1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DAGISelMatcher.h"
11 #include "CodeGenDAGPatterns.h"
12 #include "CodeGenRegisters.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/TableGen/Error.h"
16 #include "llvm/TableGen/Record.h"
17 #include <utility>
18 using namespace llvm;
19
20
21 /// getRegisterValueType - Look up and return the ValueType of the specified
22 /// register. If the register is a member of multiple register classes which
23 /// have different associated types, return MVT::Other.
getRegisterValueType(Record * R,const CodeGenTarget & T)24 static MVT::SimpleValueType getRegisterValueType(Record *R,
25 const CodeGenTarget &T) {
26 bool FoundRC = false;
27 MVT::SimpleValueType VT = MVT::Other;
28 const CodeGenRegister *Reg = T.getRegBank().getReg(R);
29
30 for (const auto &RC : T.getRegBank().getRegClasses()) {
31 if (!RC.contains(Reg))
32 continue;
33
34 if (!FoundRC) {
35 FoundRC = true;
36 VT = RC.getValueTypeNum(0);
37 continue;
38 }
39
40 // If this occurs in multiple register classes, they all have to agree.
41 assert(VT == RC.getValueTypeNum(0));
42 }
43 return VT;
44 }
45
46
47 namespace {
48 class MatcherGen {
49 const PatternToMatch &Pattern;
50 const CodeGenDAGPatterns &CGP;
51
52 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts
53 /// out with all of the types removed. This allows us to insert type checks
54 /// as we scan the tree.
55 TreePatternNode *PatWithNoTypes;
56
57 /// VariableMap - A map from variable names ('$dst') to the recorded operand
58 /// number that they were captured as. These are biased by 1 to make
59 /// insertion easier.
60 StringMap<unsigned> VariableMap;
61
62 /// This maintains the recorded operand number that OPC_CheckComplexPattern
63 /// drops each sub-operand into. We don't want to insert these into
64 /// VariableMap because that leads to identity checking if they are
65 /// encountered multiple times. Biased by 1 like VariableMap for
66 /// consistency.
67 StringMap<unsigned> NamedComplexPatternOperands;
68
69 /// NextRecordedOperandNo - As we emit opcodes to record matched values in
70 /// the RecordedNodes array, this keeps track of which slot will be next to
71 /// record into.
72 unsigned NextRecordedOperandNo;
73
74 /// MatchedChainNodes - This maintains the position in the recorded nodes
75 /// array of all of the recorded input nodes that have chains.
76 SmallVector<unsigned, 2> MatchedChainNodes;
77
78 /// MatchedComplexPatterns - This maintains a list of all of the
79 /// ComplexPatterns that we need to check. The second element of each pair
80 /// is the recorded operand number of the input node.
81 SmallVector<std::pair<const TreePatternNode*,
82 unsigned>, 2> MatchedComplexPatterns;
83
84 /// PhysRegInputs - List list has an entry for each explicitly specified
85 /// physreg input to the pattern. The first elt is the Register node, the
86 /// second is the recorded slot number the input pattern match saved it in.
87 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs;
88
89 /// Matcher - This is the top level of the generated matcher, the result.
90 Matcher *TheMatcher;
91
92 /// CurPredicate - As we emit matcher nodes, this points to the latest check
93 /// which should have future checks stuck into its Next position.
94 Matcher *CurPredicate;
95 public:
96 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp);
97
~MatcherGen()98 ~MatcherGen() {
99 delete PatWithNoTypes;
100 }
101
102 bool EmitMatcherCode(unsigned Variant);
103 void EmitResultCode();
104
GetMatcher() const105 Matcher *GetMatcher() const { return TheMatcher; }
106 private:
107 void AddMatcher(Matcher *NewNode);
108 void InferPossibleTypes();
109
110 // Matcher Generation.
111 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes);
112 void EmitLeafMatchCode(const TreePatternNode *N);
113 void EmitOperatorMatchCode(const TreePatternNode *N,
114 TreePatternNode *NodeNoTypes);
115
116 /// If this is the first time a node with unique identifier Name has been
117 /// seen, record it. Otherwise, emit a check to make sure this is the same
118 /// node. Returns true if this is the first encounter.
119 bool recordUniqueNode(const std::string &Name);
120
121 // Result Code Generation.
getNamedArgumentSlot(StringRef Name)122 unsigned getNamedArgumentSlot(StringRef Name) {
123 unsigned VarMapEntry = VariableMap[Name];
124 assert(VarMapEntry != 0 &&
125 "Variable referenced but not defined and not caught earlier!");
126 return VarMapEntry-1;
127 }
128
129 /// GetInstPatternNode - Get the pattern for an instruction.
130 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins,
131 const TreePatternNode *N);
132
133 void EmitResultOperand(const TreePatternNode *N,
134 SmallVectorImpl<unsigned> &ResultOps);
135 void EmitResultOfNamedOperand(const TreePatternNode *N,
136 SmallVectorImpl<unsigned> &ResultOps);
137 void EmitResultLeafAsOperand(const TreePatternNode *N,
138 SmallVectorImpl<unsigned> &ResultOps);
139 void EmitResultInstructionAsOperand(const TreePatternNode *N,
140 SmallVectorImpl<unsigned> &ResultOps);
141 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
142 SmallVectorImpl<unsigned> &ResultOps);
143 };
144
145 } // end anon namespace.
146
MatcherGen(const PatternToMatch & pattern,const CodeGenDAGPatterns & cgp)147 MatcherGen::MatcherGen(const PatternToMatch &pattern,
148 const CodeGenDAGPatterns &cgp)
149 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0),
150 TheMatcher(nullptr), CurPredicate(nullptr) {
151 // We need to produce the matcher tree for the patterns source pattern. To do
152 // this we need to match the structure as well as the types. To do the type
153 // matching, we want to figure out the fewest number of type checks we need to
154 // emit. For example, if there is only one integer type supported by a
155 // target, there should be no type comparisons at all for integer patterns!
156 //
157 // To figure out the fewest number of type checks needed, clone the pattern,
158 // remove the types, then perform type inference on the pattern as a whole.
159 // If there are unresolved types, emit an explicit check for those types,
160 // apply the type to the tree, then rerun type inference. Iterate until all
161 // types are resolved.
162 //
163 PatWithNoTypes = Pattern.getSrcPattern()->clone();
164 PatWithNoTypes->RemoveAllTypes();
165
166 // If there are types that are manifestly known, infer them.
167 InferPossibleTypes();
168 }
169
170 /// InferPossibleTypes - As we emit the pattern, we end up generating type
171 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we
172 /// want to propagate implied types as far throughout the tree as possible so
173 /// that we avoid doing redundant type checks. This does the type propagation.
InferPossibleTypes()174 void MatcherGen::InferPossibleTypes() {
175 // TP - Get *SOME* tree pattern, we don't care which. It is only used for
176 // diagnostics, which we know are impossible at this point.
177 TreePattern &TP = *CGP.pf_begin()->second;
178
179 bool MadeChange = true;
180 while (MadeChange)
181 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP,
182 true/*Ignore reg constraints*/);
183 }
184
185
186 /// AddMatcher - Add a matcher node to the current graph we're building.
AddMatcher(Matcher * NewNode)187 void MatcherGen::AddMatcher(Matcher *NewNode) {
188 if (CurPredicate)
189 CurPredicate->setNext(NewNode);
190 else
191 TheMatcher = NewNode;
192 CurPredicate = NewNode;
193 }
194
195
196 //===----------------------------------------------------------------------===//
197 // Pattern Match Generation
198 //===----------------------------------------------------------------------===//
199
200 /// EmitLeafMatchCode - Generate matching code for leaf nodes.
EmitLeafMatchCode(const TreePatternNode * N)201 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) {
202 assert(N->isLeaf() && "Not a leaf?");
203
204 // Direct match against an integer constant.
205 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
206 // If this is the root of the dag we're matching, we emit a redundant opcode
207 // check to ensure that this gets folded into the normal top-level
208 // OpcodeSwitch.
209 if (N == Pattern.getSrcPattern()) {
210 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm"));
211 AddMatcher(new CheckOpcodeMatcher(NI));
212 }
213
214 return AddMatcher(new CheckIntegerMatcher(II->getValue()));
215 }
216
217 // An UnsetInit represents a named node without any constraints.
218 if (isa<UnsetInit>(N->getLeafValue())) {
219 assert(N->hasName() && "Unnamed ? leaf");
220 return;
221 }
222
223 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
224 if (!DI) {
225 errs() << "Unknown leaf kind: " << *N << "\n";
226 abort();
227 }
228
229 Record *LeafRec = DI->getDef();
230
231 // A ValueType leaf node can represent a register when named, or itself when
232 // unnamed.
233 if (LeafRec->isSubClassOf("ValueType")) {
234 // A named ValueType leaf always matches: (add i32:$a, i32:$b).
235 if (N->hasName())
236 return;
237 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8).
238 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName()));
239 }
240
241 if (// Handle register references. Nothing to do here, they always match.
242 LeafRec->isSubClassOf("RegisterClass") ||
243 LeafRec->isSubClassOf("RegisterOperand") ||
244 LeafRec->isSubClassOf("PointerLikeRegClass") ||
245 LeafRec->isSubClassOf("SubRegIndex") ||
246 // Place holder for SRCVALUE nodes. Nothing to do here.
247 LeafRec->getName() == "srcvalue")
248 return;
249
250 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to
251 // record the register
252 if (LeafRec->isSubClassOf("Register")) {
253 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(),
254 NextRecordedOperandNo));
255 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++));
256 return;
257 }
258
259 if (LeafRec->isSubClassOf("CondCode"))
260 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName()));
261
262 if (LeafRec->isSubClassOf("ComplexPattern")) {
263 // We can't model ComplexPattern uses that don't have their name taken yet.
264 // The OPC_CheckComplexPattern operation implicitly records the results.
265 if (N->getName().empty()) {
266 std::string S;
267 raw_string_ostream OS(S);
268 OS << "We expect complex pattern uses to have names: " << *N;
269 PrintFatalError(OS.str());
270 }
271
272 // Remember this ComplexPattern so that we can emit it after all the other
273 // structural matches are done.
274 unsigned InputOperand = VariableMap[N->getName()] - 1;
275 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand));
276 return;
277 }
278
279 errs() << "Unknown leaf kind: " << *N << "\n";
280 abort();
281 }
282
EmitOperatorMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)283 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N,
284 TreePatternNode *NodeNoTypes) {
285 assert(!N->isLeaf() && "Not an operator?");
286
287 if (N->getOperator()->isSubClassOf("ComplexPattern")) {
288 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is
289 // "MY_PAT:op1:op2". We should already have validated that the uses are
290 // consistent.
291 std::string PatternName = N->getOperator()->getName();
292 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
293 PatternName += ":";
294 PatternName += N->getChild(i)->getName();
295 }
296
297 if (recordUniqueNode(PatternName)) {
298 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1);
299 MatchedComplexPatterns.push_back(NodeAndOpNum);
300 }
301
302 return;
303 }
304
305 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator());
306
307 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
308 // a constant without a predicate fn that has more that one bit set, handle
309 // this as a special case. This is usually for targets that have special
310 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
311 // handling stuff). Using these instructions is often far more efficient
312 // than materializing the constant. Unfortunately, both the instcombiner
313 // and the dag combiner can often infer that bits are dead, and thus drop
314 // them from the mask in the dag. For example, it might turn 'AND X, 255'
315 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
316 // to handle this.
317 if ((N->getOperator()->getName() == "and" ||
318 N->getOperator()->getName() == "or") &&
319 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() &&
320 N->getPredicateFns().empty()) {
321 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) {
322 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
323 // If this is at the root of the pattern, we emit a redundant
324 // CheckOpcode so that the following checks get factored properly under
325 // a single opcode check.
326 if (N == Pattern.getSrcPattern())
327 AddMatcher(new CheckOpcodeMatcher(CInfo));
328
329 // Emit the CheckAndImm/CheckOrImm node.
330 if (N->getOperator()->getName() == "and")
331 AddMatcher(new CheckAndImmMatcher(II->getValue()));
332 else
333 AddMatcher(new CheckOrImmMatcher(II->getValue()));
334
335 // Match the LHS of the AND as appropriate.
336 AddMatcher(new MoveChildMatcher(0));
337 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0));
338 AddMatcher(new MoveParentMatcher());
339 return;
340 }
341 }
342 }
343
344 // Check that the current opcode lines up.
345 AddMatcher(new CheckOpcodeMatcher(CInfo));
346
347 // If this node has memory references (i.e. is a load or store), tell the
348 // interpreter to capture them in the memref array.
349 if (N->NodeHasProperty(SDNPMemOperand, CGP))
350 AddMatcher(new RecordMemRefMatcher());
351
352 // If this node has a chain, then the chain is operand #0 is the SDNode, and
353 // the child numbers of the node are all offset by one.
354 unsigned OpNo = 0;
355 if (N->NodeHasProperty(SDNPHasChain, CGP)) {
356 // Record the node and remember it in our chained nodes list.
357 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
358 "' chained node",
359 NextRecordedOperandNo));
360 // Remember all of the input chains our pattern will match.
361 MatchedChainNodes.push_back(NextRecordedOperandNo++);
362
363 // Don't look at the input chain when matching the tree pattern to the
364 // SDNode.
365 OpNo = 1;
366
367 // If this node is not the root and the subtree underneath it produces a
368 // chain, then the result of matching the node is also produce a chain.
369 // Beyond that, this means that we're also folding (at least) the root node
370 // into the node that produce the chain (for example, matching
371 // "(add reg, (load ptr))" as a add_with_memory on X86). This is
372 // problematic, if the 'reg' node also uses the load (say, its chain).
373 // Graphically:
374 //
375 // [LD]
376 // ^ ^
377 // | \ DAG's like cheese.
378 // / |
379 // / [YY]
380 // | ^
381 // [XX]--/
382 //
383 // It would be invalid to fold XX and LD. In this case, folding the two
384 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG'
385 // To prevent this, we emit a dynamic check for legality before allowing
386 // this to be folded.
387 //
388 const TreePatternNode *Root = Pattern.getSrcPattern();
389 if (N != Root) { // Not the root of the pattern.
390 // If there is a node between the root and this node, then we definitely
391 // need to emit the check.
392 bool NeedCheck = !Root->hasChild(N);
393
394 // If it *is* an immediate child of the root, we can still need a check if
395 // the root SDNode has multiple inputs. For us, this means that it is an
396 // intrinsic, has multiple operands, or has other inputs like chain or
397 // glue).
398 if (!NeedCheck) {
399 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator());
400 NeedCheck =
401 Root->getOperator() == CGP.get_intrinsic_void_sdnode() ||
402 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
403 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
404 PInfo.getNumOperands() > 1 ||
405 PInfo.hasProperty(SDNPHasChain) ||
406 PInfo.hasProperty(SDNPInGlue) ||
407 PInfo.hasProperty(SDNPOptInGlue);
408 }
409
410 if (NeedCheck)
411 AddMatcher(new CheckFoldableChainNodeMatcher());
412 }
413 }
414
415 // If this node has an output glue and isn't the root, remember it.
416 if (N->NodeHasProperty(SDNPOutGlue, CGP) &&
417 N != Pattern.getSrcPattern()) {
418 // TODO: This redundantly records nodes with both glues and chains.
419
420 // Record the node and remember it in our chained nodes list.
421 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() +
422 "' glue output node",
423 NextRecordedOperandNo));
424 }
425
426 // If this node is known to have an input glue or if it *might* have an input
427 // glue, capture it as the glue input of the pattern.
428 if (N->NodeHasProperty(SDNPOptInGlue, CGP) ||
429 N->NodeHasProperty(SDNPInGlue, CGP))
430 AddMatcher(new CaptureGlueInputMatcher());
431
432 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
433 // Get the code suitable for matching this child. Move to the child, check
434 // it then move back to the parent.
435 AddMatcher(new MoveChildMatcher(OpNo));
436 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i));
437 AddMatcher(new MoveParentMatcher());
438 }
439 }
440
recordUniqueNode(const std::string & Name)441 bool MatcherGen::recordUniqueNode(const std::string &Name) {
442 unsigned &VarMapEntry = VariableMap[Name];
443 if (VarMapEntry == 0) {
444 // If it is a named node, we must emit a 'Record' opcode.
445 AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo));
446 VarMapEntry = ++NextRecordedOperandNo;
447 return true;
448 }
449
450 // If we get here, this is a second reference to a specific name. Since
451 // we already have checked that the first reference is valid, we don't
452 // have to recursively match it, just check that it's the same as the
453 // previously named thing.
454 AddMatcher(new CheckSameMatcher(VarMapEntry-1));
455 return false;
456 }
457
EmitMatchCode(const TreePatternNode * N,TreePatternNode * NodeNoTypes)458 void MatcherGen::EmitMatchCode(const TreePatternNode *N,
459 TreePatternNode *NodeNoTypes) {
460 // If N and NodeNoTypes don't agree on a type, then this is a case where we
461 // need to do a type check. Emit the check, apply the type to NodeNoTypes and
462 // reinfer any correlated types.
463 SmallVector<unsigned, 2> ResultsToTypeCheck;
464
465 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) {
466 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue;
467 NodeNoTypes->setType(i, N->getExtType(i));
468 InferPossibleTypes();
469 ResultsToTypeCheck.push_back(i);
470 }
471
472 // If this node has a name associated with it, capture it in VariableMap. If
473 // we already saw this in the pattern, emit code to verify dagness.
474 if (!N->getName().empty())
475 if (!recordUniqueNode(N->getName()))
476 return;
477
478 if (N->isLeaf())
479 EmitLeafMatchCode(N);
480 else
481 EmitOperatorMatchCode(N, NodeNoTypes);
482
483 // If there are node predicates for this node, generate their checks.
484 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
485 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i]));
486
487 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i)
488 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]),
489 ResultsToTypeCheck[i]));
490 }
491
492 /// EmitMatcherCode - Generate the code that matches the predicate of this
493 /// pattern for the specified Variant. If the variant is invalid this returns
494 /// true and does not generate code, if it is valid, it returns false.
EmitMatcherCode(unsigned Variant)495 bool MatcherGen::EmitMatcherCode(unsigned Variant) {
496 // If the root of the pattern is a ComplexPattern and if it is specified to
497 // match some number of root opcodes, these are considered to be our variants.
498 // Depending on which variant we're generating code for, emit the root opcode
499 // check.
500 if (const ComplexPattern *CP =
501 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) {
502 const std::vector<Record*> &OpNodes = CP->getRootNodes();
503 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match");
504 if (Variant >= OpNodes.size()) return true;
505
506 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant])));
507 } else {
508 if (Variant != 0) return true;
509 }
510
511 // Emit the matcher for the pattern structure and types.
512 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes);
513
514 // If the pattern has a predicate on it (e.g. only enabled when a subtarget
515 // feature is around, do the check).
516 if (!Pattern.getPredicateCheck().empty())
517 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck()));
518
519 // Now that we've completed the structural type match, emit any ComplexPattern
520 // checks (e.g. addrmode matches). We emit this after the structural match
521 // because they are generally more expensive to evaluate and more difficult to
522 // factor.
523 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) {
524 const TreePatternNode *N = MatchedComplexPatterns[i].first;
525
526 // Remember where the results of this match get stuck.
527 if (N->isLeaf()) {
528 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1;
529 } else {
530 unsigned CurOp = NextRecordedOperandNo;
531 for (unsigned i = 0; i < N->getNumChildren(); ++i) {
532 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1;
533 CurOp += N->getChild(i)->getNumMIResults(CGP);
534 }
535 }
536
537 // Get the slot we recorded the value in from the name on the node.
538 unsigned RecNodeEntry = MatchedComplexPatterns[i].second;
539
540 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP);
541
542 // Emit a CheckComplexPat operation, which does the match (aborting if it
543 // fails) and pushes the matched operands onto the recorded nodes list.
544 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry,
545 N->getName(), NextRecordedOperandNo));
546
547 // Record the right number of operands.
548 NextRecordedOperandNo += CP.getNumOperands();
549 if (CP.hasProperty(SDNPHasChain)) {
550 // If the complex pattern has a chain, then we need to keep track of the
551 // fact that we just recorded a chain input. The chain input will be
552 // matched as the last operand of the predicate if it was successful.
553 ++NextRecordedOperandNo; // Chained node operand.
554
555 // It is the last operand recorded.
556 assert(NextRecordedOperandNo > 1 &&
557 "Should have recorded input/result chains at least!");
558 MatchedChainNodes.push_back(NextRecordedOperandNo-1);
559 }
560
561 // TODO: Complex patterns can't have output glues, if they did, we'd want
562 // to record them.
563 }
564
565 return false;
566 }
567
568
569 //===----------------------------------------------------------------------===//
570 // Node Result Generation
571 //===----------------------------------------------------------------------===//
572
EmitResultOfNamedOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)573 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N,
574 SmallVectorImpl<unsigned> &ResultOps){
575 assert(!N->getName().empty() && "Operand not named!");
576
577 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) {
578 // Complex operands have already been completely selected, just find the
579 // right slot ant add the arguments directly.
580 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
581 ResultOps.push_back(SlotNo - 1 + i);
582
583 return;
584 }
585
586 unsigned SlotNo = getNamedArgumentSlot(N->getName());
587
588 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target
589 // version of the immediate so that it doesn't get selected due to some other
590 // node use.
591 if (!N->isLeaf()) {
592 StringRef OperatorName = N->getOperator()->getName();
593 if (OperatorName == "imm" || OperatorName == "fpimm") {
594 AddMatcher(new EmitConvertToTargetMatcher(SlotNo));
595 ResultOps.push_back(NextRecordedOperandNo++);
596 return;
597 }
598 }
599
600 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i)
601 ResultOps.push_back(SlotNo + i);
602 }
603
EmitResultLeafAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)604 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N,
605 SmallVectorImpl<unsigned> &ResultOps) {
606 assert(N->isLeaf() && "Must be a leaf");
607
608 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) {
609 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0)));
610 ResultOps.push_back(NextRecordedOperandNo++);
611 return;
612 }
613
614 // If this is an explicit register reference, handle it.
615 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
616 Record *Def = DI->getDef();
617 if (Def->isSubClassOf("Register")) {
618 const CodeGenRegister *Reg =
619 CGP.getTargetInfo().getRegBank().getReg(Def);
620 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0)));
621 ResultOps.push_back(NextRecordedOperandNo++);
622 return;
623 }
624
625 if (Def->getName() == "zero_reg") {
626 AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0)));
627 ResultOps.push_back(NextRecordedOperandNo++);
628 return;
629 }
630
631 // Handle a reference to a register class. This is used
632 // in COPY_TO_SUBREG instructions.
633 if (Def->isSubClassOf("RegisterOperand"))
634 Def = Def->getValueAsDef("RegClass");
635 if (Def->isSubClassOf("RegisterClass")) {
636 std::string Value = getQualifiedName(Def) + "RegClassID";
637 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
638 ResultOps.push_back(NextRecordedOperandNo++);
639 return;
640 }
641
642 // Handle a subregister index. This is used for INSERT_SUBREG etc.
643 if (Def->isSubClassOf("SubRegIndex")) {
644 std::string Value = getQualifiedName(Def);
645 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32));
646 ResultOps.push_back(NextRecordedOperandNo++);
647 return;
648 }
649 }
650
651 errs() << "unhandled leaf node: \n";
652 N->dump();
653 }
654
655 /// GetInstPatternNode - Get the pattern for an instruction.
656 ///
657 const TreePatternNode *MatcherGen::
GetInstPatternNode(const DAGInstruction & Inst,const TreePatternNode * N)658 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) {
659 const TreePattern *InstPat = Inst.getPattern();
660
661 // FIXME2?: Assume actual pattern comes before "implicit".
662 TreePatternNode *InstPatNode;
663 if (InstPat)
664 InstPatNode = InstPat->getTree(0);
665 else if (/*isRoot*/ N == Pattern.getDstPattern())
666 InstPatNode = Pattern.getSrcPattern();
667 else
668 return nullptr;
669
670 if (InstPatNode && !InstPatNode->isLeaf() &&
671 InstPatNode->getOperator()->getName() == "set")
672 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
673
674 return InstPatNode;
675 }
676
677 static bool
mayInstNodeLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)678 mayInstNodeLoadOrStore(const TreePatternNode *N,
679 const CodeGenDAGPatterns &CGP) {
680 Record *Op = N->getOperator();
681 const CodeGenTarget &CGT = CGP.getTargetInfo();
682 CodeGenInstruction &II = CGT.getInstruction(Op);
683 return II.mayLoad || II.mayStore;
684 }
685
686 static unsigned
numNodesThatMayLoadOrStore(const TreePatternNode * N,const CodeGenDAGPatterns & CGP)687 numNodesThatMayLoadOrStore(const TreePatternNode *N,
688 const CodeGenDAGPatterns &CGP) {
689 if (N->isLeaf())
690 return 0;
691
692 Record *OpRec = N->getOperator();
693 if (!OpRec->isSubClassOf("Instruction"))
694 return 0;
695
696 unsigned Count = 0;
697 if (mayInstNodeLoadOrStore(N, CGP))
698 ++Count;
699
700 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
701 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP);
702
703 return Count;
704 }
705
706 void MatcherGen::
EmitResultInstructionAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & OutputOps)707 EmitResultInstructionAsOperand(const TreePatternNode *N,
708 SmallVectorImpl<unsigned> &OutputOps) {
709 Record *Op = N->getOperator();
710 const CodeGenTarget &CGT = CGP.getTargetInfo();
711 CodeGenInstruction &II = CGT.getInstruction(Op);
712 const DAGInstruction &Inst = CGP.getInstruction(Op);
713
714 // If we can, get the pattern for the instruction we're generating. We derive
715 // a variety of information from this pattern, such as whether it has a chain.
716 //
717 // FIXME2: This is extremely dubious for several reasons, not the least of
718 // which it gives special status to instructions with patterns that Pat<>
719 // nodes can't duplicate.
720 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N);
721
722 // NodeHasChain - Whether the instruction node we're creating takes chains.
723 bool NodeHasChain = InstPatNode &&
724 InstPatNode->TreeHasProperty(SDNPHasChain, CGP);
725
726 // Instructions which load and store from memory should have a chain,
727 // regardless of whether they happen to have an internal pattern saying so.
728 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP)
729 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad ||
730 II.hasSideEffects))
731 NodeHasChain = true;
732
733 bool isRoot = N == Pattern.getDstPattern();
734
735 // TreeHasOutGlue - True if this tree has glue.
736 bool TreeHasInGlue = false, TreeHasOutGlue = false;
737 if (isRoot) {
738 const TreePatternNode *SrcPat = Pattern.getSrcPattern();
739 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) ||
740 SrcPat->TreeHasProperty(SDNPInGlue, CGP);
741
742 // FIXME2: this is checking the entire pattern, not just the node in
743 // question, doing this just for the root seems like a total hack.
744 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP);
745 }
746
747 // NumResults - This is the number of results produced by the instruction in
748 // the "outs" list.
749 unsigned NumResults = Inst.getNumResults();
750
751 // Number of operands we know the output instruction must have. If it is
752 // variadic, we could have more operands.
753 unsigned NumFixedOperands = II.Operands.size();
754
755 SmallVector<unsigned, 8> InstOps;
756
757 // Loop over all of the fixed operands of the instruction pattern, emitting
758 // code to fill them all in. The node 'N' usually has number children equal to
759 // the number of input operands of the instruction. However, in cases where
760 // there are predicate operands for an instruction, we need to fill in the
761 // 'execute always' values. Match up the node operands to the instruction
762 // operands to do this.
763 unsigned ChildNo = 0;
764 for (unsigned InstOpNo = NumResults, e = NumFixedOperands;
765 InstOpNo != e; ++InstOpNo) {
766 // Determine what to emit for this operand.
767 Record *OperandNode = II.Operands[InstOpNo].Rec;
768 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
769 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
770 // This is a predicate or optional def operand; emit the
771 // 'default ops' operands.
772 const DAGDefaultOperand &DefaultOp
773 = CGP.getDefaultOperand(OperandNode);
774 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i)
775 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps);
776 continue;
777 }
778
779 // Otherwise this is a normal operand or a predicate operand without
780 // 'execute always'; emit it.
781
782 // For operands with multiple sub-operands we may need to emit
783 // multiple child patterns to cover them all. However, ComplexPattern
784 // children may themselves emit multiple MI operands.
785 unsigned NumSubOps = 1;
786 if (OperandNode->isSubClassOf("Operand")) {
787 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
788 if (unsigned NumArgs = MIOpInfo->getNumArgs())
789 NumSubOps = NumArgs;
790 }
791
792 unsigned FinalNumOps = InstOps.size() + NumSubOps;
793 while (InstOps.size() < FinalNumOps) {
794 const TreePatternNode *Child = N->getChild(ChildNo);
795 unsigned BeforeAddingNumOps = InstOps.size();
796 EmitResultOperand(Child, InstOps);
797 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands");
798
799 // If the operand is an instruction and it produced multiple results, just
800 // take the first one.
801 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction"))
802 InstOps.resize(BeforeAddingNumOps+1);
803
804 ++ChildNo;
805 }
806 }
807
808 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't
809 // expand suboperands, use default operands, or other features determined from
810 // the CodeGenInstruction after the fixed operands, which were handled
811 // above. Emit the remaining instructions implicitly added by the use for
812 // variable_ops.
813 if (II.Operands.isVariadic) {
814 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I)
815 EmitResultOperand(N->getChild(I), InstOps);
816 }
817
818 // If this node has input glue or explicitly specified input physregs, we
819 // need to add chained and glued copyfromreg nodes and materialize the glue
820 // input.
821 if (isRoot && !PhysRegInputs.empty()) {
822 // Emit all of the CopyToReg nodes for the input physical registers. These
823 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src).
824 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i)
825 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second,
826 PhysRegInputs[i].first));
827 // Even if the node has no other glue inputs, the resultant node must be
828 // glued to the CopyFromReg nodes we just generated.
829 TreeHasInGlue = true;
830 }
831
832 // Result order: node results, chain, glue
833
834 // Determine the result types.
835 SmallVector<MVT::SimpleValueType, 4> ResultVTs;
836 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i)
837 ResultVTs.push_back(N->getType(i));
838
839 // If this is the root instruction of a pattern that has physical registers in
840 // its result pattern, add output VTs for them. For example, X86 has:
841 // (set AL, (mul ...))
842 // This also handles implicit results like:
843 // (implicit EFLAGS)
844 if (isRoot && !Pattern.getDstRegs().empty()) {
845 // If the root came from an implicit def in the instruction handling stuff,
846 // don't re-add it.
847 Record *HandledReg = nullptr;
848 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
849 HandledReg = II.ImplicitDefs[0];
850
851 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
852 Record *Reg = Pattern.getDstRegs()[i];
853 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
854 ResultVTs.push_back(getRegisterValueType(Reg, CGT));
855 }
856 }
857
858 // If this is the root of the pattern and the pattern we're matching includes
859 // a node that is variadic, mark the generated node as variadic so that it
860 // gets the excess operands from the input DAG.
861 int NumFixedArityOperands = -1;
862 if (isRoot &&
863 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP))
864 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren();
865
866 // If this is the root node and multiple matched nodes in the input pattern
867 // have MemRefs in them, have the interpreter collect them and plop them onto
868 // this node. If there is just one node with MemRefs, leave them on that node
869 // even if it is not the root.
870 //
871 // FIXME3: This is actively incorrect for result patterns with multiple
872 // memory-referencing instructions.
873 bool PatternHasMemOperands =
874 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP);
875
876 bool NodeHasMemRefs = false;
877 if (PatternHasMemOperands) {
878 unsigned NumNodesThatLoadOrStore =
879 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP);
880 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) &&
881 NumNodesThatLoadOrStore == 1;
882 NodeHasMemRefs =
883 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) ||
884 NumNodesThatLoadOrStore != 1));
885 }
886
887 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) &&
888 "Node has no result");
889
890 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(),
891 ResultVTs, InstOps,
892 NodeHasChain, TreeHasInGlue, TreeHasOutGlue,
893 NodeHasMemRefs, NumFixedArityOperands,
894 NextRecordedOperandNo));
895
896 // The non-chain and non-glue results of the newly emitted node get recorded.
897 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) {
898 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break;
899 OutputOps.push_back(NextRecordedOperandNo++);
900 }
901 }
902
903 void MatcherGen::
EmitResultSDNodeXFormAsOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)904 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N,
905 SmallVectorImpl<unsigned> &ResultOps) {
906 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?");
907
908 // Emit the operand.
909 SmallVector<unsigned, 8> InputOps;
910
911 // FIXME2: Could easily generalize this to support multiple inputs and outputs
912 // to the SDNodeXForm. For now we just support one input and one output like
913 // the old instruction selector.
914 assert(N->getNumChildren() == 1);
915 EmitResultOperand(N->getChild(0), InputOps);
916
917 // The input currently must have produced exactly one result.
918 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm");
919
920 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator()));
921 ResultOps.push_back(NextRecordedOperandNo++);
922 }
923
EmitResultOperand(const TreePatternNode * N,SmallVectorImpl<unsigned> & ResultOps)924 void MatcherGen::EmitResultOperand(const TreePatternNode *N,
925 SmallVectorImpl<unsigned> &ResultOps) {
926 // This is something selected from the pattern we matched.
927 if (!N->getName().empty())
928 return EmitResultOfNamedOperand(N, ResultOps);
929
930 if (N->isLeaf())
931 return EmitResultLeafAsOperand(N, ResultOps);
932
933 Record *OpRec = N->getOperator();
934 if (OpRec->isSubClassOf("Instruction"))
935 return EmitResultInstructionAsOperand(N, ResultOps);
936 if (OpRec->isSubClassOf("SDNodeXForm"))
937 return EmitResultSDNodeXFormAsOperand(N, ResultOps);
938 errs() << "Unknown result node to emit code for: " << *N << '\n';
939 PrintFatalError("Unknown node in result pattern!");
940 }
941
EmitResultCode()942 void MatcherGen::EmitResultCode() {
943 // Patterns that match nodes with (potentially multiple) chain inputs have to
944 // merge them together into a token factor. This informs the generated code
945 // what all the chained nodes are.
946 if (!MatchedChainNodes.empty())
947 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes));
948
949 // Codegen the root of the result pattern, capturing the resulting values.
950 SmallVector<unsigned, 8> Ops;
951 EmitResultOperand(Pattern.getDstPattern(), Ops);
952
953 // At this point, we have however many values the result pattern produces.
954 // However, the input pattern might not need all of these. If there are
955 // excess values at the end (such as implicit defs of condition codes etc)
956 // just lop them off. This doesn't need to worry about glue or chains, just
957 // explicit results.
958 //
959 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes();
960
961 // If the pattern also has (implicit) results, count them as well.
962 if (!Pattern.getDstRegs().empty()) {
963 // If the root came from an implicit def in the instruction handling stuff,
964 // don't re-add it.
965 Record *HandledReg = nullptr;
966 const TreePatternNode *DstPat = Pattern.getDstPattern();
967 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){
968 const CodeGenTarget &CGT = CGP.getTargetInfo();
969 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator());
970
971 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other)
972 HandledReg = II.ImplicitDefs[0];
973 }
974
975 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) {
976 Record *Reg = Pattern.getDstRegs()[i];
977 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue;
978 ++NumSrcResults;
979 }
980 }
981
982 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results");
983 Ops.resize(NumSrcResults);
984
985 AddMatcher(new CompleteMatchMatcher(Ops, Pattern));
986 }
987
988
989 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with
990 /// the specified variant. If the variant number is invalid, this returns null.
ConvertPatternToMatcher(const PatternToMatch & Pattern,unsigned Variant,const CodeGenDAGPatterns & CGP)991 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern,
992 unsigned Variant,
993 const CodeGenDAGPatterns &CGP) {
994 MatcherGen Gen(Pattern, CGP);
995
996 // Generate the code for the matcher.
997 if (Gen.EmitMatcherCode(Variant))
998 return nullptr;
999
1000 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence.
1001 // FIXME2: Split result code out to another table, and make the matcher end
1002 // with an "Emit <index>" command. This allows result generation stuff to be
1003 // shared and factored?
1004
1005 // If the match succeeds, then we generate Pattern.
1006 Gen.EmitResultCode();
1007
1008 // Unconditional match.
1009 return Gen.GetMatcher();
1010 }
1011