• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===----- llvm/unittest/ADT/SCCIteratorTest.cpp - SCCIterator tests ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/SCCIterator.h"
11 #include "llvm/ADT/GraphTraits.h"
12 #include "gtest/gtest.h"
13 #include <limits.h>
14 
15 using namespace llvm;
16 
17 namespace llvm {
18 
19 /// Graph<N> - A graph with N nodes.  Note that N can be at most 8.
20 template <unsigned N>
21 class Graph {
22 private:
23   // Disable copying.
24   Graph(const Graph&);
25   Graph& operator=(const Graph&);
26 
ValidateIndex(unsigned Idx)27   static void ValidateIndex(unsigned Idx) {
28     assert(Idx < N && "Invalid node index!");
29   }
30 public:
31 
32   /// NodeSubset - A subset of the graph's nodes.
33   class NodeSubset {
34     typedef unsigned char BitVector; // Where the limitation N <= 8 comes from.
35     BitVector Elements;
NodeSubset(BitVector e)36     NodeSubset(BitVector e) : Elements(e) {}
37   public:
38     /// NodeSubset - Default constructor, creates an empty subset.
NodeSubset()39     NodeSubset() : Elements(0) {
40       assert(N <= sizeof(BitVector)*CHAR_BIT && "Graph too big!");
41     }
42 
43     /// Comparison operators.
operator ==(const NodeSubset & other) const44     bool operator==(const NodeSubset &other) const {
45       return other.Elements == this->Elements;
46     }
operator !=(const NodeSubset & other) const47     bool operator!=(const NodeSubset &other) const {
48       return !(*this == other);
49     }
50 
51     /// AddNode - Add the node with the given index to the subset.
AddNode(unsigned Idx)52     void AddNode(unsigned Idx) {
53       ValidateIndex(Idx);
54       Elements |= 1U << Idx;
55     }
56 
57     /// DeleteNode - Remove the node with the given index from the subset.
DeleteNode(unsigned Idx)58     void DeleteNode(unsigned Idx) {
59       ValidateIndex(Idx);
60       Elements &= ~(1U << Idx);
61     }
62 
63     /// count - Return true if the node with the given index is in the subset.
count(unsigned Idx)64     bool count(unsigned Idx) {
65       ValidateIndex(Idx);
66       return (Elements & (1U << Idx)) != 0;
67     }
68 
69     /// isEmpty - Return true if this is the empty set.
isEmpty() const70     bool isEmpty() const {
71       return Elements == 0;
72     }
73 
74     /// isSubsetOf - Return true if this set is a subset of the given one.
isSubsetOf(const NodeSubset & other) const75     bool isSubsetOf(const NodeSubset &other) const {
76       return (this->Elements | other.Elements) == other.Elements;
77     }
78 
79     /// Complement - Return the complement of this subset.
Complement() const80     NodeSubset Complement() const {
81       return ~(unsigned)this->Elements & ((1U << N) - 1);
82     }
83 
84     /// Join - Return the union of this subset and the given one.
Join(const NodeSubset & other) const85     NodeSubset Join(const NodeSubset &other) const {
86       return this->Elements | other.Elements;
87     }
88 
89     /// Meet - Return the intersection of this subset and the given one.
Meet(const NodeSubset & other) const90     NodeSubset Meet(const NodeSubset &other) const {
91       return this->Elements & other.Elements;
92     }
93   };
94 
95   /// NodeType - Node index and set of children of the node.
96   typedef std::pair<unsigned, NodeSubset> NodeType;
97 
98 private:
99   /// Nodes - The list of nodes for this graph.
100   NodeType Nodes[N];
101 public:
102 
103   /// Graph - Default constructor.  Creates an empty graph.
Graph()104   Graph() {
105     // Let each node know which node it is.  This allows us to find the start of
106     // the Nodes array given a pointer to any element of it.
107     for (unsigned i = 0; i != N; ++i)
108       Nodes[i].first = i;
109   }
110 
111   /// AddEdge - Add an edge from the node with index FromIdx to the node with
112   /// index ToIdx.
AddEdge(unsigned FromIdx,unsigned ToIdx)113   void AddEdge(unsigned FromIdx, unsigned ToIdx) {
114     ValidateIndex(FromIdx);
115     Nodes[FromIdx].second.AddNode(ToIdx);
116   }
117 
118   /// DeleteEdge - Remove the edge (if any) from the node with index FromIdx to
119   /// the node with index ToIdx.
DeleteEdge(unsigned FromIdx,unsigned ToIdx)120   void DeleteEdge(unsigned FromIdx, unsigned ToIdx) {
121     ValidateIndex(FromIdx);
122     Nodes[FromIdx].second.DeleteNode(ToIdx);
123   }
124 
125   /// AccessNode - Get a pointer to the node with the given index.
AccessNode(unsigned Idx) const126   NodeType *AccessNode(unsigned Idx) const {
127     ValidateIndex(Idx);
128     // The constant cast is needed when working with GraphTraits, which insists
129     // on taking a constant Graph.
130     return const_cast<NodeType *>(&Nodes[Idx]);
131   }
132 
133   /// NodesReachableFrom - Return the set of all nodes reachable from the given
134   /// node.
NodesReachableFrom(unsigned Idx) const135   NodeSubset NodesReachableFrom(unsigned Idx) const {
136     // This algorithm doesn't scale, but that doesn't matter given the small
137     // size of our graphs.
138     NodeSubset Reachable;
139 
140     // The initial node is reachable.
141     Reachable.AddNode(Idx);
142     do {
143       NodeSubset Previous(Reachable);
144 
145       // Add in all nodes which are children of a reachable node.
146       for (unsigned i = 0; i != N; ++i)
147         if (Previous.count(i))
148           Reachable = Reachable.Join(Nodes[i].second);
149 
150       // If nothing changed then we have found all reachable nodes.
151       if (Reachable == Previous)
152         return Reachable;
153 
154       // Rinse and repeat.
155     } while (1);
156   }
157 
158   /// ChildIterator - Visit all children of a node.
159   class ChildIterator {
160     friend class Graph;
161 
162     /// FirstNode - Pointer to first node in the graph's Nodes array.
163     NodeType *FirstNode;
164     /// Children - Set of nodes which are children of this one and that haven't
165     /// yet been visited.
166     NodeSubset Children;
167 
168     ChildIterator(); // Disable default constructor.
169   protected:
ChildIterator(NodeType * F,NodeSubset C)170     ChildIterator(NodeType *F, NodeSubset C) : FirstNode(F), Children(C) {}
171 
172   public:
173     /// ChildIterator - Copy constructor.
ChildIterator(const ChildIterator & other)174     ChildIterator(const ChildIterator& other) : FirstNode(other.FirstNode),
175       Children(other.Children) {}
176 
177     /// Comparison operators.
operator ==(const ChildIterator & other) const178     bool operator==(const ChildIterator &other) const {
179       return other.FirstNode == this->FirstNode &&
180         other.Children == this->Children;
181     }
operator !=(const ChildIterator & other) const182     bool operator!=(const ChildIterator &other) const {
183       return !(*this == other);
184     }
185 
186     /// Prefix increment operator.
operator ++()187     ChildIterator& operator++() {
188       // Find the next unvisited child node.
189       for (unsigned i = 0; i != N; ++i)
190         if (Children.count(i)) {
191           // Remove that child - it has been visited.  This is the increment!
192           Children.DeleteNode(i);
193           return *this;
194         }
195       assert(false && "Incrementing end iterator!");
196       return *this; // Avoid compiler warnings.
197     }
198 
199     /// Postfix increment operator.
operator ++(int)200     ChildIterator operator++(int) {
201       ChildIterator Result(*this);
202       ++(*this);
203       return Result;
204     }
205 
206     /// Dereference operator.
operator *()207     NodeType *operator*() {
208       // Find the next unvisited child node.
209       for (unsigned i = 0; i != N; ++i)
210         if (Children.count(i))
211           // Return a pointer to it.
212           return FirstNode + i;
213       assert(false && "Dereferencing end iterator!");
214       return nullptr; // Avoid compiler warning.
215     }
216   };
217 
218   /// child_begin - Return an iterator pointing to the first child of the given
219   /// node.
child_begin(NodeType * Parent)220   static ChildIterator child_begin(NodeType *Parent) {
221     return ChildIterator(Parent - Parent->first, Parent->second);
222   }
223 
224   /// child_end - Return the end iterator for children of the given node.
child_end(NodeType * Parent)225   static ChildIterator child_end(NodeType *Parent) {
226     return ChildIterator(Parent - Parent->first, NodeSubset());
227   }
228 };
229 
230 template <unsigned N>
231 struct GraphTraits<Graph<N> > {
232   typedef typename Graph<N>::NodeType NodeType;
233   typedef typename Graph<N>::ChildIterator ChildIteratorType;
234 
getEntryNodellvm::GraphTraits235  static inline NodeType *getEntryNode(const Graph<N> &G) { return G.AccessNode(0); }
child_beginllvm::GraphTraits236  static inline ChildIteratorType child_begin(NodeType *Node) {
237    return Graph<N>::child_begin(Node);
238  }
child_endllvm::GraphTraits239  static inline ChildIteratorType child_end(NodeType *Node) {
240    return Graph<N>::child_end(Node);
241  }
242 };
243 
TEST(SCCIteratorTest,AllSmallGraphs)244 TEST(SCCIteratorTest, AllSmallGraphs) {
245   // Test SCC computation against every graph with NUM_NODES nodes or less.
246   // Since SCC considers every node to have an implicit self-edge, we only
247   // create graphs for which every node has a self-edge.
248 #define NUM_NODES 4
249 #define NUM_GRAPHS (NUM_NODES * (NUM_NODES - 1))
250   typedef Graph<NUM_NODES> GT;
251 
252   /// Enumerate all graphs using NUM_GRAPHS bits.
253   static_assert(NUM_GRAPHS < sizeof(unsigned) * CHAR_BIT, "Too many graphs!");
254   for (unsigned GraphDescriptor = 0; GraphDescriptor < (1U << NUM_GRAPHS);
255        ++GraphDescriptor) {
256     GT G;
257 
258     // Add edges as specified by the descriptor.
259     unsigned DescriptorCopy = GraphDescriptor;
260     for (unsigned i = 0; i != NUM_NODES; ++i)
261       for (unsigned j = 0; j != NUM_NODES; ++j) {
262         // Always add a self-edge.
263         if (i == j) {
264           G.AddEdge(i, j);
265           continue;
266         }
267         if (DescriptorCopy & 1)
268           G.AddEdge(i, j);
269         DescriptorCopy >>= 1;
270       }
271 
272     // Test the SCC logic on this graph.
273 
274     /// NodesInSomeSCC - Those nodes which are in some SCC.
275     GT::NodeSubset NodesInSomeSCC;
276 
277     for (scc_iterator<GT> I = scc_begin(G), E = scc_end(G); I != E; ++I) {
278       const std::vector<GT::NodeType *> &SCC = *I;
279 
280       // Get the nodes in this SCC as a NodeSubset rather than a vector.
281       GT::NodeSubset NodesInThisSCC;
282       for (unsigned i = 0, e = SCC.size(); i != e; ++i)
283         NodesInThisSCC.AddNode(SCC[i]->first);
284 
285       // There should be at least one node in every SCC.
286       EXPECT_FALSE(NodesInThisSCC.isEmpty());
287 
288       // Check that every node in the SCC is reachable from every other node in
289       // the SCC.
290       for (unsigned i = 0; i != NUM_NODES; ++i)
291         if (NodesInThisSCC.count(i))
292           EXPECT_TRUE(NodesInThisSCC.isSubsetOf(G.NodesReachableFrom(i)));
293 
294       // OK, now that we now that every node in the SCC is reachable from every
295       // other, this means that the set of nodes reachable from any node in the
296       // SCC is the same as the set of nodes reachable from every node in the
297       // SCC.  Check that for every node N not in the SCC but reachable from the
298       // SCC, no element of the SCC is reachable from N.
299       for (unsigned i = 0; i != NUM_NODES; ++i)
300         if (NodesInThisSCC.count(i)) {
301           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
302           GT::NodeSubset ReachableButNotInSCC =
303             NodesReachableFromSCC.Meet(NodesInThisSCC.Complement());
304 
305           for (unsigned j = 0; j != NUM_NODES; ++j)
306             if (ReachableButNotInSCC.count(j))
307               EXPECT_TRUE(G.NodesReachableFrom(j).Meet(NodesInThisSCC).isEmpty());
308 
309           // The result must be the same for all other nodes in this SCC, so
310           // there is no point in checking them.
311           break;
312         }
313 
314       // This is indeed a SCC: a maximal set of nodes for which each node is
315       // reachable from every other.
316 
317       // Check that we didn't already see this SCC.
318       EXPECT_TRUE(NodesInSomeSCC.Meet(NodesInThisSCC).isEmpty());
319 
320       NodesInSomeSCC = NodesInSomeSCC.Join(NodesInThisSCC);
321 
322       // Check a property that is specific to the LLVM SCC iterator and
323       // guaranteed by it: if a node in SCC S1 has an edge to a node in
324       // SCC S2, then S1 is visited *after* S2.  This means that the set
325       // of nodes reachable from this SCC must be contained either in the
326       // union of this SCC and all previously visited SCC's.
327 
328       for (unsigned i = 0; i != NUM_NODES; ++i)
329         if (NodesInThisSCC.count(i)) {
330           GT::NodeSubset NodesReachableFromSCC = G.NodesReachableFrom(i);
331           EXPECT_TRUE(NodesReachableFromSCC.isSubsetOf(NodesInSomeSCC));
332           // The result must be the same for all other nodes in this SCC, so
333           // there is no point in checking them.
334           break;
335         }
336     }
337 
338     // Finally, check that the nodes in some SCC are exactly those that are
339     // reachable from the initial node.
340     EXPECT_EQ(NodesInSomeSCC, G.NodesReachableFrom(0));
341   }
342 }
343 
344 }
345