• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1=pod
2
3=begin html
4
5<link rel="stylesheet" href="podstyle.css" type="text/css" />
6
7=end html
8
9=head1 NAME
10
11lmcurve - Levenberg-Marquardt least-squares fit of a curve (t,y)
12
13
14=head1 SYNOPSIS
15
16B<#include <lmcurve.h>>
17
18B<void lmcurve( const int> I<n_par>B<, double *>I<par>B<, const int> I<m_dat>B<,
19              constS< >double *>I<t>B<, constS< >double *>I<y>B<,
20              double (*>I<f>B<)( const double >I<ti>B<, const double *>I<par>B< ),
21              constS< >lm_control_struct *>I<control>B<,
22              lm_status_struct *>I<status>B<);>
23
24B<void lmcurve_tyd(
25              const int> I<n_par>B<, double *>I<par>B<, const int> I<m_dat>B<,
26              constS< >double *>I<t>B<, constS< >double *>I<y>B<, constS< >double *>I<dy>B<,
27              double (*>I<f>B<)( const double >I<ti>B<, const double *>I<par>B< ),
28              constS< >lm_control_struct *>I<control>B<,
29              lm_status_struct *>I<status>B<);>
30
31B<extern const lm_control_struct lm_control_double;>
32
33B<extern const lm_control_struct lm_control_float;>
34
35B<extern const char *lm_infmsg[];>
36
37B<extern const char *lm_shortmsg[];>
38
39=head1 DESCRIPTION
40
41B<lmcurve()> and B<lmcurve_tyd()> wrap the more generic minimization function B<lmmin()>, for use in curve fitting.
42
43B<lmcurve()> determines a vector I<par> that minimizes the sum of squared elements of a residue vector I<r>[i] := I<y>[i] - I<f>(I<t>[i];I<par>). Typically, B<lmcurve()> is used to approximate a data set I<t>,I<y> by a parametric function I<f>(I<ti>;I<par>). On success, I<par> represents a local minimum, not necessarily a global one; it may depend on its starting value.
44
45B<lmcurve_tyd()> does the same for a data set I<t>,I<y>,I<dy>, where I<dy> represents the standard deviation of empirical data I<y>. Residues are computed as I<r>[i] := (I<y>[i] - I<f>(I<t>[i];I<par>))/I<dy>[i]. Users must ensure that all I<dy>[i] are positive.
46
47
48Function arguments:
49
50=over
51
52=item I<n_par>
53
54Number of free variables.
55Length of parameter vector I<par>.
56
57=item I<par>
58
59Parameter vector.
60On input, it must contain a reasonable guess.
61On output, it contains the solution found to minimize ||I<r>||.
62
63=item I<m_dat>
64
65Number of data points.
66Length of vectors I<t> and I<y>.
67Must statisfy I<n_par> <= I<m_dat>.
68
69=item I<t>
70
71Array of length I<m_dat>.
72Contains the abcissae (time, or "x") for which function I<f> will be evaluated.
73
74=item I<y>
75
76Array of length I<m_dat>.
77Contains the ordinate values that shall be fitted.
78
79=item I<dy>
80
81Only in B<lmcurve_tyd()>.
82Array of length I<m_dat>.
83Contains the standard deviations of the values I<y>.
84
85=item I<f>
86
87A user-supplied parametric function I<f>(ti;I<par>).
88
89=item I<control>
90
91Parameter collection for tuning the fit procedure.
92In most cases, the default &I<lm_control_double> is adequate.
93If I<f> is only computed with single-precision accuracy,
94I<&lm_control_float> should be used.
95Parameters are explained in B<lmmin(3)>.
96
97=item I<status>
98
99A record used to return information about the minimization process:
100For details, see B<lmmin(3)>.
101
102=back
103
104=head1 EXAMPLE
105
106Fit a data set y(x) by a curve f(x;p):
107
108    #include "lmcurve.h"
109    #include <stdio.h>
110
111    /* model function: a parabola */
112
113    double f( double t, const double *p )
114    {
115        return p[0] + p[1]*t + p[2]*t*t;
116    }
117
118    int main()
119    {
120        int n = 3; /* number of parameters in model function f */
121        double par[3] = { 100, 0, -10 }; /* really bad starting value */
122
123        /* data points: a slightly distorted standard parabola */
124        int m = 9;
125        int i;
126        double t[9] = { -4., -3., -2., -1.,  0., 1.,  2.,  3.,  4. };
127        double y[9] = { 16.6, 9.9, 4.4, 1.1, 0., 1.1, 4.2, 9.3, 16.4 };
128
129        lm_control_struct control = lm_control_double;
130        lm_status_struct status;
131        control.verbosity = 7;
132
133        printf( "Fitting ...\n" );
134        lmcurve( n, par, m, t, y, f, &control, &status );
135
136        printf( "Results:\n" );
137        printf( "status after %d function evaluations:\n  %s\n",
138                status.nfev, lm_infmsg[status.outcome] );
139
140        printf("obtained parameters:\n");
141        for ( i = 0; i < n; ++i)
142            printf("  par[%i] = %12g\n", i, par[i]);
143        printf("obtained norm:\n  %12g\n", status.fnorm );
144
145        printf("fitting data as follows:\n");
146        for ( i = 0; i < m; ++i)
147            printf( "  t[%2d]=%4g y=%6g fit=%10g residue=%12g\n",
148                    i, t[i], y[i], f(t[i],par), y[i] - f(t[i],par) );
149
150        return 0;
151    }
152
153=head1 COPYING
154
155Copyright (C) 2009-2015 Joachim Wuttke, Forschungszentrum Juelich GmbH
156
157Software: FreeBSD License
158
159Documentation: Creative Commons Attribution Share Alike
160
161
162=head1 SEE ALSO
163
164=begin html
165
166<a href="http://apps.jcns.fz-juelich.de/man/lmmin.html"><b>lmmin</b>(3)</a>
167
168=end html
169
170=begin man
171
172\fBlmmin\fR(3)
173.PP
174
175=end man
176
177Homepage: http://apps.jcns.fz-juelich.de/lmfit
178
179=head1 BUGS
180
181Please send bug reports and suggestions to the author <j.wuttke@fz-juelich.de>.
182