accumulator. Coverage is later computed
253 /// based on the total number of samples available in this function and
254 /// its callsites.
255 ///
256 /// Note that this accumulator tracks samples used from a single function
257 /// and all the inlined callsites. Strictly, we should have a map of counters
258 /// keyed by FunctionSamples pointers, but these stats are cleared after
259 /// every function, so we just need to keep a single counter.
260 uint64_t TotalUsedSamples;
261 };
262
263 SampleCoverageTracker CoverageTracker;
264
265 /// Return true if the given callsite is hot wrt to its caller.
266 ///
267 /// Functions that were inlined in the original binary will be represented
268 /// in the inline stack in the sample profile. If the profile shows that
269 /// the original inline decision was "good" (i.e., the callsite is executed
270 /// frequently), then we will recreate the inline decision and apply the
271 /// profile from the inlined callsite.
272 ///
273 /// To decide whether an inlined callsite is hot, we compute the fraction
274 /// of samples used by the callsite with respect to the total number of samples
275 /// collected in the caller.
276 ///
277 /// If that fraction is larger than the default given by
278 /// SampleProfileHotThreshold, the callsite will be inlined again.
callsiteIsHot(const FunctionSamples * CallerFS,const FunctionSamples * CallsiteFS)279 bool callsiteIsHot(const FunctionSamples *CallerFS,
280 const FunctionSamples *CallsiteFS) {
281 if (!CallsiteFS)
282 return false; // The callsite was not inlined in the original binary.
283
284 uint64_t ParentTotalSamples = CallerFS->getTotalSamples();
285 if (ParentTotalSamples == 0)
286 return false; // Avoid division by zero.
287
288 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
289 if (CallsiteTotalSamples == 0)
290 return false; // Callsite is trivially cold.
291
292 double PercentSamples =
293 (double)CallsiteTotalSamples / (double)ParentTotalSamples * 100.0;
294 return PercentSamples >= SampleProfileHotThreshold;
295 }
296 }
297
298 /// Mark as used the sample record for the given function samples at
299 /// (LineOffset, Discriminator).
300 ///
301 /// \returns true if this is the first time we mark the given record.
markSamplesUsed(const FunctionSamples * FS,uint32_t LineOffset,uint32_t Discriminator,uint64_t Samples)302 bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
303 uint32_t LineOffset,
304 uint32_t Discriminator,
305 uint64_t Samples) {
306 LineLocation Loc(LineOffset, Discriminator);
307 unsigned &Count = SampleCoverage[FS][Loc];
308 bool FirstTime = (++Count == 1);
309 if (FirstTime)
310 TotalUsedSamples += Samples;
311 return FirstTime;
312 }
313
314 /// Return the number of sample records that were applied from this profile.
315 ///
316 /// This count does not include records from cold inlined callsites.
317 unsigned
countUsedRecords(const FunctionSamples * FS) const318 SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS) const {
319 auto I = SampleCoverage.find(FS);
320
321 // The size of the coverage map for FS represents the number of records
322 // that were marked used at least once.
323 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
324
325 // If there are inlined callsites in this function, count the samples found
326 // in the respective bodies. However, do not bother counting callees with 0
327 // total samples, these are callees that were never invoked at runtime.
328 for (const auto &I : FS->getCallsiteSamples()) {
329 const FunctionSamples *CalleeSamples = &I.second;
330 if (callsiteIsHot(FS, CalleeSamples))
331 Count += countUsedRecords(CalleeSamples);
332 }
333
334 return Count;
335 }
336
337 /// Return the number of sample records in the body of this profile.
338 ///
339 /// This count does not include records from cold inlined callsites.
340 unsigned
countBodyRecords(const FunctionSamples * FS) const341 SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS) const {
342 unsigned Count = FS->getBodySamples().size();
343
344 // Only count records in hot callsites.
345 for (const auto &I : FS->getCallsiteSamples()) {
346 const FunctionSamples *CalleeSamples = &I.second;
347 if (callsiteIsHot(FS, CalleeSamples))
348 Count += countBodyRecords(CalleeSamples);
349 }
350
351 return Count;
352 }
353
354 /// Return the number of samples collected in the body of this profile.
355 ///
356 /// This count does not include samples from cold inlined callsites.
357 uint64_t
countBodySamples(const FunctionSamples * FS) const358 SampleCoverageTracker::countBodySamples(const FunctionSamples *FS) const {
359 uint64_t Total = 0;
360 for (const auto &I : FS->getBodySamples())
361 Total += I.second.getSamples();
362
363 // Only count samples in hot callsites.
364 for (const auto &I : FS->getCallsiteSamples()) {
365 const FunctionSamples *CalleeSamples = &I.second;
366 if (callsiteIsHot(FS, CalleeSamples))
367 Total += countBodySamples(CalleeSamples);
368 }
369
370 return Total;
371 }
372
373 /// Return the fraction of sample records used in this profile.
374 ///
375 /// The returned value is an unsigned integer in the range 0-100 indicating
376 /// the percentage of sample records that were used while applying this
377 /// profile to the associated function.
computeCoverage(unsigned Used,unsigned Total) const378 unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
379 unsigned Total) const {
380 assert(Used <= Total &&
381 "number of used records cannot exceed the total number of records");
382 return Total > 0 ? Used * 100 / Total : 100;
383 }
384
385 /// Clear all the per-function data used to load samples and propagate weights.
clearFunctionData()386 void SampleProfileLoader::clearFunctionData() {
387 BlockWeights.clear();
388 EdgeWeights.clear();
389 VisitedBlocks.clear();
390 VisitedEdges.clear();
391 EquivalenceClass.clear();
392 DT = nullptr;
393 PDT = nullptr;
394 LI = nullptr;
395 Predecessors.clear();
396 Successors.clear();
397 CoverageTracker.clear();
398 }
399
400 /// \brief Returns the offset of lineno \p L to head_lineno \p H
401 ///
402 /// \param L Lineno
403 /// \param H Header lineno of the function
404 ///
405 /// \returns offset to the header lineno. 16 bits are used to represent offset.
406 /// We assume that a single function will not exceed 65535 LOC.
getOffset(unsigned L,unsigned H) const407 unsigned SampleProfileLoader::getOffset(unsigned L, unsigned H) const {
408 return (L - H) & 0xffff;
409 }
410
411 /// \brief Print the weight of edge \p E on stream \p OS.
412 ///
413 /// \param OS Stream to emit the output to.
414 /// \param E Edge to print.
printEdgeWeight(raw_ostream & OS,Edge E)415 void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
416 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
417 << "]: " << EdgeWeights[E] << "\n";
418 }
419
420 /// \brief Print the equivalence class of block \p BB on stream \p OS.
421 ///
422 /// \param OS Stream to emit the output to.
423 /// \param BB Block to print.
printBlockEquivalence(raw_ostream & OS,const BasicBlock * BB)424 void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
425 const BasicBlock *BB) {
426 const BasicBlock *Equiv = EquivalenceClass[BB];
427 OS << "equivalence[" << BB->getName()
428 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
429 }
430
431 /// \brief Print the weight of block \p BB on stream \p OS.
432 ///
433 /// \param OS Stream to emit the output to.
434 /// \param BB Block to print.
printBlockWeight(raw_ostream & OS,const BasicBlock * BB) const435 void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
436 const BasicBlock *BB) const {
437 const auto &I = BlockWeights.find(BB);
438 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
439 OS << "weight[" << BB->getName() << "]: " << W << "\n";
440 }
441
442 /// \brief Get the weight for an instruction.
443 ///
444 /// The "weight" of an instruction \p Inst is the number of samples
445 /// collected on that instruction at runtime. To retrieve it, we
446 /// need to compute the line number of \p Inst relative to the start of its
447 /// function. We use HeaderLineno to compute the offset. We then
448 /// look up the samples collected for \p Inst using BodySamples.
449 ///
450 /// \param Inst Instruction to query.
451 ///
452 /// \returns the weight of \p Inst.
453 ErrorOr<uint64_t>
getInstWeight(const Instruction & Inst) const454 SampleProfileLoader::getInstWeight(const Instruction &Inst) const {
455 const DebugLoc &DLoc = Inst.getDebugLoc();
456 if (!DLoc)
457 return std::error_code();
458
459 const FunctionSamples *FS = findFunctionSamples(Inst);
460 if (!FS)
461 return std::error_code();
462
463 // Ignore all dbg_value intrinsics.
464 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst);
465 if (II && II->getIntrinsicID() == Intrinsic::dbg_value)
466 return std::error_code();
467
468 const DILocation *DIL = DLoc;
469 unsigned Lineno = DLoc.getLine();
470 unsigned HeaderLineno = DIL->getScope()->getSubprogram()->getLine();
471
472 uint32_t LineOffset = getOffset(Lineno, HeaderLineno);
473 uint32_t Discriminator = DIL->getDiscriminator();
474 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
475 if (R) {
476 bool FirstMark =
477 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
478 if (FirstMark) {
479 const Function *F = Inst.getParent()->getParent();
480 LLVMContext &Ctx = F->getContext();
481 emitOptimizationRemark(
482 Ctx, DEBUG_TYPE, *F, DLoc,
483 Twine("Applied ") + Twine(*R) + " samples from profile (offset: " +
484 Twine(LineOffset) +
485 ((Discriminator) ? Twine(".") + Twine(Discriminator) : "") + ")");
486 }
487 DEBUG(dbgs() << " " << Lineno << "." << DIL->getDiscriminator() << ":"
488 << Inst << " (line offset: " << Lineno - HeaderLineno << "."
489 << DIL->getDiscriminator() << " - weight: " << R.get()
490 << ")\n");
491 } else {
492 // If a call instruction is inlined in profile, but not inlined here,
493 // it means that the inlined callsite has no sample, thus the call
494 // instruction should have 0 count.
495 const CallInst *CI = dyn_cast<CallInst>(&Inst);
496 if (CI && findCalleeFunctionSamples(*CI))
497 R = 0;
498 }
499 return R;
500 }
501
502 /// \brief Compute the weight of a basic block.
503 ///
504 /// The weight of basic block \p BB is the maximum weight of all the
505 /// instructions in BB.
506 ///
507 /// \param BB The basic block to query.
508 ///
509 /// \returns the weight for \p BB.
510 ErrorOr<uint64_t>
getBlockWeight(const BasicBlock * BB) const511 SampleProfileLoader::getBlockWeight(const BasicBlock *BB) const {
512 DenseMap<uint64_t, uint64_t> CM;
513 for (auto &I : BB->getInstList()) {
514 const ErrorOr<uint64_t> &R = getInstWeight(I);
515 if (R) CM[R.get()]++;
516 }
517 if (CM.size() == 0) return std::error_code();
518 uint64_t W = 0, C = 0;
519 for (const auto &C_W : CM) {
520 if (C_W.second == W) {
521 C = std::max(C, C_W.first);
522 } else if (C_W.second > W) {
523 C = C_W.first;
524 W = C_W.second;
525 }
526 }
527 return C;
528 }
529
530 /// \brief Compute and store the weights of every basic block.
531 ///
532 /// This populates the BlockWeights map by computing
533 /// the weights of every basic block in the CFG.
534 ///
535 /// \param F The function to query.
computeBlockWeights(Function & F)536 bool SampleProfileLoader::computeBlockWeights(Function &F) {
537 bool Changed = false;
538 DEBUG(dbgs() << "Block weights\n");
539 for (const auto &BB : F) {
540 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
541 if (Weight) {
542 BlockWeights[&BB] = Weight.get();
543 VisitedBlocks.insert(&BB);
544 Changed = true;
545 }
546 DEBUG(printBlockWeight(dbgs(), &BB));
547 }
548
549 return Changed;
550 }
551
552 /// \brief Get the FunctionSamples for a call instruction.
553 ///
554 /// The FunctionSamples of a call instruction \p Inst is the inlined
555 /// instance in which that call instruction is calling to. It contains
556 /// all samples that resides in the inlined instance. We first find the
557 /// inlined instance in which the call instruction is from, then we
558 /// traverse its children to find the callsite with the matching
559 /// location and callee function name.
560 ///
561 /// \param Inst Call instruction to query.
562 ///
563 /// \returns The FunctionSamples pointer to the inlined instance.
564 const FunctionSamples *
findCalleeFunctionSamples(const CallInst & Inst) const565 SampleProfileLoader::findCalleeFunctionSamples(const CallInst &Inst) const {
566 const DILocation *DIL = Inst.getDebugLoc();
567 if (!DIL) {
568 return nullptr;
569 }
570 DISubprogram *SP = DIL->getScope()->getSubprogram();
571 if (!SP)
572 return nullptr;
573
574 const FunctionSamples *FS = findFunctionSamples(Inst);
575 if (FS == nullptr)
576 return nullptr;
577
578 return FS->findFunctionSamplesAt(LineLocation(
579 getOffset(DIL->getLine(), SP->getLine()), DIL->getDiscriminator()));
580 }
581
582 /// \brief Get the FunctionSamples for an instruction.
583 ///
584 /// The FunctionSamples of an instruction \p Inst is the inlined instance
585 /// in which that instruction is coming from. We traverse the inline stack
586 /// of that instruction, and match it with the tree nodes in the profile.
587 ///
588 /// \param Inst Instruction to query.
589 ///
590 /// \returns the FunctionSamples pointer to the inlined instance.
591 const FunctionSamples *
findFunctionSamples(const Instruction & Inst) const592 SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
593 SmallVector<LineLocation, 10> S;
594 const DILocation *DIL = Inst.getDebugLoc();
595 if (!DIL) {
596 return Samples;
597 }
598 for (DIL = DIL->getInlinedAt(); DIL; DIL = DIL->getInlinedAt()) {
599 DISubprogram *SP = DIL->getScope()->getSubprogram();
600 if (!SP)
601 return nullptr;
602 S.push_back(LineLocation(getOffset(DIL->getLine(), SP->getLine()),
603 DIL->getDiscriminator()));
604 }
605 if (S.size() == 0)
606 return Samples;
607 const FunctionSamples *FS = Samples;
608 for (int i = S.size() - 1; i >= 0 && FS != nullptr; i--) {
609 FS = FS->findFunctionSamplesAt(S[i]);
610 }
611 return FS;
612 }
613
614
615 /// \brief Iteratively inline hot callsites of a function.
616 ///
617 /// Iteratively traverse all callsites of the function \p F, and find if
618 /// the corresponding inlined instance exists and is hot in profile. If
619 /// it is hot enough, inline the callsites and adds new callsites of the
620 /// callee into the caller.
621 ///
622 /// TODO: investigate the possibility of not invoking InlineFunction directly.
623 ///
624 /// \param F function to perform iterative inlining.
625 ///
626 /// \returns True if there is any inline happened.
inlineHotFunctions(Function & F)627 bool SampleProfileLoader::inlineHotFunctions(Function &F) {
628 bool Changed = false;
629 LLVMContext &Ctx = F.getContext();
630 while (true) {
631 bool LocalChanged = false;
632 SmallVector<CallInst *, 10> CIS;
633 for (auto &BB : F) {
634 for (auto &I : BB.getInstList()) {
635 CallInst *CI = dyn_cast<CallInst>(&I);
636 if (CI && callsiteIsHot(Samples, findCalleeFunctionSamples(*CI)))
637 CIS.push_back(CI);
638 }
639 }
640 for (auto CI : CIS) {
641 InlineFunctionInfo IFI(nullptr, ACT);
642 Function *CalledFunction = CI->getCalledFunction();
643 DebugLoc DLoc = CI->getDebugLoc();
644 uint64_t NumSamples = findCalleeFunctionSamples(*CI)->getTotalSamples();
645 if (InlineFunction(CI, IFI)) {
646 LocalChanged = true;
647 emitOptimizationRemark(Ctx, DEBUG_TYPE, F, DLoc,
648 Twine("inlined hot callee '") +
649 CalledFunction->getName() + "' with " +
650 Twine(NumSamples) + " samples into '" +
651 F.getName() + "'");
652 }
653 }
654 if (LocalChanged) {
655 Changed = true;
656 } else {
657 break;
658 }
659 }
660 return Changed;
661 }
662
663 /// \brief Find equivalence classes for the given block.
664 ///
665 /// This finds all the blocks that are guaranteed to execute the same
666 /// number of times as \p BB1. To do this, it traverses all the
667 /// descendants of \p BB1 in the dominator or post-dominator tree.
668 ///
669 /// A block BB2 will be in the same equivalence class as \p BB1 if
670 /// the following holds:
671 ///
672 /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
673 /// is a descendant of \p BB1 in the dominator tree, then BB2 should
674 /// dominate BB1 in the post-dominator tree.
675 ///
676 /// 2- Both BB2 and \p BB1 must be in the same loop.
677 ///
678 /// For every block BB2 that meets those two requirements, we set BB2's
679 /// equivalence class to \p BB1.
680 ///
681 /// \param BB1 Block to check.
682 /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
683 /// \param DomTree Opposite dominator tree. If \p Descendants is filled
684 /// with blocks from \p BB1's dominator tree, then
685 /// this is the post-dominator tree, and vice versa.
findEquivalencesFor(BasicBlock * BB1,ArrayRef<BasicBlock * > Descendants,DominatorTreeBase<BasicBlock> * DomTree)686 void SampleProfileLoader::findEquivalencesFor(
687 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
688 DominatorTreeBase<BasicBlock> *DomTree) {
689 const BasicBlock *EC = EquivalenceClass[BB1];
690 uint64_t Weight = BlockWeights[EC];
691 for (const auto *BB2 : Descendants) {
692 bool IsDomParent = DomTree->dominates(BB2, BB1);
693 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
694 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
695 EquivalenceClass[BB2] = EC;
696
697 // If BB2 is heavier than BB1, make BB2 have the same weight
698 // as BB1.
699 //
700 // Note that we don't worry about the opposite situation here
701 // (when BB2 is lighter than BB1). We will deal with this
702 // during the propagation phase. Right now, we just want to
703 // make sure that BB1 has the largest weight of all the
704 // members of its equivalence set.
705 Weight = std::max(Weight, BlockWeights[BB2]);
706 }
707 }
708 BlockWeights[EC] = Weight;
709 }
710
711 /// \brief Find equivalence classes.
712 ///
713 /// Since samples may be missing from blocks, we can fill in the gaps by setting
714 /// the weights of all the blocks in the same equivalence class to the same
715 /// weight. To compute the concept of equivalence, we use dominance and loop
716 /// information. Two blocks B1 and B2 are in the same equivalence class if B1
717 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
718 ///
719 /// \param F The function to query.
findEquivalenceClasses(Function & F)720 void SampleProfileLoader::findEquivalenceClasses(Function &F) {
721 SmallVector<BasicBlock *, 8> DominatedBBs;
722 DEBUG(dbgs() << "\nBlock equivalence classes\n");
723 // Find equivalence sets based on dominance and post-dominance information.
724 for (auto &BB : F) {
725 BasicBlock *BB1 = &BB;
726
727 // Compute BB1's equivalence class once.
728 if (EquivalenceClass.count(BB1)) {
729 DEBUG(printBlockEquivalence(dbgs(), BB1));
730 continue;
731 }
732
733 // By default, blocks are in their own equivalence class.
734 EquivalenceClass[BB1] = BB1;
735
736 // Traverse all the blocks dominated by BB1. We are looking for
737 // every basic block BB2 such that:
738 //
739 // 1- BB1 dominates BB2.
740 // 2- BB2 post-dominates BB1.
741 // 3- BB1 and BB2 are in the same loop nest.
742 //
743 // If all those conditions hold, it means that BB2 is executed
744 // as many times as BB1, so they are placed in the same equivalence
745 // class by making BB2's equivalence class be BB1.
746 DominatedBBs.clear();
747 DT->getDescendants(BB1, DominatedBBs);
748 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
749
750 DEBUG(printBlockEquivalence(dbgs(), BB1));
751 }
752
753 // Assign weights to equivalence classes.
754 //
755 // All the basic blocks in the same equivalence class will execute
756 // the same number of times. Since we know that the head block in
757 // each equivalence class has the largest weight, assign that weight
758 // to all the blocks in that equivalence class.
759 DEBUG(dbgs() << "\nAssign the same weight to all blocks in the same class\n");
760 for (auto &BI : F) {
761 const BasicBlock *BB = &BI;
762 const BasicBlock *EquivBB = EquivalenceClass[BB];
763 if (BB != EquivBB)
764 BlockWeights[BB] = BlockWeights[EquivBB];
765 DEBUG(printBlockWeight(dbgs(), BB));
766 }
767 }
768
769 /// \brief Visit the given edge to decide if it has a valid weight.
770 ///
771 /// If \p E has not been visited before, we copy to \p UnknownEdge
772 /// and increment the count of unknown edges.
773 ///
774 /// \param E Edge to visit.
775 /// \param NumUnknownEdges Current number of unknown edges.
776 /// \param UnknownEdge Set if E has not been visited before.
777 ///
778 /// \returns E's weight, if known. Otherwise, return 0.
visitEdge(Edge E,unsigned * NumUnknownEdges,Edge * UnknownEdge)779 uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
780 Edge *UnknownEdge) {
781 if (!VisitedEdges.count(E)) {
782 (*NumUnknownEdges)++;
783 *UnknownEdge = E;
784 return 0;
785 }
786
787 return EdgeWeights[E];
788 }
789
790 /// \brief Propagate weights through incoming/outgoing edges.
791 ///
792 /// If the weight of a basic block is known, and there is only one edge
793 /// with an unknown weight, we can calculate the weight of that edge.
794 ///
795 /// Similarly, if all the edges have a known count, we can calculate the
796 /// count of the basic block, if needed.
797 ///
798 /// \param F Function to process.
799 ///
800 /// \returns True if new weights were assigned to edges or blocks.
propagateThroughEdges(Function & F)801 bool SampleProfileLoader::propagateThroughEdges(Function &F) {
802 bool Changed = false;
803 DEBUG(dbgs() << "\nPropagation through edges\n");
804 for (const auto &BI : F) {
805 const BasicBlock *BB = &BI;
806 const BasicBlock *EC = EquivalenceClass[BB];
807
808 // Visit all the predecessor and successor edges to determine
809 // which ones have a weight assigned already. Note that it doesn't
810 // matter that we only keep track of a single unknown edge. The
811 // only case we are interested in handling is when only a single
812 // edge is unknown (see setEdgeOrBlockWeight).
813 for (unsigned i = 0; i < 2; i++) {
814 uint64_t TotalWeight = 0;
815 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
816 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
817
818 if (i == 0) {
819 // First, visit all predecessor edges.
820 NumTotalEdges = Predecessors[BB].size();
821 for (auto *Pred : Predecessors[BB]) {
822 Edge E = std::make_pair(Pred, BB);
823 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
824 if (E.first == E.second)
825 SelfReferentialEdge = E;
826 }
827 if (NumTotalEdges == 1) {
828 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
829 }
830 } else {
831 // On the second round, visit all successor edges.
832 NumTotalEdges = Successors[BB].size();
833 for (auto *Succ : Successors[BB]) {
834 Edge E = std::make_pair(BB, Succ);
835 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
836 }
837 if (NumTotalEdges == 1) {
838 SingleEdge = std::make_pair(BB, Successors[BB][0]);
839 }
840 }
841
842 // After visiting all the edges, there are three cases that we
843 // can handle immediately:
844 //
845 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
846 // In this case, we simply check that the sum of all the edges
847 // is the same as BB's weight. If not, we change BB's weight
848 // to match. Additionally, if BB had not been visited before,
849 // we mark it visited.
850 //
851 // - Only one edge is unknown and BB has already been visited.
852 // In this case, we can compute the weight of the edge by
853 // subtracting the total block weight from all the known
854 // edge weights. If the edges weight more than BB, then the
855 // edge of the last remaining edge is set to zero.
856 //
857 // - There exists a self-referential edge and the weight of BB is
858 // known. In this case, this edge can be based on BB's weight.
859 // We add up all the other known edges and set the weight on
860 // the self-referential edge as we did in the previous case.
861 //
862 // In any other case, we must continue iterating. Eventually,
863 // all edges will get a weight, or iteration will stop when
864 // it reaches SampleProfileMaxPropagateIterations.
865 if (NumUnknownEdges <= 1) {
866 uint64_t &BBWeight = BlockWeights[EC];
867 if (NumUnknownEdges == 0) {
868 if (!VisitedBlocks.count(EC)) {
869 // If we already know the weight of all edges, the weight of the
870 // basic block can be computed. It should be no larger than the sum
871 // of all edge weights.
872 if (TotalWeight > BBWeight) {
873 BBWeight = TotalWeight;
874 Changed = true;
875 DEBUG(dbgs() << "All edge weights for " << BB->getName()
876 << " known. Set weight for block: ";
877 printBlockWeight(dbgs(), BB););
878 }
879 } else if (NumTotalEdges == 1 &&
880 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
881 // If there is only one edge for the visited basic block, use the
882 // block weight to adjust edge weight if edge weight is smaller.
883 EdgeWeights[SingleEdge] = BlockWeights[EC];
884 Changed = true;
885 }
886 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
887 // If there is a single unknown edge and the block has been
888 // visited, then we can compute E's weight.
889 if (BBWeight >= TotalWeight)
890 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
891 else
892 EdgeWeights[UnknownEdge] = 0;
893 VisitedEdges.insert(UnknownEdge);
894 Changed = true;
895 DEBUG(dbgs() << "Set weight for edge: ";
896 printEdgeWeight(dbgs(), UnknownEdge));
897 }
898 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
899 uint64_t &BBWeight = BlockWeights[BB];
900 // We have a self-referential edge and the weight of BB is known.
901 if (BBWeight >= TotalWeight)
902 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
903 else
904 EdgeWeights[SelfReferentialEdge] = 0;
905 VisitedEdges.insert(SelfReferentialEdge);
906 Changed = true;
907 DEBUG(dbgs() << "Set self-referential edge weight to: ";
908 printEdgeWeight(dbgs(), SelfReferentialEdge));
909 }
910 }
911 }
912
913 return Changed;
914 }
915
916 /// \brief Build in/out edge lists for each basic block in the CFG.
917 ///
918 /// We are interested in unique edges. If a block B1 has multiple
919 /// edges to another block B2, we only add a single B1->B2 edge.
buildEdges(Function & F)920 void SampleProfileLoader::buildEdges(Function &F) {
921 for (auto &BI : F) {
922 BasicBlock *B1 = &BI;
923
924 // Add predecessors for B1.
925 SmallPtrSet<BasicBlock *, 16> Visited;
926 if (!Predecessors[B1].empty())
927 llvm_unreachable("Found a stale predecessors list in a basic block.");
928 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
929 BasicBlock *B2 = *PI;
930 if (Visited.insert(B2).second)
931 Predecessors[B1].push_back(B2);
932 }
933
934 // Add successors for B1.
935 Visited.clear();
936 if (!Successors[B1].empty())
937 llvm_unreachable("Found a stale successors list in a basic block.");
938 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
939 BasicBlock *B2 = *SI;
940 if (Visited.insert(B2).second)
941 Successors[B1].push_back(B2);
942 }
943 }
944 }
945
946 /// \brief Propagate weights into edges
947 ///
948 /// The following rules are applied to every block BB in the CFG:
949 ///
950 /// - If BB has a single predecessor/successor, then the weight
951 /// of that edge is the weight of the block.
952 ///
953 /// - If all incoming or outgoing edges are known except one, and the
954 /// weight of the block is already known, the weight of the unknown
955 /// edge will be the weight of the block minus the sum of all the known
956 /// edges. If the sum of all the known edges is larger than BB's weight,
957 /// we set the unknown edge weight to zero.
958 ///
959 /// - If there is a self-referential edge, and the weight of the block is
960 /// known, the weight for that edge is set to the weight of the block
961 /// minus the weight of the other incoming edges to that block (if
962 /// known).
propagateWeights(Function & F)963 void SampleProfileLoader::propagateWeights(Function &F) {
964 bool Changed = true;
965 unsigned I = 0;
966
967 // Add an entry count to the function using the samples gathered
968 // at the function entry.
969 F.setEntryCount(Samples->getHeadSamples());
970
971 // Before propagation starts, build, for each block, a list of
972 // unique predecessors and successors. This is necessary to handle
973 // identical edges in multiway branches. Since we visit all blocks and all
974 // edges of the CFG, it is cleaner to build these lists once at the start
975 // of the pass.
976 buildEdges(F);
977
978 // Propagate until we converge or we go past the iteration limit.
979 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
980 Changed = propagateThroughEdges(F);
981 }
982
983 // Generate MD_prof metadata for every branch instruction using the
984 // edge weights computed during propagation.
985 DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
986 LLVMContext &Ctx = F.getContext();
987 MDBuilder MDB(Ctx);
988 for (auto &BI : F) {
989 BasicBlock *BB = &BI;
990
991 if (BlockWeights[BB]) {
992 for (auto &I : BB->getInstList()) {
993 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
994 if (!dyn_cast<IntrinsicInst>(&I)) {
995 SmallVector<uint32_t, 1> Weights;
996 Weights.push_back(BlockWeights[BB]);
997 CI->setMetadata(LLVMContext::MD_prof,
998 MDB.createBranchWeights(Weights));
999 }
1000 }
1001 }
1002 }
1003 TerminatorInst *TI = BB->getTerminator();
1004 if (TI->getNumSuccessors() == 1)
1005 continue;
1006 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1007 continue;
1008
1009 DEBUG(dbgs() << "\nGetting weights for branch at line "
1010 << TI->getDebugLoc().getLine() << ".\n");
1011 SmallVector<uint32_t, 4> Weights;
1012 uint32_t MaxWeight = 0;
1013 DebugLoc MaxDestLoc;
1014 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1015 BasicBlock *Succ = TI->getSuccessor(I);
1016 Edge E = std::make_pair(BB, Succ);
1017 uint64_t Weight = EdgeWeights[E];
1018 DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1019 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1020 // if needed. Sample counts in profiles are 64-bit unsigned values,
1021 // but internally branch weights are expressed as 32-bit values.
1022 if (Weight > std::numeric_limits<uint32_t>::max()) {
1023 DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1024 Weight = std::numeric_limits<uint32_t>::max();
1025 }
1026 Weights.push_back(static_cast<uint32_t>(Weight));
1027 if (Weight != 0) {
1028 if (Weight > MaxWeight) {
1029 MaxWeight = Weight;
1030 MaxDestLoc = Succ->getFirstNonPHIOrDbgOrLifetime()->getDebugLoc();
1031 }
1032 }
1033 }
1034
1035 // Only set weights if there is at least one non-zero weight.
1036 // In any other case, let the analyzer set weights.
1037 if (MaxWeight > 0) {
1038 DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1039 TI->setMetadata(llvm::LLVMContext::MD_prof,
1040 MDB.createBranchWeights(Weights));
1041 DebugLoc BranchLoc = TI->getDebugLoc();
1042 emitOptimizationRemark(
1043 Ctx, DEBUG_TYPE, F, MaxDestLoc,
1044 Twine("most popular destination for conditional branches at ") +
1045 ((BranchLoc) ? Twine(BranchLoc->getFilename() + ":" +
1046 Twine(BranchLoc.getLine()) + ":" +
1047 Twine(BranchLoc.getCol()))
1048 : Twine("<UNKNOWN LOCATION>")));
1049 } else {
1050 DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1051 }
1052 }
1053 }
1054
1055 /// \brief Get the line number for the function header.
1056 ///
1057 /// This looks up function \p F in the current compilation unit and
1058 /// retrieves the line number where the function is defined. This is
1059 /// line 0 for all the samples read from the profile file. Every line
1060 /// number is relative to this line.
1061 ///
1062 /// \param F Function object to query.
1063 ///
1064 /// \returns the line number where \p F is defined. If it returns 0,
1065 /// it means that there is no debug information available for \p F.
getFunctionLoc(Function & F)1066 unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1067 if (DISubprogram *S = F.getSubprogram())
1068 return S->getLine();
1069
1070 // If the start of \p F is missing, emit a diagnostic to inform the user
1071 // about the missed opportunity.
1072 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1073 "No debug information found in function " + F.getName() +
1074 ": Function profile not used",
1075 DS_Warning));
1076 return 0;
1077 }
1078
computeDominanceAndLoopInfo(Function & F)1079 void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1080 DT.reset(new DominatorTree);
1081 DT->recalculate(F);
1082
1083 PDT.reset(new DominatorTreeBase<BasicBlock>(true));
1084 PDT->recalculate(F);
1085
1086 LI.reset(new LoopInfo);
1087 LI->analyze(*DT);
1088 }
1089
1090 /// \brief Generate branch weight metadata for all branches in \p F.
1091 ///
1092 /// Branch weights are computed out of instruction samples using a
1093 /// propagation heuristic. Propagation proceeds in 3 phases:
1094 ///
1095 /// 1- Assignment of block weights. All the basic blocks in the function
1096 /// are initial assigned the same weight as their most frequently
1097 /// executed instruction.
1098 ///
1099 /// 2- Creation of equivalence classes. Since samples may be missing from
1100 /// blocks, we can fill in the gaps by setting the weights of all the
1101 /// blocks in the same equivalence class to the same weight. To compute
1102 /// the concept of equivalence, we use dominance and loop information.
1103 /// Two blocks B1 and B2 are in the same equivalence class if B1
1104 /// dominates B2, B2 post-dominates B1 and both are in the same loop.
1105 ///
1106 /// 3- Propagation of block weights into edges. This uses a simple
1107 /// propagation heuristic. The following rules are applied to every
1108 /// block BB in the CFG:
1109 ///
1110 /// - If BB has a single predecessor/successor, then the weight
1111 /// of that edge is the weight of the block.
1112 ///
1113 /// - If all the edges are known except one, and the weight of the
1114 /// block is already known, the weight of the unknown edge will
1115 /// be the weight of the block minus the sum of all the known
1116 /// edges. If the sum of all the known edges is larger than BB's weight,
1117 /// we set the unknown edge weight to zero.
1118 ///
1119 /// - If there is a self-referential edge, and the weight of the block is
1120 /// known, the weight for that edge is set to the weight of the block
1121 /// minus the weight of the other incoming edges to that block (if
1122 /// known).
1123 ///
1124 /// Since this propagation is not guaranteed to finalize for every CFG, we
1125 /// only allow it to proceed for a limited number of iterations (controlled
1126 /// by -sample-profile-max-propagate-iterations).
1127 ///
1128 /// FIXME: Try to replace this propagation heuristic with a scheme
1129 /// that is guaranteed to finalize. A work-list approach similar to
1130 /// the standard value propagation algorithm used by SSA-CCP might
1131 /// work here.
1132 ///
1133 /// Once all the branch weights are computed, we emit the MD_prof
1134 /// metadata on BB using the computed values for each of its branches.
1135 ///
1136 /// \param F The function to query.
1137 ///
1138 /// \returns true if \p F was modified. Returns false, otherwise.
emitAnnotations(Function & F)1139 bool SampleProfileLoader::emitAnnotations(Function &F) {
1140 bool Changed = false;
1141
1142 if (getFunctionLoc(F) == 0)
1143 return false;
1144
1145 DEBUG(dbgs() << "Line number for the first instruction in " << F.getName()
1146 << ": " << getFunctionLoc(F) << "\n");
1147
1148 Changed |= inlineHotFunctions(F);
1149
1150 // Compute basic block weights.
1151 Changed |= computeBlockWeights(F);
1152
1153 if (Changed) {
1154 // Compute dominance and loop info needed for propagation.
1155 computeDominanceAndLoopInfo(F);
1156
1157 // Find equivalence classes.
1158 findEquivalenceClasses(F);
1159
1160 // Propagate weights to all edges.
1161 propagateWeights(F);
1162 }
1163
1164 // If coverage checking was requested, compute it now.
1165 if (SampleProfileRecordCoverage) {
1166 unsigned Used = CoverageTracker.countUsedRecords(Samples);
1167 unsigned Total = CoverageTracker.countBodyRecords(Samples);
1168 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1169 if (Coverage < SampleProfileRecordCoverage) {
1170 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1171 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1172 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1173 Twine(Coverage) + "%) were applied",
1174 DS_Warning));
1175 }
1176 }
1177
1178 if (SampleProfileSampleCoverage) {
1179 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1180 uint64_t Total = CoverageTracker.countBodySamples(Samples);
1181 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1182 if (Coverage < SampleProfileSampleCoverage) {
1183 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1184 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1185 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1186 Twine(Coverage) + "%) were applied",
1187 DS_Warning));
1188 }
1189 }
1190 return Changed;
1191 }
1192
1193 char SampleProfileLoaderLegacyPass::ID = 0;
1194 INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1195 "Sample Profile loader", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1196 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1197 INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1198 "Sample Profile loader", false, false)
1199
1200 bool SampleProfileLoader::doInitialization(Module &M) {
1201 auto &Ctx = M.getContext();
1202 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1203 if (std::error_code EC = ReaderOrErr.getError()) {
1204 std::string Msg = "Could not open profile: " + EC.message();
1205 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1206 return false;
1207 }
1208 Reader = std::move(ReaderOrErr.get());
1209 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1210 return true;
1211 }
1212
createSampleProfileLoaderPass()1213 ModulePass *llvm::createSampleProfileLoaderPass() {
1214 return new SampleProfileLoaderLegacyPass(SampleProfileFile);
1215 }
1216
createSampleProfileLoaderPass(StringRef Name)1217 ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1218 return new SampleProfileLoaderLegacyPass(Name);
1219 }
1220
runOnModule(Module & M)1221 bool SampleProfileLoader::runOnModule(Module &M) {
1222 if (!ProfileIsValid)
1223 return false;
1224
1225 // Compute the total number of samples collected in this profile.
1226 for (const auto &I : Reader->getProfiles())
1227 TotalCollectedSamples += I.second.getTotalSamples();
1228
1229 bool retval = false;
1230 for (auto &F : M)
1231 if (!F.isDeclaration()) {
1232 clearFunctionData();
1233 retval |= runOnFunction(F);
1234 }
1235 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()));
1236 return retval;
1237 }
1238
runOnModule(Module & M)1239 bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1240 // FIXME: pass in AssumptionCache correctly for the new pass manager.
1241 SampleLoader.setACT(&getAnalysis<AssumptionCacheTracker>());
1242 return SampleLoader.runOnModule(M);
1243 }
1244
runOnFunction(Function & F)1245 bool SampleProfileLoader::runOnFunction(Function &F) {
1246 F.setEntryCount(0);
1247 Samples = Reader->getSamplesFor(F);
1248 if (!Samples->empty())
1249 return emitAnnotations(F);
1250 return false;
1251 }
1252
run(Module & M,AnalysisManager<Module> & AM)1253 PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1254 AnalysisManager<Module> &AM) {
1255
1256 SampleProfileLoader SampleLoader(SampleProfileFile);
1257
1258 SampleLoader.doInitialization(M);
1259
1260 if (!SampleLoader.runOnModule(M))
1261 return PreservedAnalyses::all();
1262
1263 return PreservedAnalyses::none();
1264 }
1265