• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1; RUN: llc < %s -march=nvptx64 -mcpu=sm_20 | FileCheck %s --check-prefix=PTX
2; RUN: opt < %s -S -separate-const-offset-from-gep -reassociate-geps-verify-no-dead-code -gvn | FileCheck %s --check-prefix=IR
3
4; Verifies the SeparateConstOffsetFromGEP pass.
5; The following code computes
6; *output = array[x][y] + array[x][y+1] + array[x+1][y] + array[x+1][y+1]
7;
8; We expect SeparateConstOffsetFromGEP to transform it to
9;
10; float *base = &a[x][y];
11; *output = base[0] + base[1] + base[32] + base[33];
12;
13; so the backend can emit PTX that uses fewer virtual registers.
14
15target datalayout = "e-i64:64-v16:16-v32:32-n16:32:64"
16target triple = "nvptx64-unknown-unknown"
17
18@array = internal addrspace(3) constant [32 x [32 x float]] zeroinitializer, align 4
19
20define void @sum_of_array(i32 %x, i32 %y, float* nocapture %output) {
21.preheader:
22  %0 = sext i32 %y to i64
23  %1 = sext i32 %x to i64
24  %2 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
25  %3 = addrspacecast float addrspace(3)* %2 to float*
26  %4 = load float, float* %3, align 4
27  %5 = fadd float %4, 0.000000e+00
28  %6 = add i32 %y, 1
29  %7 = sext i32 %6 to i64
30  %8 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
31  %9 = addrspacecast float addrspace(3)* %8 to float*
32  %10 = load float, float* %9, align 4
33  %11 = fadd float %5, %10
34  %12 = add i32 %x, 1
35  %13 = sext i32 %12 to i64
36  %14 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
37  %15 = addrspacecast float addrspace(3)* %14 to float*
38  %16 = load float, float* %15, align 4
39  %17 = fadd float %11, %16
40  %18 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %7
41  %19 = addrspacecast float addrspace(3)* %18 to float*
42  %20 = load float, float* %19, align 4
43  %21 = fadd float %17, %20
44  store float %21, float* %output, align 4
45  ret void
46}
47; PTX-LABEL: sum_of_array(
48; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
49; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
50; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
51; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
52
53; IR-LABEL: @sum_of_array(
54; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
55; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 1
56; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 32
57; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 33
58
59; @sum_of_array2 is very similar to @sum_of_array. The only difference is in
60; the order of "sext" and "add" when computing the array indices. @sum_of_array
61; computes add before sext, e.g., array[sext(x + 1)][sext(y + 1)], while
62; @sum_of_array2 computes sext before add,
63; e.g., array[sext(x) + 1][sext(y) + 1]. SeparateConstOffsetFromGEP should be
64; able to extract constant offsets from both forms.
65define void @sum_of_array2(i32 %x, i32 %y, float* nocapture %output) {
66.preheader:
67  %0 = sext i32 %y to i64
68  %1 = sext i32 %x to i64
69  %2 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
70  %3 = addrspacecast float addrspace(3)* %2 to float*
71  %4 = load float, float* %3, align 4
72  %5 = fadd float %4, 0.000000e+00
73  %6 = add i64 %0, 1
74  %7 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
75  %8 = addrspacecast float addrspace(3)* %7 to float*
76  %9 = load float, float* %8, align 4
77  %10 = fadd float %5, %9
78  %11 = add i64 %1, 1
79  %12 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
80  %13 = addrspacecast float addrspace(3)* %12 to float*
81  %14 = load float, float* %13, align 4
82  %15 = fadd float %10, %14
83  %16 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
84  %17 = addrspacecast float addrspace(3)* %16 to float*
85  %18 = load float, float* %17, align 4
86  %19 = fadd float %15, %18
87  store float %19, float* %output, align 4
88  ret void
89}
90; PTX-LABEL: sum_of_array2(
91; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
92; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
93; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
94; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
95
96; IR-LABEL: @sum_of_array2(
97; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
98; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 1
99; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 32
100; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 33
101
102
103; This function loads
104;   array[zext(x)][zext(y)]
105;   array[zext(x)][zext(y +nuw 1)]
106;   array[zext(x +nuw 1)][zext(y)]
107;   array[zext(x +nuw 1)][zext(y +nuw 1)].
108;
109; This function is similar to @sum_of_array, but it
110; 1) extends array indices using zext instead of sext;
111; 2) annotates the addition with "nuw"; otherwise, zext(x + 1) => zext(x) + 1
112;    may be invalid.
113define void @sum_of_array3(i32 %x, i32 %y, float* nocapture %output) {
114.preheader:
115  %0 = zext i32 %y to i64
116  %1 = zext i32 %x to i64
117  %2 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
118  %3 = addrspacecast float addrspace(3)* %2 to float*
119  %4 = load float, float* %3, align 4
120  %5 = fadd float %4, 0.000000e+00
121  %6 = add nuw i32 %y, 1
122  %7 = zext i32 %6 to i64
123  %8 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %7
124  %9 = addrspacecast float addrspace(3)* %8 to float*
125  %10 = load float, float* %9, align 4
126  %11 = fadd float %5, %10
127  %12 = add nuw i32 %x, 1
128  %13 = zext i32 %12 to i64
129  %14 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %0
130  %15 = addrspacecast float addrspace(3)* %14 to float*
131  %16 = load float, float* %15, align 4
132  %17 = fadd float %11, %16
133  %18 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %13, i64 %7
134  %19 = addrspacecast float addrspace(3)* %18 to float*
135  %20 = load float, float* %19, align 4
136  %21 = fadd float %17, %20
137  store float %21, float* %output, align 4
138  ret void
139}
140; PTX-LABEL: sum_of_array3(
141; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
142; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
143; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
144; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
145
146; IR-LABEL: @sum_of_array3(
147; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
148; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 1
149; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 32
150; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 33
151
152
153; This function loads
154;   array[zext(x)][zext(y)]
155;   array[zext(x)][zext(y)]
156;   array[zext(x) + 1][zext(y) + 1]
157;   array[zext(x) + 1][zext(y) + 1].
158;
159; We expect the generated code to reuse the computation of
160; &array[zext(x)][zext(y)]. See the expected IR and PTX for details.
161define void @sum_of_array4(i32 %x, i32 %y, float* nocapture %output) {
162.preheader:
163  %0 = zext i32 %y to i64
164  %1 = zext i32 %x to i64
165  %2 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %0
166  %3 = addrspacecast float addrspace(3)* %2 to float*
167  %4 = load float, float* %3, align 4
168  %5 = fadd float %4, 0.000000e+00
169  %6 = add i64 %0, 1
170  %7 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %1, i64 %6
171  %8 = addrspacecast float addrspace(3)* %7 to float*
172  %9 = load float, float* %8, align 4
173  %10 = fadd float %5, %9
174  %11 = add i64 %1, 1
175  %12 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %0
176  %13 = addrspacecast float addrspace(3)* %12 to float*
177  %14 = load float, float* %13, align 4
178  %15 = fadd float %10, %14
179  %16 = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %11, i64 %6
180  %17 = addrspacecast float addrspace(3)* %16 to float*
181  %18 = load float, float* %17, align 4
182  %19 = fadd float %15, %18
183  store float %19, float* %output, align 4
184  ret void
185}
186; PTX-LABEL: sum_of_array4(
187; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG:%(rd|r)[0-9]+]]{{\]}}
188; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+4{{\]}}
189; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+128{{\]}}
190; PTX: ld.shared.f32 {{%f[0-9]+}}, {{\[}}[[BASE_REG]]+132{{\]}}
191
192; IR-LABEL: @sum_of_array4(
193; IR: [[BASE_PTR:%[a-zA-Z0-9]+]] = getelementptr inbounds [32 x [32 x float]], [32 x [32 x float]] addrspace(3)* @array, i64 0, i64 %{{[a-zA-Z0-9]+}}, i64 %{{[a-zA-Z0-9]+}}
194; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 1
195; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 32
196; IR: getelementptr inbounds float, float addrspace(3)* [[BASE_PTR]], i64 33
197
198
199; The source code is:
200;   p0 = &input[sext(x + y)];
201;   p1 = &input[sext(x + (y + 5))];
202;
203; Without reuniting extensions, SeparateConstOffsetFromGEP would emit
204;   p0 = &input[sext(x + y)];
205;   t1 = &input[sext(x) + sext(y)];
206;   p1 = &t1[5];
207;
208; With reuniting extensions, it merges p0 and t1 and thus emits
209;   p0 = &input[sext(x + y)];
210;   p1 = &p0[5];
211define void @reunion(i32 %x, i32 %y, float* %input) {
212; IR-LABEL: @reunion(
213; PTX-LABEL: reunion(
214entry:
215  %xy = add nsw i32 %x, %y
216  %0 = sext i32 %xy to i64
217  %p0 = getelementptr inbounds float, float* %input, i64 %0
218  %v0 = load float, float* %p0, align 4
219; PTX: ld.f32 %f{{[0-9]+}}, {{\[}}[[p0:%rd[0-9]+]]{{\]}}
220  call void @use(float %v0)
221
222  %y5 = add nsw i32 %y, 5
223  %xy5 = add nsw i32 %x, %y5
224  %1 = sext i32 %xy5 to i64
225  %p1 = getelementptr inbounds float, float* %input, i64 %1
226; IR: getelementptr inbounds float, float* %p0, i64 5
227  %v1 = load float, float* %p1, align 4
228; PTX: ld.f32 %f{{[0-9]+}}, {{\[}}[[p0]]+20{{\]}}
229  call void @use(float %v1)
230
231  ret void
232}
233
234declare void @use(float)
235