1 //===- MCJITTest.cpp - Unit tests for the MCJIT -----------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This test suite verifies basic MCJIT functionality when invoked form the C
11 // API.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm-c/Analysis.h"
16 #include "MCJITTestAPICommon.h"
17 #include "llvm-c/Core.h"
18 #include "llvm-c/ExecutionEngine.h"
19 #include "llvm-c/Target.h"
20 #include "llvm-c/Transforms/PassManagerBuilder.h"
21 #include "llvm-c/Transforms/Scalar.h"
22 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Host.h"
25 #include "gtest/gtest.h"
26
27 using namespace llvm;
28
29 static bool didCallAllocateCodeSection;
30 static bool didAllocateCompactUnwindSection;
31 static bool didCallYield;
32
roundTripAllocateCodeSection(void * object,uintptr_t size,unsigned alignment,unsigned sectionID,const char * sectionName)33 static uint8_t *roundTripAllocateCodeSection(void *object, uintptr_t size,
34 unsigned alignment,
35 unsigned sectionID,
36 const char *sectionName) {
37 didCallAllocateCodeSection = true;
38 return static_cast<SectionMemoryManager*>(object)->allocateCodeSection(
39 size, alignment, sectionID, sectionName);
40 }
41
roundTripAllocateDataSection(void * object,uintptr_t size,unsigned alignment,unsigned sectionID,const char * sectionName,LLVMBool isReadOnly)42 static uint8_t *roundTripAllocateDataSection(void *object, uintptr_t size,
43 unsigned alignment,
44 unsigned sectionID,
45 const char *sectionName,
46 LLVMBool isReadOnly) {
47 if (!strcmp(sectionName, "__compact_unwind"))
48 didAllocateCompactUnwindSection = true;
49 return static_cast<SectionMemoryManager*>(object)->allocateDataSection(
50 size, alignment, sectionID, sectionName, isReadOnly);
51 }
52
roundTripFinalizeMemory(void * object,char ** errMsg)53 static LLVMBool roundTripFinalizeMemory(void *object, char **errMsg) {
54 std::string errMsgString;
55 bool result =
56 static_cast<SectionMemoryManager*>(object)->finalizeMemory(&errMsgString);
57 if (result) {
58 *errMsg = LLVMCreateMessage(errMsgString.c_str());
59 return 1;
60 }
61 return 0;
62 }
63
roundTripDestroy(void * object)64 static void roundTripDestroy(void *object) {
65 delete static_cast<SectionMemoryManager*>(object);
66 }
67
yield(LLVMContextRef,void *)68 static void yield(LLVMContextRef, void *) {
69 didCallYield = true;
70 }
71
72 namespace {
73
74 // memory manager to test reserve allocation space callback
75 class TestReserveAllocationSpaceMemoryManager: public SectionMemoryManager {
76 public:
77 uintptr_t ReservedCodeSize;
78 uintptr_t UsedCodeSize;
79 uintptr_t ReservedDataSizeRO;
80 uintptr_t UsedDataSizeRO;
81 uintptr_t ReservedDataSizeRW;
82 uintptr_t UsedDataSizeRW;
83
TestReserveAllocationSpaceMemoryManager()84 TestReserveAllocationSpaceMemoryManager() :
85 ReservedCodeSize(0), UsedCodeSize(0), ReservedDataSizeRO(0),
86 UsedDataSizeRO(0), ReservedDataSizeRW(0), UsedDataSizeRW(0) {
87 }
88
needsToReserveAllocationSpace()89 bool needsToReserveAllocationSpace() override { return true; }
90
reserveAllocationSpace(uintptr_t CodeSize,uint32_t CodeAlign,uintptr_t DataSizeRO,uint32_t RODataAlign,uintptr_t DataSizeRW,uint32_t RWDataAlign)91 void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
92 uintptr_t DataSizeRO, uint32_t RODataAlign,
93 uintptr_t DataSizeRW, uint32_t RWDataAlign) override {
94 ReservedCodeSize = CodeSize;
95 ReservedDataSizeRO = DataSizeRO;
96 ReservedDataSizeRW = DataSizeRW;
97 }
98
useSpace(uintptr_t * UsedSize,uintptr_t Size,unsigned Alignment)99 void useSpace(uintptr_t* UsedSize, uintptr_t Size, unsigned Alignment) {
100 uintptr_t AlignedSize = (Size + Alignment - 1) / Alignment * Alignment;
101 uintptr_t AlignedBegin = (*UsedSize + Alignment - 1) / Alignment * Alignment;
102 *UsedSize = AlignedBegin + AlignedSize;
103 }
104
allocateDataSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName,bool IsReadOnly)105 uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
106 unsigned SectionID, StringRef SectionName,
107 bool IsReadOnly) override {
108 useSpace(IsReadOnly ? &UsedDataSizeRO : &UsedDataSizeRW, Size, Alignment);
109 return SectionMemoryManager::allocateDataSection(Size, Alignment,
110 SectionID, SectionName, IsReadOnly);
111 }
112
allocateCodeSection(uintptr_t Size,unsigned Alignment,unsigned SectionID,StringRef SectionName)113 uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
114 unsigned SectionID,
115 StringRef SectionName) override {
116 useSpace(&UsedCodeSize, Size, Alignment);
117 return SectionMemoryManager::allocateCodeSection(Size, Alignment,
118 SectionID, SectionName);
119 }
120 };
121
122 class MCJITCAPITest : public testing::Test, public MCJITTestAPICommon {
123 protected:
MCJITCAPITest()124 MCJITCAPITest() {
125 // The architectures below are known to be compatible with MCJIT as they
126 // are copied from test/ExecutionEngine/MCJIT/lit.local.cfg and should be
127 // kept in sync.
128 SupportedArchs.push_back(Triple::aarch64);
129 SupportedArchs.push_back(Triple::arm);
130 SupportedArchs.push_back(Triple::mips);
131 SupportedArchs.push_back(Triple::mips64);
132 SupportedArchs.push_back(Triple::mips64el);
133 SupportedArchs.push_back(Triple::x86);
134 SupportedArchs.push_back(Triple::x86_64);
135
136 // Some architectures have sub-architectures in which tests will fail, like
137 // ARM. These two vectors will define if they do have sub-archs (to avoid
138 // extra work for those who don't), and if so, if they are listed to work
139 HasSubArchs.push_back(Triple::arm);
140 SupportedSubArchs.push_back("armv6");
141 SupportedSubArchs.push_back("armv7");
142
143 // The operating systems below are known to be sufficiently incompatible
144 // that they will fail the MCJIT C API tests.
145 UnsupportedEnvironments.push_back(Triple::Cygnus);
146 }
147
SetUp()148 void SetUp() override {
149 didCallAllocateCodeSection = false;
150 didAllocateCompactUnwindSection = false;
151 didCallYield = false;
152 Module = nullptr;
153 Function = nullptr;
154 Engine = nullptr;
155 Error = nullptr;
156 }
157
TearDown()158 void TearDown() override {
159 if (Engine)
160 LLVMDisposeExecutionEngine(Engine);
161 else if (Module)
162 LLVMDisposeModule(Module);
163 }
164
buildSimpleFunction()165 void buildSimpleFunction() {
166 Module = LLVMModuleCreateWithName("simple_module");
167
168 LLVMSetTarget(Module, HostTriple.c_str());
169
170 Function = LLVMAddFunction(Module, "simple_function",
171 LLVMFunctionType(LLVMInt32Type(), nullptr,0, 0));
172 LLVMSetFunctionCallConv(Function, LLVMCCallConv);
173
174 LLVMBasicBlockRef entry = LLVMAppendBasicBlock(Function, "entry");
175 LLVMBuilderRef builder = LLVMCreateBuilder();
176 LLVMPositionBuilderAtEnd(builder, entry);
177 LLVMBuildRet(builder, LLVMConstInt(LLVMInt32Type(), 42, 0));
178
179 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
180 LLVMDisposeMessage(Error);
181
182 LLVMDisposeBuilder(builder);
183 }
184
buildFunctionThatUsesStackmap()185 void buildFunctionThatUsesStackmap() {
186 Module = LLVMModuleCreateWithName("simple_module");
187
188 LLVMSetTarget(Module, HostTriple.c_str());
189
190 LLVMTypeRef stackmapParamTypes[] = { LLVMInt64Type(), LLVMInt32Type() };
191 LLVMValueRef stackmap = LLVMAddFunction(
192 Module, "llvm.experimental.stackmap",
193 LLVMFunctionType(LLVMVoidType(), stackmapParamTypes, 2, 1));
194 LLVMSetLinkage(stackmap, LLVMExternalLinkage);
195
196 Function = LLVMAddFunction(Module, "simple_function",
197 LLVMFunctionType(LLVMInt32Type(), nullptr, 0, 0));
198
199 LLVMBasicBlockRef entry = LLVMAppendBasicBlock(Function, "entry");
200 LLVMBuilderRef builder = LLVMCreateBuilder();
201 LLVMPositionBuilderAtEnd(builder, entry);
202 LLVMValueRef stackmapArgs[] = {
203 LLVMConstInt(LLVMInt64Type(), 0, 0), LLVMConstInt(LLVMInt32Type(), 5, 0),
204 LLVMConstInt(LLVMInt32Type(), 42, 0)
205 };
206 LLVMBuildCall(builder, stackmap, stackmapArgs, 3, "");
207 LLVMBuildRet(builder, LLVMConstInt(LLVMInt32Type(), 42, 0));
208
209 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
210 LLVMDisposeMessage(Error);
211
212 LLVMDisposeBuilder(builder);
213 }
214
buildModuleWithCodeAndData()215 void buildModuleWithCodeAndData() {
216 Module = LLVMModuleCreateWithName("simple_module");
217
218 LLVMSetTarget(Module, HostTriple.c_str());
219
220 // build a global int32 variable initialized to 42.
221 LLVMValueRef GlobalVar = LLVMAddGlobal(Module, LLVMInt32Type(), "intVal");
222 LLVMSetInitializer(GlobalVar, LLVMConstInt(LLVMInt32Type(), 42, 0));
223
224 {
225 Function = LLVMAddFunction(Module, "getGlobal",
226 LLVMFunctionType(LLVMInt32Type(), nullptr, 0, 0));
227 LLVMSetFunctionCallConv(Function, LLVMCCallConv);
228
229 LLVMBasicBlockRef Entry = LLVMAppendBasicBlock(Function, "entry");
230 LLVMBuilderRef Builder = LLVMCreateBuilder();
231 LLVMPositionBuilderAtEnd(Builder, Entry);
232
233 LLVMValueRef IntVal = LLVMBuildLoad(Builder, GlobalVar, "intVal");
234 LLVMBuildRet(Builder, IntVal);
235
236 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
237 LLVMDisposeMessage(Error);
238
239 LLVMDisposeBuilder(Builder);
240 }
241
242 {
243 LLVMTypeRef ParamTypes[] = { LLVMInt32Type() };
244 Function2 = LLVMAddFunction(
245 Module, "setGlobal", LLVMFunctionType(LLVMVoidType(), ParamTypes, 1, 0));
246 LLVMSetFunctionCallConv(Function2, LLVMCCallConv);
247
248 LLVMBasicBlockRef Entry = LLVMAppendBasicBlock(Function2, "entry");
249 LLVMBuilderRef Builder = LLVMCreateBuilder();
250 LLVMPositionBuilderAtEnd(Builder, Entry);
251
252 LLVMValueRef Arg = LLVMGetParam(Function2, 0);
253 LLVMBuildStore(Builder, Arg, GlobalVar);
254 LLVMBuildRetVoid(Builder);
255
256 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
257 LLVMDisposeMessage(Error);
258
259 LLVMDisposeBuilder(Builder);
260 }
261 }
262
buildMCJITOptions()263 void buildMCJITOptions() {
264 LLVMInitializeMCJITCompilerOptions(&Options, sizeof(Options));
265 Options.OptLevel = 2;
266
267 // Just ensure that this field still exists.
268 Options.NoFramePointerElim = false;
269 }
270
useRoundTripSectionMemoryManager()271 void useRoundTripSectionMemoryManager() {
272 Options.MCJMM = LLVMCreateSimpleMCJITMemoryManager(
273 new SectionMemoryManager(),
274 roundTripAllocateCodeSection,
275 roundTripAllocateDataSection,
276 roundTripFinalizeMemory,
277 roundTripDestroy);
278 }
279
buildMCJITEngine()280 void buildMCJITEngine() {
281 ASSERT_EQ(
282 0, LLVMCreateMCJITCompilerForModule(&Engine, Module, &Options,
283 sizeof(Options), &Error));
284 }
285
buildAndRunPasses()286 void buildAndRunPasses() {
287 LLVMPassManagerRef pass = LLVMCreatePassManager();
288 LLVMAddConstantPropagationPass(pass);
289 LLVMAddInstructionCombiningPass(pass);
290 LLVMRunPassManager(pass, Module);
291 LLVMDisposePassManager(pass);
292 }
293
buildAndRunOptPasses()294 void buildAndRunOptPasses() {
295 LLVMPassManagerBuilderRef passBuilder;
296
297 passBuilder = LLVMPassManagerBuilderCreate();
298 LLVMPassManagerBuilderSetOptLevel(passBuilder, 2);
299 LLVMPassManagerBuilderSetSizeLevel(passBuilder, 0);
300
301 LLVMPassManagerRef functionPasses =
302 LLVMCreateFunctionPassManagerForModule(Module);
303 LLVMPassManagerRef modulePasses =
304 LLVMCreatePassManager();
305
306 LLVMPassManagerBuilderPopulateFunctionPassManager(passBuilder,
307 functionPasses);
308 LLVMPassManagerBuilderPopulateModulePassManager(passBuilder, modulePasses);
309
310 LLVMPassManagerBuilderDispose(passBuilder);
311
312 LLVMInitializeFunctionPassManager(functionPasses);
313 for (LLVMValueRef value = LLVMGetFirstFunction(Module);
314 value; value = LLVMGetNextFunction(value))
315 LLVMRunFunctionPassManager(functionPasses, value);
316 LLVMFinalizeFunctionPassManager(functionPasses);
317
318 LLVMRunPassManager(modulePasses, Module);
319
320 LLVMDisposePassManager(functionPasses);
321 LLVMDisposePassManager(modulePasses);
322 }
323
324 LLVMModuleRef Module;
325 LLVMValueRef Function;
326 LLVMValueRef Function2;
327 LLVMMCJITCompilerOptions Options;
328 LLVMExecutionEngineRef Engine;
329 char *Error;
330 };
331 } // end anonymous namespace
332
TEST_F(MCJITCAPITest,simple_function)333 TEST_F(MCJITCAPITest, simple_function) {
334 SKIP_UNSUPPORTED_PLATFORM;
335
336 buildSimpleFunction();
337 buildMCJITOptions();
338 buildMCJITEngine();
339 buildAndRunPasses();
340
341 auto *functionPointer = reinterpret_cast<int (*)()>(
342 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function)));
343
344 EXPECT_EQ(42, functionPointer());
345 }
346
TEST_F(MCJITCAPITest,gva)347 TEST_F(MCJITCAPITest, gva) {
348 SKIP_UNSUPPORTED_PLATFORM;
349
350 Module = LLVMModuleCreateWithName("simple_module");
351 LLVMSetTarget(Module, HostTriple.c_str());
352 LLVMValueRef GlobalVar = LLVMAddGlobal(Module, LLVMInt32Type(), "simple_value");
353 LLVMSetInitializer(GlobalVar, LLVMConstInt(LLVMInt32Type(), 42, 0));
354
355 buildMCJITOptions();
356 buildMCJITEngine();
357 buildAndRunPasses();
358
359 uint64_t raw = LLVMGetGlobalValueAddress(Engine, "simple_value");
360 int32_t *usable = (int32_t *) raw;
361
362 EXPECT_EQ(42, *usable);
363 }
364
TEST_F(MCJITCAPITest,gfa)365 TEST_F(MCJITCAPITest, gfa) {
366 SKIP_UNSUPPORTED_PLATFORM;
367
368 buildSimpleFunction();
369 buildMCJITOptions();
370 buildMCJITEngine();
371 buildAndRunPasses();
372
373 uint64_t raw = LLVMGetFunctionAddress(Engine, "simple_function");
374 int (*usable)() = (int (*)()) raw;
375
376 EXPECT_EQ(42, usable());
377 }
378
TEST_F(MCJITCAPITest,custom_memory_manager)379 TEST_F(MCJITCAPITest, custom_memory_manager) {
380 SKIP_UNSUPPORTED_PLATFORM;
381
382 buildSimpleFunction();
383 buildMCJITOptions();
384 useRoundTripSectionMemoryManager();
385 buildMCJITEngine();
386 buildAndRunPasses();
387
388 auto *functionPointer = reinterpret_cast<int (*)()>(
389 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function)));
390
391 EXPECT_EQ(42, functionPointer());
392 EXPECT_TRUE(didCallAllocateCodeSection);
393 }
394
TEST_F(MCJITCAPITest,stackmap_creates_compact_unwind_on_darwin)395 TEST_F(MCJITCAPITest, stackmap_creates_compact_unwind_on_darwin) {
396 SKIP_UNSUPPORTED_PLATFORM;
397
398 // This test is also not supported on non-x86 platforms.
399 if (Triple(HostTriple).getArch() != Triple::x86_64)
400 return;
401
402 buildFunctionThatUsesStackmap();
403 buildMCJITOptions();
404 useRoundTripSectionMemoryManager();
405 buildMCJITEngine();
406 buildAndRunOptPasses();
407
408 auto *functionPointer = reinterpret_cast<int (*)()>(
409 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function)));
410
411 EXPECT_EQ(42, functionPointer());
412 EXPECT_TRUE(didCallAllocateCodeSection);
413
414 // Up to this point, the test is specific only to X86-64. But this next
415 // expectation is only valid on Darwin because it assumes that unwind
416 // data is made available only through compact_unwind. It would be
417 // worthwhile to extend this to handle non-Darwin platforms, in which
418 // case you'd want to look for an eh_frame or something.
419 //
420 // FIXME: Currently, MCJIT relies on a configure-time check to determine which
421 // sections to emit. The JIT client should have runtime control over this.
422 EXPECT_TRUE(
423 Triple(HostTriple).getOS() != Triple::Darwin ||
424 Triple(HostTriple).isMacOSXVersionLT(10, 7) ||
425 didAllocateCompactUnwindSection);
426 }
427
TEST_F(MCJITCAPITest,reserve_allocation_space)428 TEST_F(MCJITCAPITest, reserve_allocation_space) {
429 SKIP_UNSUPPORTED_PLATFORM;
430
431 TestReserveAllocationSpaceMemoryManager* MM = new TestReserveAllocationSpaceMemoryManager();
432
433 buildModuleWithCodeAndData();
434 buildMCJITOptions();
435 Options.MCJMM = wrap(MM);
436 buildMCJITEngine();
437 buildAndRunPasses();
438
439 auto GetGlobalFct = reinterpret_cast<int (*)()>(
440 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function)));
441
442 auto SetGlobalFct = reinterpret_cast<void (*)(int)>(
443 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function2)));
444
445 SetGlobalFct(789);
446 EXPECT_EQ(789, GetGlobalFct());
447 EXPECT_LE(MM->UsedCodeSize, MM->ReservedCodeSize);
448 EXPECT_LE(MM->UsedDataSizeRO, MM->ReservedDataSizeRO);
449 EXPECT_LE(MM->UsedDataSizeRW, MM->ReservedDataSizeRW);
450 EXPECT_TRUE(MM->UsedCodeSize > 0);
451 EXPECT_TRUE(MM->UsedDataSizeRW > 0);
452 }
453
TEST_F(MCJITCAPITest,yield)454 TEST_F(MCJITCAPITest, yield) {
455 SKIP_UNSUPPORTED_PLATFORM;
456
457 buildSimpleFunction();
458 buildMCJITOptions();
459 buildMCJITEngine();
460 LLVMContextRef C = LLVMGetGlobalContext();
461 LLVMContextSetYieldCallback(C, yield, nullptr);
462 buildAndRunPasses();
463
464 auto *functionPointer = reinterpret_cast<int (*)()>(
465 reinterpret_cast<uintptr_t>(LLVMGetPointerToGlobal(Engine, Function)));
466
467 EXPECT_EQ(42, functionPointer());
468 EXPECT_TRUE(didCallYield);
469 }
470
localTestFunc()471 static int localTestFunc() {
472 return 42;
473 }
474
TEST_F(MCJITCAPITest,addGlobalMapping)475 TEST_F(MCJITCAPITest, addGlobalMapping) {
476 SKIP_UNSUPPORTED_PLATFORM;
477
478 Module = LLVMModuleCreateWithName("testModule");
479 LLVMSetTarget(Module, HostTriple.c_str());
480 LLVMTypeRef FunctionType = LLVMFunctionType(LLVMInt32Type(), nullptr, 0, 0);
481 LLVMValueRef MappedFn = LLVMAddFunction(Module, "mapped_fn", FunctionType);
482
483 Function = LLVMAddFunction(Module, "test_fn", FunctionType);
484 LLVMBasicBlockRef Entry = LLVMAppendBasicBlock(Function, "");
485 LLVMBuilderRef Builder = LLVMCreateBuilder();
486 LLVMPositionBuilderAtEnd(Builder, Entry);
487 LLVMValueRef RetVal = LLVMBuildCall(Builder, MappedFn, nullptr, 0, "");
488 LLVMBuildRet(Builder, RetVal);
489 LLVMDisposeBuilder(Builder);
490
491 LLVMVerifyModule(Module, LLVMAbortProcessAction, &Error);
492 LLVMDisposeMessage(Error);
493
494 buildMCJITOptions();
495 buildMCJITEngine();
496
497 LLVMAddGlobalMapping(
498 Engine, MappedFn,
499 reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(&localTestFunc)));
500
501 buildAndRunPasses();
502
503 uint64_t raw = LLVMGetFunctionAddress(Engine, "test_fn");
504 int (*usable)() = (int (*)()) raw;
505
506 EXPECT_EQ(42, usable());
507 }
508