1 /*
2 * Copyright (c) 2004 SuSE, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc.,
21 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 *
27 * aio-stress
28 *
29 * will open or create each file on the command line, and start a series
30 * of aio to it.
31 *
32 * aio is done in a rotating loop. first file1 gets 8 requests, then
33 * file2, then file3 etc. As each file finishes writing, it is switched
34 * to reads
35 *
36 * io buffers are aligned in case you want to do raw io
37 *
38 * compile with gcc -Wall -laio -lpthread -o aio-stress aio-stress.c
39 *
40 * run aio-stress -h to see the options
41 *
42 * Please mail Chris Mason (mason@suse.com) with bug reports or patches
43 */
44 #define _FILE_OFFSET_BITS 64
45 #define PROG_VERSION "0.21"
46 #define NEW_GETEVENTS
47
48 #define _GNU_SOURCE
49 #include <stdio.h>
50 #include <errno.h>
51 #include <assert.h>
52 #include <stdlib.h>
53 #include <sys/types.h>
54 #include <sys/stat.h>
55 #include <fcntl.h>
56 #include <unistd.h>
57 #include <sys/time.h>
58 #include <sys/ipc.h>
59 #include <sys/shm.h>
60 #include <sys/mman.h>
61 #include <string.h>
62 #include <pthread.h>
63
64 #include "config.h"
65 #include "tst_res_flags.h"
66
67 #ifdef HAVE_LIBAIO
68 #include <libaio.h>
69
70 #define IO_FREE 0
71 #define IO_PENDING 1
72 #define RUN_FOREVER -1
73
74 enum {
75 WRITE,
76 READ,
77 RWRITE,
78 RREAD,
79 LAST_STAGE,
80 };
81
82 #define USE_MALLOC 0
83 #define USE_SHM 1
84 #define USE_SHMFS 2
85
86 /*
87 * various globals, these are effectively read only by the time the threads
88 * are started
89 */
90 long stages = 0;
91 unsigned long page_size_mask;
92 int o_direct = 0;
93 int o_sync = 0;
94 int latency_stats = 0;
95 int completion_latency_stats = 0;
96 int io_iter = 8;
97 int iterations = RUN_FOREVER;
98 int max_io_submit = 0;
99 long rec_len = 64 * 1024;
100 int depth = 64;
101 int num_threads = 1;
102 int num_contexts = 1;
103 off_t context_offset = 2 * 1024 * 1024;
104 int fsync_stages = 1;
105 int use_shm = 0;
106 int shm_id;
107 char *unaligned_buffer = NULL;
108 char *aligned_buffer = NULL;
109 int padded_reclen = 0;
110 int stonewall = 1;
111 int verify = 0;
112 char *verify_buf = NULL;
113 int unlink_files = 0;
114
115 struct io_unit;
116 struct thread_info;
117
118 /* pthread mutexes and other globals for keeping the threads in sync */
119 pthread_cond_t stage_cond = PTHREAD_COND_INITIALIZER;
120 pthread_mutex_t stage_mutex = PTHREAD_MUTEX_INITIALIZER;
121 int threads_ending = 0;
122 int threads_starting = 0;
123 struct timeval global_stage_start_time;
124 struct thread_info *global_thread_info;
125
126 /*
127 * latencies during io_submit are measured, these are the
128 * granularities for deviations
129 */
130 #define DEVIATIONS 6
131 int deviations[DEVIATIONS] = { 100, 250, 500, 1000, 5000, 10000 };
132
133 struct io_latency {
134 double max;
135 double min;
136 double total_io;
137 double total_lat;
138 double deviations[DEVIATIONS];
139 };
140
141 /* container for a series of operations to a file */
142 struct io_oper {
143 /* already open file descriptor, valid for whatever operation you want */
144 int fd;
145
146 /* starting byte of the operation */
147 off_t start;
148
149 /* ending byte of the operation */
150 off_t end;
151
152 /* size of the read/write buffer */
153 int reclen;
154
155 /* max number of pending requests before a wait is triggered */
156 int depth;
157
158 /* current number of pending requests */
159 int num_pending;
160
161 /* last error, zero if there were none */
162 int last_err;
163
164 /* total number of errors hit. */
165 int num_err;
166
167 /* read,write, random, etc */
168 int rw;
169
170 /* number of I/O that will get sent to aio */
171 int total_ios;
172
173 /* number of I/O we've already sent */
174 int started_ios;
175
176 /* last offset used in an io operation */
177 off_t last_offset;
178
179 /* stonewalled = 1 when we got cut off before submitting all our I/O */
180 int stonewalled;
181
182 /* list management */
183 struct io_oper *next;
184 struct io_oper *prev;
185
186 struct timeval start_time;
187
188 char *file_name;
189 };
190
191 /* a single io, and all the tracking needed for it */
192 struct io_unit {
193 /* note, iocb must go first! */
194 struct iocb iocb;
195
196 /* pointer to parent io operation struct */
197 struct io_oper *io_oper;
198
199 /* aligned buffer */
200 char *buf;
201
202 /* size of the aligned buffer (record size) */
203 int buf_size;
204
205 /* state of this io unit (free, pending, done) */
206 int busy;
207
208 /* result of last operation */
209 long res;
210
211 struct io_unit *next;
212
213 struct timeval io_start_time; /* time of io_submit */
214 };
215
216 struct thread_info {
217 io_context_t io_ctx;
218 pthread_t tid;
219
220 /* allocated array of io_unit structs */
221 struct io_unit *ios;
222
223 /* list of io units available for io */
224 struct io_unit *free_ious;
225
226 /* number of io units in the I/O array */
227 int num_global_ios;
228
229 /* number of io units in flight */
230 int num_global_pending;
231
232 /* preallocated array of iocb pointers, only used in run_active */
233 struct iocb **iocbs;
234
235 /* preallocated array of events */
236 struct io_event *events;
237
238 /* size of the events array */
239 int num_global_events;
240
241 /* latency stats for io_submit */
242 struct io_latency io_submit_latency;
243
244 /* list of operations still in progress, and of those finished */
245 struct io_oper *active_opers;
246 struct io_oper *finished_opers;
247
248 /* number of files this thread is doing io on */
249 int num_files;
250
251 /* how much io this thread did in the last stage */
252 double stage_mb_trans;
253
254 /* latency completion stats i/o time from io_submit until io_getevents */
255 struct io_latency io_completion_latency;
256 };
257
258 /*
259 * return seconds between start_tv and stop_tv in double precision
260 */
time_since(struct timeval * start_tv,struct timeval * stop_tv)261 static double time_since(struct timeval *start_tv, struct timeval *stop_tv)
262 {
263 double sec, usec;
264 double ret;
265 sec = stop_tv->tv_sec - start_tv->tv_sec;
266 usec = stop_tv->tv_usec - start_tv->tv_usec;
267 if (sec > 0 && usec < 0) {
268 sec--;
269 usec += 1000000;
270 }
271 ret = sec + usec / (double)1000000;
272 if (ret < 0)
273 ret = 0;
274 return ret;
275 }
276
277 /*
278 * return seconds between start_tv and now in double precision
279 */
time_since_now(struct timeval * start_tv)280 static double time_since_now(struct timeval *start_tv)
281 {
282 struct timeval stop_time;
283 gettimeofday(&stop_time, NULL);
284 return time_since(start_tv, &stop_time);
285 }
286
287 /*
288 * Add latency info to latency struct
289 */
calc_latency(struct timeval * start_tv,struct timeval * stop_tv,struct io_latency * lat)290 static void calc_latency(struct timeval *start_tv, struct timeval *stop_tv,
291 struct io_latency *lat)
292 {
293 double delta;
294 int i;
295 delta = time_since(start_tv, stop_tv);
296 delta = delta * 1000;
297
298 if (delta > lat->max)
299 lat->max = delta;
300 if (!lat->min || delta < lat->min)
301 lat->min = delta;
302 lat->total_io++;
303 lat->total_lat += delta;
304 for (i = 0; i < DEVIATIONS; i++) {
305 if (delta < deviations[i]) {
306 lat->deviations[i]++;
307 break;
308 }
309 }
310 }
311
oper_list_add(struct io_oper * oper,struct io_oper ** list)312 static void oper_list_add(struct io_oper *oper, struct io_oper **list)
313 {
314 if (!*list) {
315 *list = oper;
316 oper->prev = oper->next = oper;
317 return;
318 }
319 oper->prev = (*list)->prev;
320 oper->next = *list;
321 (*list)->prev->next = oper;
322 (*list)->prev = oper;
323 return;
324 }
325
oper_list_del(struct io_oper * oper,struct io_oper ** list)326 static void oper_list_del(struct io_oper *oper, struct io_oper **list)
327 {
328 if ((*list)->next == (*list)->prev && *list == (*list)->next) {
329 *list = NULL;
330 return;
331 }
332 oper->prev->next = oper->next;
333 oper->next->prev = oper->prev;
334 if (*list == oper)
335 *list = oper->next;
336 }
337
338 /* worker func to check error fields in the io unit */
check_finished_io(struct io_unit * io)339 static int check_finished_io(struct io_unit *io)
340 {
341 int i;
342 if (io->res != io->buf_size) {
343
344 struct stat s;
345 fstat(io->io_oper->fd, &s);
346
347 /*
348 * If file size is large enough for the read, then this short
349 * read is an error.
350 */
351 if ((io->io_oper->rw == READ || io->io_oper->rw == RREAD) &&
352 s.st_size > (io->iocb.u.c.offset + io->res)) {
353
354 fprintf(stderr,
355 "io err %lu (%s) op %d, off %Lu size %d\n",
356 io->res, strerror(-io->res),
357 io->iocb.aio_lio_opcode, io->iocb.u.c.offset,
358 io->buf_size);
359 io->io_oper->last_err = io->res;
360 io->io_oper->num_err++;
361 return -1;
362 }
363 }
364 if (verify && io->io_oper->rw == READ) {
365 if (memcmp(io->buf, verify_buf, io->io_oper->reclen)) {
366 fprintf(stderr,
367 "verify error, file %s offset %Lu contents (offset:bad:good):\n",
368 io->io_oper->file_name, io->iocb.u.c.offset);
369
370 for (i = 0; i < io->io_oper->reclen; i++) {
371 if (io->buf[i] != verify_buf[i]) {
372 fprintf(stderr, "%d:%c:%c ", i,
373 io->buf[i], verify_buf[i]);
374 }
375 }
376 fprintf(stderr, "\n");
377 }
378
379 }
380 return 0;
381 }
382
383 /* worker func to check the busy bits and get an io unit ready for use */
grab_iou(struct io_unit * io,struct io_oper * oper)384 static int grab_iou(struct io_unit *io, struct io_oper *oper)
385 {
386 if (io->busy == IO_PENDING)
387 return -1;
388
389 io->busy = IO_PENDING;
390 io->res = 0;
391 io->io_oper = oper;
392 return 0;
393 }
394
stage_name(int rw)395 char *stage_name(int rw)
396 {
397 switch (rw) {
398 case WRITE:
399 return "write";
400 case READ:
401 return "read";
402 case RWRITE:
403 return "random write";
404 case RREAD:
405 return "random read";
406 }
407 return "unknown";
408 }
409
oper_mb_trans(struct io_oper * oper)410 static inline double oper_mb_trans(struct io_oper *oper)
411 {
412 return ((double)oper->started_ios * (double)oper->reclen) /
413 (double)(1024 * 1024);
414 }
415
print_time(struct io_oper * oper)416 static void print_time(struct io_oper *oper)
417 {
418 double runtime;
419 double tput;
420 double mb;
421
422 runtime = time_since_now(&oper->start_time);
423 mb = oper_mb_trans(oper);
424 tput = mb / runtime;
425 fprintf(stderr, "%s on %s (%.2f MB/s) %.2f MB in %.2fs\n",
426 stage_name(oper->rw), oper->file_name, tput, mb, runtime);
427 }
428
print_lat(char * str,struct io_latency * lat)429 static void print_lat(char *str, struct io_latency *lat)
430 {
431 double avg = lat->total_lat / lat->total_io;
432 int i;
433 double total_counted = 0;
434 fprintf(stderr, "%s min %.2f avg %.2f max %.2f\n\t",
435 str, lat->min, avg, lat->max);
436
437 for (i = 0; i < DEVIATIONS; i++) {
438 fprintf(stderr, " %.0f < %d", lat->deviations[i],
439 deviations[i]);
440 total_counted += lat->deviations[i];
441 }
442 if (total_counted && lat->total_io - total_counted)
443 fprintf(stderr, " < %.0f", lat->total_io - total_counted);
444 fprintf(stderr, "\n");
445 memset(lat, 0, sizeof(*lat));
446 }
447
print_latency(struct thread_info * t)448 static void print_latency(struct thread_info *t)
449 {
450 struct io_latency *lat = &t->io_submit_latency;
451 print_lat("latency", lat);
452 }
453
print_completion_latency(struct thread_info * t)454 static void print_completion_latency(struct thread_info *t)
455 {
456 struct io_latency *lat = &t->io_completion_latency;
457 print_lat("completion latency", lat);
458 }
459
460 /*
461 * updates the fields in the io operation struct that belongs to this
462 * io unit, and make the io unit reusable again
463 */
finish_io(struct thread_info * t,struct io_unit * io,long result,struct timeval * tv_now)464 void finish_io(struct thread_info *t, struct io_unit *io, long result,
465 struct timeval *tv_now)
466 {
467 struct io_oper *oper = io->io_oper;
468
469 calc_latency(&io->io_start_time, tv_now, &t->io_completion_latency);
470 io->res = result;
471 io->busy = IO_FREE;
472 io->next = t->free_ious;
473 t->free_ious = io;
474 oper->num_pending--;
475 t->num_global_pending--;
476 check_finished_io(io);
477 if (oper->num_pending == 0 &&
478 (oper->started_ios == oper->total_ios || oper->stonewalled)) {
479 print_time(oper);
480 }
481 }
482
read_some_events(struct thread_info * t)483 int read_some_events(struct thread_info *t)
484 {
485 struct io_unit *event_io;
486 struct io_event *event;
487 int nr;
488 int i;
489 int min_nr = io_iter;
490 struct timeval stop_time;
491
492 if (t->num_global_pending < io_iter)
493 min_nr = t->num_global_pending;
494
495 #ifdef NEW_GETEVENTS
496 nr = io_getevents(t->io_ctx, min_nr, t->num_global_events, t->events,
497 NULL);
498 #else
499 nr = io_getevents(t->io_ctx, t->num_global_events, t->events, NULL);
500 #endif
501 if (nr <= 0)
502 return nr;
503
504 gettimeofday(&stop_time, NULL);
505 for (i = 0; i < nr; i++) {
506 event = t->events + i;
507 event_io = (struct io_unit *)((unsigned long)event->obj);
508 finish_io(t, event_io, event->res, &stop_time);
509 }
510 return nr;
511 }
512
513 /*
514 * finds a free io unit, waiting for pending requests if required. returns
515 * null if none could be found
516 */
find_iou(struct thread_info * t,struct io_oper * oper)517 static struct io_unit *find_iou(struct thread_info *t, struct io_oper *oper)
518 {
519 struct io_unit *event_io;
520 int nr;
521
522 retry:
523 if (t->free_ious) {
524 event_io = t->free_ious;
525 t->free_ious = t->free_ious->next;
526 if (grab_iou(event_io, oper)) {
527 fprintf(stderr, "io unit on free list but not free\n");
528 abort();
529 }
530 return event_io;
531 }
532 nr = read_some_events(t);
533 if (nr > 0)
534 goto retry;
535 else
536 fprintf(stderr, "no free ious after read_some_events\n");
537 return NULL;
538 }
539
540 /*
541 * wait for all pending requests for this io operation to finish
542 */
io_oper_wait(struct thread_info * t,struct io_oper * oper)543 static int io_oper_wait(struct thread_info *t, struct io_oper *oper)
544 {
545 struct io_event event;
546 struct io_unit *event_io;
547
548 if (oper == NULL) {
549 return 0;
550 }
551
552 if (oper->num_pending == 0)
553 goto done;
554
555 /* this func is not speed sensitive, no need to go wild reading
556 * more than one event at a time
557 */
558 #ifdef NEW_GETEVENTS
559 while (io_getevents(t->io_ctx, 1, 1, &event, NULL) > 0) {
560 #else
561 while (io_getevents(t->io_ctx, 1, &event, NULL) > 0) {
562 #endif
563 struct timeval tv_now;
564 event_io = (struct io_unit *)((unsigned long)event.obj);
565
566 gettimeofday(&tv_now, NULL);
567 finish_io(t, event_io, event.res, &tv_now);
568
569 if (oper->num_pending == 0)
570 break;
571 }
572 done:
573 if (oper->num_err) {
574 fprintf(stderr, "%u errors on oper, last %u\n",
575 oper->num_err, oper->last_err);
576 }
577 return 0;
578 }
579
580 off_t random_byte_offset(struct io_oper * oper)
581 {
582 off_t num;
583 off_t rand_byte = oper->start;
584 off_t range;
585 off_t offset = 1;
586
587 range = (oper->end - oper->start) / (1024 * 1024);
588 if ((page_size_mask + 1) > (1024 * 1024))
589 offset = (page_size_mask + 1) / (1024 * 1024);
590 if (range < offset)
591 range = 0;
592 else
593 range -= offset;
594
595 /* find a random mb offset */
596 num = 1 + (int)((double)range * rand() / (RAND_MAX + 1.0));
597 rand_byte += num * 1024 * 1024;
598
599 /* find a random byte offset */
600 num = 1 + (int)((double)(1024 * 1024) * rand() / (RAND_MAX + 1.0));
601
602 /* page align */
603 num = (num + page_size_mask) & ~page_size_mask;
604 rand_byte += num;
605
606 if (rand_byte + oper->reclen > oper->end) {
607 rand_byte -= oper->reclen;
608 }
609 return rand_byte;
610 }
611
612 /*
613 * build an aio iocb for an operation, based on oper->rw and the
614 * last offset used. This finds the struct io_unit that will be attached
615 * to the iocb, and things are ready for submission to aio after this
616 * is called.
617 *
618 * returns null on error
619 */
620 static struct io_unit *build_iocb(struct thread_info *t, struct io_oper *oper)
621 {
622 struct io_unit *io;
623 off_t rand_byte;
624
625 io = find_iou(t, oper);
626 if (!io) {
627 fprintf(stderr, "unable to find io unit\n");
628 return NULL;
629 }
630
631 switch (oper->rw) {
632 case WRITE:
633 io_prep_pwrite(&io->iocb, oper->fd, io->buf, oper->reclen,
634 oper->last_offset);
635 oper->last_offset += oper->reclen;
636 break;
637 case READ:
638 io_prep_pread(&io->iocb, oper->fd, io->buf, oper->reclen,
639 oper->last_offset);
640 oper->last_offset += oper->reclen;
641 break;
642 case RREAD:
643 rand_byte = random_byte_offset(oper);
644 oper->last_offset = rand_byte;
645 io_prep_pread(&io->iocb, oper->fd, io->buf, oper->reclen,
646 rand_byte);
647 break;
648 case RWRITE:
649 rand_byte = random_byte_offset(oper);
650 oper->last_offset = rand_byte;
651 io_prep_pwrite(&io->iocb, oper->fd, io->buf, oper->reclen,
652 rand_byte);
653
654 break;
655 }
656
657 return io;
658 }
659
660 /*
661 * wait for any pending requests, and then free all ram associated with
662 * an operation. returns the last error the operation hit (zero means none)
663 */
664 static int finish_oper(struct thread_info *t, struct io_oper *oper)
665 {
666 unsigned long last_err;
667
668 io_oper_wait(t, oper);
669 last_err = oper->last_err;
670 if (oper->num_pending > 0) {
671 fprintf(stderr, "oper num_pending is %d\n", oper->num_pending);
672 }
673 close(oper->fd);
674 free(oper);
675 return last_err;
676 }
677
678 /*
679 * allocates an io operation and fills in all the fields. returns
680 * null on error
681 */
682 static struct io_oper *create_oper(int fd, int rw, off_t start, off_t end,
683 int reclen, int depth, int iter,
684 char *file_name)
685 {
686 struct io_oper *oper;
687
688 oper = malloc(sizeof(*oper));
689 if (!oper) {
690 fprintf(stderr, "unable to allocate io oper\n");
691 return NULL;
692 }
693 memset(oper, 0, sizeof(*oper));
694
695 oper->depth = depth;
696 oper->start = start;
697 oper->end = end;
698 oper->last_offset = oper->start;
699 oper->fd = fd;
700 oper->reclen = reclen;
701 oper->rw = rw;
702 oper->total_ios = (oper->end - oper->start) / oper->reclen;
703 oper->file_name = file_name;
704
705 return oper;
706 }
707
708 /*
709 * does setup on num_ios worth of iocbs, but does not actually
710 * start any io
711 */
712 int build_oper(struct thread_info *t, struct io_oper *oper, int num_ios,
713 struct iocb **my_iocbs)
714 {
715 int i;
716 struct io_unit *io;
717
718 if (oper->started_ios == 0)
719 gettimeofday(&oper->start_time, NULL);
720
721 if (num_ios == 0)
722 num_ios = oper->total_ios;
723
724 if ((oper->started_ios + num_ios) > oper->total_ios)
725 num_ios = oper->total_ios - oper->started_ios;
726
727 for (i = 0; i < num_ios; i++) {
728 io = build_iocb(t, oper);
729 if (!io) {
730 return -1;
731 }
732 my_iocbs[i] = &io->iocb;
733 }
734 return num_ios;
735 }
736
737 /*
738 * runs through the iocbs in the array provided and updates
739 * counters in the associated oper struct
740 */
741 static void update_iou_counters(struct iocb **my_iocbs, int nr,
742 struct timeval *tv_now)
743 {
744 struct io_unit *io;
745 int i;
746 for (i = 0; i < nr; i++) {
747 io = (struct io_unit *)(my_iocbs[i]);
748 io->io_oper->num_pending++;
749 io->io_oper->started_ios++;
750 io->io_start_time = *tv_now; /* set time of io_submit */
751 }
752 }
753
754 /* starts some io for a given file, returns zero if all went well */
755 int run_built(struct thread_info *t, int num_ios, struct iocb **my_iocbs)
756 {
757 int ret;
758 struct timeval start_time;
759 struct timeval stop_time;
760
761 resubmit:
762 gettimeofday(&start_time, NULL);
763 ret = io_submit(t->io_ctx, num_ios, my_iocbs);
764 gettimeofday(&stop_time, NULL);
765 calc_latency(&start_time, &stop_time, &t->io_submit_latency);
766
767 if (ret != num_ios) {
768 /* some I/O got through */
769 if (ret > 0) {
770 update_iou_counters(my_iocbs, ret, &stop_time);
771 my_iocbs += ret;
772 t->num_global_pending += ret;
773 num_ios -= ret;
774 }
775 /*
776 * we've used all the requests allocated in aio_init, wait and
777 * retry
778 */
779 if (ret > 0 || ret == -EAGAIN) {
780 int old_ret = ret;
781 if ((ret = read_some_events(t) > 0)) {
782 goto resubmit;
783 } else {
784 fprintf(stderr, "ret was %d and now is %d\n",
785 ret, old_ret);
786 abort();
787 }
788 }
789
790 fprintf(stderr, "ret %d (%s) on io_submit\n", ret,
791 strerror(-ret));
792 return -1;
793 }
794 update_iou_counters(my_iocbs, ret, &stop_time);
795 t->num_global_pending += ret;
796 return 0;
797 }
798
799 /*
800 * changes oper->rw to the next in a command sequence, or returns zero
801 * to say this operation is really, completely done for
802 */
803 static int restart_oper(struct io_oper *oper)
804 {
805 int new_rw = 0;
806 if (oper->last_err)
807 return 0;
808
809 /* this switch falls through */
810 switch (oper->rw) {
811 case WRITE:
812 if (stages & (1 << READ))
813 new_rw = READ;
814 case READ:
815 if (!new_rw && stages & (1 << RWRITE))
816 new_rw = RWRITE;
817 case RWRITE:
818 if (!new_rw && stages & (1 << RREAD))
819 new_rw = RREAD;
820 }
821
822 if (new_rw) {
823 oper->started_ios = 0;
824 oper->last_offset = oper->start;
825 oper->stonewalled = 0;
826
827 /*
828 * we're restarting an operation with pending requests, so the
829 * timing info won't be printed by finish_io. Printing it here
830 */
831 if (oper->num_pending)
832 print_time(oper);
833
834 oper->rw = new_rw;
835 return 1;
836 }
837 return 0;
838 }
839
840 static int oper_runnable(struct io_oper *oper)
841 {
842 struct stat buf;
843 int ret;
844
845 /* first context is always runnable, if started_ios > 0, no need to
846 * redo the calculations
847 */
848 if (oper->started_ios || oper->start == 0)
849 return 1;
850 /*
851 * only the sequential phases force delays in starting */
852 if (oper->rw >= RWRITE)
853 return 1;
854 ret = fstat(oper->fd, &buf);
855 if (ret < 0) {
856 perror("fstat");
857 exit(1);
858 }
859 if (S_ISREG(buf.st_mode) && buf.st_size < oper->start)
860 return 0;
861 return 1;
862 }
863
864 /*
865 * runs through all the io operations on the active list, and starts
866 * a chunk of io on each. If any io operations are completely finished,
867 * it either switches them to the next stage or puts them on the
868 * finished list.
869 *
870 * this function stops after max_io_submit iocbs are sent down the
871 * pipe, even if it has not yet touched all the operations on the
872 * active list. Any operations that have finished are moved onto
873 * the finished_opers list.
874 */
875 static int run_active_list(struct thread_info *t,
876 int io_iter, int max_io_submit)
877 {
878 struct io_oper *oper;
879 struct io_oper *built_opers = NULL;
880 struct iocb **my_iocbs = t->iocbs;
881 int ret = 0;
882 int num_built = 0;
883
884 oper = t->active_opers;
885 while (oper) {
886 if (!oper_runnable(oper)) {
887 oper = oper->next;
888 if (oper == t->active_opers)
889 break;
890 continue;
891 }
892 ret = build_oper(t, oper, io_iter, my_iocbs);
893 if (ret >= 0) {
894 my_iocbs += ret;
895 num_built += ret;
896 oper_list_del(oper, &t->active_opers);
897 oper_list_add(oper, &built_opers);
898 oper = t->active_opers;
899 if (num_built + io_iter > max_io_submit)
900 break;
901 } else
902 break;
903 }
904 if (num_built) {
905 ret = run_built(t, num_built, t->iocbs);
906 if (ret < 0) {
907 fprintf(stderr, "error %d on run_built\n", ret);
908 exit(1);
909 }
910 while (built_opers) {
911 oper = built_opers;
912 oper_list_del(oper, &built_opers);
913 oper_list_add(oper, &t->active_opers);
914 if (oper->started_ios == oper->total_ios) {
915 oper_list_del(oper, &t->active_opers);
916 oper_list_add(oper, &t->finished_opers);
917 }
918 }
919 }
920 return 0;
921 }
922
923 void drop_shm()
924 {
925 int ret;
926 struct shmid_ds ds;
927 if (use_shm != USE_SHM)
928 return;
929
930 ret = shmctl(shm_id, IPC_RMID, &ds);
931 if (ret) {
932 perror("shmctl IPC_RMID");
933 }
934 }
935
936 void aio_setup(io_context_t * io_ctx, int n)
937 {
938 int res = io_queue_init(n, io_ctx);
939 if (res != 0) {
940 fprintf(stderr, "io_queue_setup(%d) returned %d (%s)\n",
941 n, res, strerror(-res));
942 exit(3);
943 }
944 }
945
946 /*
947 * allocate io operation and event arrays for a given thread
948 */
949 int setup_ious(struct thread_info *t,
950 int num_files, int depth, int reclen, int max_io_submit)
951 {
952 int i;
953 size_t bytes = num_files * depth * sizeof(*t->ios);
954
955 t->ios = malloc(bytes);
956 if (!t->ios) {
957 fprintf(stderr, "unable to allocate io units\n");
958 return -1;
959 }
960 memset(t->ios, 0, bytes);
961
962 for (i = 0; i < depth * num_files; i++) {
963 t->ios[i].buf = aligned_buffer;
964 aligned_buffer += padded_reclen;
965 t->ios[i].buf_size = reclen;
966 if (verify)
967 memset(t->ios[i].buf, 'b', reclen);
968 else
969 memset(t->ios[i].buf, 0, reclen);
970 t->ios[i].next = t->free_ious;
971 t->free_ious = t->ios + i;
972 }
973 if (verify) {
974 verify_buf = aligned_buffer;
975 memset(verify_buf, 'b', reclen);
976 }
977
978 t->iocbs = malloc(sizeof(struct iocb *) * max_io_submit);
979 if (!t->iocbs) {
980 fprintf(stderr, "unable to allocate iocbs\n");
981 goto free_buffers;
982 }
983
984 memset(t->iocbs, 0, max_io_submit * sizeof(struct iocb *));
985
986 t->events = malloc(sizeof(struct io_event) * depth * num_files);
987 if (!t->events) {
988 fprintf(stderr, "unable to allocate ram for events\n");
989 goto free_buffers;
990 }
991 memset(t->events, 0, num_files * sizeof(struct io_event) * depth);
992
993 t->num_global_ios = num_files * depth;
994 t->num_global_events = t->num_global_ios;
995 return 0;
996
997 free_buffers:
998 free(t->ios);
999 free(t->iocbs);
1000 free(t->events);
1001 return -1;
1002 }
1003
1004 /*
1005 * The buffers used for file data are allocated as a single big
1006 * malloc, and then each thread and operation takes a piece and uses
1007 * that for file data. This lets us do a large shm or bigpages alloc
1008 * and without trying to find a special place in each thread to map the
1009 * buffers to
1010 */
1011 int setup_shared_mem(int num_threads, int num_files, int depth,
1012 int reclen, int max_io_submit)
1013 {
1014 char *p = NULL;
1015 size_t total_ram;
1016
1017 padded_reclen = (reclen + page_size_mask) / (page_size_mask + 1);
1018 padded_reclen = padded_reclen * (page_size_mask + 1);
1019 total_ram = num_files * depth * padded_reclen + num_threads;
1020 if (verify)
1021 total_ram += padded_reclen;
1022
1023 /* for aligning buffer after the allocation */
1024 total_ram += page_size_mask;
1025
1026 if (use_shm == USE_MALLOC) {
1027 p = malloc(total_ram);
1028 } else if (use_shm == USE_SHM) {
1029 shm_id = shmget(IPC_PRIVATE, total_ram, IPC_CREAT | 0700);
1030 if (shm_id < 0) {
1031 perror("shmget");
1032 drop_shm();
1033 goto free_buffers;
1034 }
1035 p = shmat(shm_id, (char *)0x50000000, 0);
1036 if ((long)p == -1) {
1037 perror("shmat");
1038 goto free_buffers;
1039 }
1040 /* won't really be dropped until we shmdt */
1041 drop_shm();
1042 } else if (use_shm == USE_SHMFS) {
1043 char mmap_name[16]; /* /dev/shm/ + null + XXXXXX */
1044 int fd;
1045
1046 strcpy(mmap_name, "/dev/shm/XXXXXX");
1047 fd = mkstemp(mmap_name);
1048 if (fd < 0) {
1049 perror("mkstemp");
1050 goto free_buffers;
1051 }
1052 unlink(mmap_name);
1053 ftruncate(fd, total_ram);
1054 shm_id = fd;
1055 p = mmap((char *)0x50000000, total_ram,
1056 PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
1057
1058 if (p == MAP_FAILED) {
1059 perror("mmap");
1060 goto free_buffers;
1061 }
1062 }
1063 if (!p) {
1064 fprintf(stderr, "unable to allocate buffers\n");
1065 goto free_buffers;
1066 }
1067 unaligned_buffer = p;
1068 p = (char *)((intptr_t) (p + page_size_mask) & ~page_size_mask);
1069 aligned_buffer = p;
1070 return 0;
1071
1072 free_buffers:
1073 drop_shm();
1074 if (unaligned_buffer)
1075 free(unaligned_buffer);
1076 return -1;
1077 }
1078
1079 /*
1080 * runs through all the thread_info structs and calculates a combined
1081 * throughput
1082 */
1083 void global_thread_throughput(struct thread_info *t, char *this_stage)
1084 {
1085 int i;
1086 double runtime = time_since_now(&global_stage_start_time);
1087 double total_mb = 0;
1088 double min_trans = 0;
1089
1090 for (i = 0; i < num_threads; i++) {
1091 total_mb += global_thread_info[i].stage_mb_trans;
1092 if (!min_trans || t->stage_mb_trans < min_trans)
1093 min_trans = t->stage_mb_trans;
1094 }
1095 if (total_mb) {
1096 fprintf(stderr, "%s throughput (%.2f MB/s) ", this_stage,
1097 total_mb / runtime);
1098 fprintf(stderr, "%.2f MB in %.2fs", total_mb, runtime);
1099 if (stonewall)
1100 fprintf(stderr, " min transfer %.2fMB", min_trans);
1101 fprintf(stderr, "\n");
1102 }
1103 }
1104
1105 /* this is the meat of the state machine. There is a list of
1106 * active operations structs, and as each one finishes the required
1107 * io it is moved to a list of finished operations. Once they have
1108 * all finished whatever stage they were in, they are given the chance
1109 * to restart and pick a different stage (read/write/random read etc)
1110 *
1111 * various timings are printed in between the stages, along with
1112 * thread synchronization if there are more than one threads.
1113 */
1114 int worker(struct thread_info *t)
1115 {
1116 struct io_oper *oper;
1117 char *this_stage = NULL;
1118 struct timeval stage_time;
1119 int status = 0;
1120 int iteration = 0;
1121 int cnt;
1122
1123 aio_setup(&t->io_ctx, 512);
1124
1125 restart:
1126 if (num_threads > 1) {
1127 pthread_mutex_lock(&stage_mutex);
1128 threads_starting++;
1129 if (threads_starting == num_threads) {
1130 threads_ending = 0;
1131 gettimeofday(&global_stage_start_time, NULL);
1132 pthread_cond_broadcast(&stage_cond);
1133 }
1134 while (threads_starting != num_threads)
1135 pthread_cond_wait(&stage_cond, &stage_mutex);
1136 pthread_mutex_unlock(&stage_mutex);
1137 }
1138 if (t->active_opers) {
1139 this_stage = stage_name(t->active_opers->rw);
1140 gettimeofday(&stage_time, NULL);
1141 t->stage_mb_trans = 0;
1142 }
1143
1144 cnt = 0;
1145 /* first we send everything through aio */
1146 while (t->active_opers
1147 && (cnt < iterations || iterations == RUN_FOREVER)) {
1148 if (stonewall && threads_ending) {
1149 oper = t->active_opers;
1150 oper->stonewalled = 1;
1151 oper_list_del(oper, &t->active_opers);
1152 oper_list_add(oper, &t->finished_opers);
1153 } else {
1154 run_active_list(t, io_iter, max_io_submit);
1155 }
1156 cnt++;
1157 }
1158 if (latency_stats)
1159 print_latency(t);
1160
1161 if (completion_latency_stats)
1162 print_completion_latency(t);
1163
1164 /* then we wait for all the operations to finish */
1165 oper = t->finished_opers;
1166 do {
1167 if (!oper)
1168 break;
1169 io_oper_wait(t, oper);
1170 oper = oper->next;
1171 } while (oper != t->finished_opers);
1172
1173 /* then we do an fsync to get the timing for any future operations
1174 * right, and check to see if any of these need to get restarted
1175 */
1176 oper = t->finished_opers;
1177 while (oper) {
1178 if (fsync_stages)
1179 fsync(oper->fd);
1180 t->stage_mb_trans += oper_mb_trans(oper);
1181 if (restart_oper(oper)) {
1182 oper_list_del(oper, &t->finished_opers);
1183 oper_list_add(oper, &t->active_opers);
1184 oper = t->finished_opers;
1185 continue;
1186 }
1187 oper = oper->next;
1188 if (oper == t->finished_opers)
1189 break;
1190 }
1191
1192 if (t->stage_mb_trans && t->num_files > 0) {
1193 double seconds = time_since_now(&stage_time);
1194 fprintf(stderr,
1195 "thread %td %s totals (%.2f MB/s) %.2f MB in %.2fs\n",
1196 t - global_thread_info, this_stage,
1197 t->stage_mb_trans / seconds, t->stage_mb_trans,
1198 seconds);
1199 }
1200
1201 if (num_threads > 1) {
1202 pthread_mutex_lock(&stage_mutex);
1203 threads_ending++;
1204 if (threads_ending == num_threads) {
1205 threads_starting = 0;
1206 pthread_cond_broadcast(&stage_cond);
1207 global_thread_throughput(t, this_stage);
1208 }
1209 while (threads_ending != num_threads)
1210 pthread_cond_wait(&stage_cond, &stage_mutex);
1211 pthread_mutex_unlock(&stage_mutex);
1212 }
1213
1214 /* someone got restarted, go back to the beginning */
1215 if (t->active_opers && (cnt < iterations || iterations == RUN_FOREVER)) {
1216 iteration++;
1217 goto restart;
1218 }
1219
1220 /* finally, free all the ram */
1221 while (t->finished_opers) {
1222 oper = t->finished_opers;
1223 oper_list_del(oper, &t->finished_opers);
1224 status = finish_oper(t, oper);
1225 }
1226
1227 if (t->num_global_pending) {
1228 fprintf(stderr, "global num pending is %d\n",
1229 t->num_global_pending);
1230 }
1231 io_queue_release(t->io_ctx);
1232
1233 return status;
1234 }
1235
1236 typedef void *(*start_routine) (void *);
1237 int run_workers(struct thread_info *t, int num_threads)
1238 {
1239 int ret;
1240 int i;
1241
1242 for (i = 0; i < num_threads; i++) {
1243 ret =
1244 pthread_create(&t[i].tid, NULL, (start_routine) worker,
1245 t + i);
1246 if (ret) {
1247 perror("pthread_create");
1248 exit(1);
1249 }
1250 }
1251 for (i = 0; i < num_threads; i++) {
1252 ret = pthread_join(t[i].tid, NULL);
1253 if (ret) {
1254 perror("pthread_join");
1255 exit(1);
1256 }
1257 }
1258 return 0;
1259 }
1260
1261 off_t parse_size(char *size_arg, off_t mult)
1262 {
1263 char c;
1264 int num;
1265 off_t ret;
1266 c = size_arg[strlen(size_arg) - 1];
1267 if (c > '9') {
1268 size_arg[strlen(size_arg) - 1] = '\0';
1269 }
1270 num = atoi(size_arg);
1271 switch (c) {
1272 case 'g':
1273 case 'G':
1274 mult = 1024 * 1024 * 1024;
1275 break;
1276 case 'm':
1277 case 'M':
1278 mult = 1024 * 1024;
1279 break;
1280 case 'k':
1281 case 'K':
1282 mult = 1024;
1283 break;
1284 case 'b':
1285 case 'B':
1286 mult = 1;
1287 break;
1288 }
1289 ret = mult * num;
1290 return ret;
1291 }
1292
1293 void print_usage(void)
1294 {
1295 printf
1296 ("usage: aio-stress [-s size] [-r size] [-a size] [-d num] [-b num]\n");
1297 printf
1298 (" [-i num] [-t num] [-c num] [-C size] [-nxhOS ]\n");
1299 printf(" file1 [file2 ...]\n");
1300 printf("\t-a size in KB at which to align buffers\n");
1301 printf("\t-b max number of iocbs to give io_submit at once\n");
1302 printf("\t-c number of io contexts per file\n");
1303 printf("\t-C offset between contexts, default 2MB\n");
1304 printf("\t-s size in MB of the test file(s), default 1024MB\n");
1305 printf("\t-r record size in KB used for each io, default 64KB\n");
1306 printf
1307 ("\t-d number of pending aio requests for each file, default 64\n");
1308 printf("\t-i number of I/O per file sent before switching\n"
1309 "\t to the next file, default 8\n");
1310 printf("\t-I total number of ayncs I/O the program will run, "
1311 "default is run until Cntl-C\n");
1312 printf("\t-O Use O_DIRECT (not available in 2.4 kernels),\n");
1313 printf("\t-S Use O_SYNC for writes\n");
1314 printf("\t-o add an operation to the list: write=0, read=1,\n");
1315 printf("\t random write=2, random read=3.\n");
1316 printf("\t repeat -o to specify multiple ops: -o 0 -o 1 etc.\n");
1317 printf
1318 ("\t-m shm use ipc shared memory for io buffers instead of malloc\n");
1319 printf("\t-m shmfs mmap a file in /dev/shm for io buffers\n");
1320 printf("\t-n no fsyncs between write stage and read stage\n");
1321 printf("\t-l print io_submit latencies after each stage\n");
1322 printf("\t-L print io completion latencies after each stage\n");
1323 printf("\t-t number of threads to run\n");
1324 printf("\t-u unlink files after completion\n");
1325 printf("\t-v verification of bytes written\n");
1326 printf("\t-x turn off thread stonewalling\n");
1327 printf("\t-h this message\n");
1328 printf
1329 ("\n\t the size options (-a -s and -r) allow modifiers -s 400{k,m,g}\n");
1330 printf("\t translate to 400KB, 400MB and 400GB\n");
1331 printf("version %s\n", PROG_VERSION);
1332 }
1333
1334 int main(int ac, char **av)
1335 {
1336 int rwfd;
1337 int i;
1338 int j;
1339 int c;
1340
1341 off_t file_size = 1 * 1024 * 1024 * 1024;
1342 int first_stage = WRITE;
1343 struct io_oper *oper;
1344 int status = 0;
1345 int num_files = 0;
1346 int open_fds = 0;
1347 struct thread_info *t;
1348
1349 page_size_mask = getpagesize() - 1;
1350
1351 while (1) {
1352 c = getopt(ac, av, "a:b:c:C:m:s:r:d:i:I:o:t:lLnhOSxvu");
1353 if (c < 0)
1354 break;
1355
1356 switch (c) {
1357 case 'a':
1358 page_size_mask = parse_size(optarg, 1024);
1359 page_size_mask--;
1360 break;
1361 case 'c':
1362 num_contexts = atoi(optarg);
1363 break;
1364 case 'C':
1365 context_offset = parse_size(optarg, 1024 * 1024);
1366 case 'b':
1367 max_io_submit = atoi(optarg);
1368 break;
1369 case 's':
1370 file_size = parse_size(optarg, 1024 * 1024);
1371 break;
1372 case 'd':
1373 depth = atoi(optarg);
1374 break;
1375 case 'r':
1376 rec_len = parse_size(optarg, 1024);
1377 break;
1378 case 'i':
1379 io_iter = atoi(optarg);
1380 break;
1381 case 'I':
1382 iterations = atoi(optarg);
1383 break;
1384 case 'n':
1385 fsync_stages = 0;
1386 break;
1387 case 'l':
1388 latency_stats = 1;
1389 break;
1390 case 'L':
1391 completion_latency_stats = 1;
1392 break;
1393 case 'm':
1394 if (!strcmp(optarg, "shm")) {
1395 fprintf(stderr, "using ipc shm\n");
1396 use_shm = USE_SHM;
1397 } else if (!strcmp(optarg, "shmfs")) {
1398 fprintf(stderr, "using /dev/shm for buffers\n");
1399 use_shm = USE_SHMFS;
1400 }
1401 break;
1402 case 'o':
1403 i = atoi(optarg);
1404 stages |= 1 << i;
1405 fprintf(stderr, "adding stage %s\n", stage_name(i));
1406 break;
1407 case 'O':
1408 o_direct = O_DIRECT;
1409 break;
1410 case 'S':
1411 o_sync = O_SYNC;
1412 break;
1413 case 't':
1414 num_threads = atoi(optarg);
1415 break;
1416 case 'x':
1417 stonewall = 0;
1418 break;
1419 case 'u':
1420 unlink_files = 1;
1421 break;
1422 case 'v':
1423 verify = 1;
1424 break;
1425 case 'h':
1426 default:
1427 print_usage();
1428 exit(1);
1429 }
1430 }
1431
1432 /*
1433 * make sure we don't try to submit more I/O than we have allocated
1434 * memory for
1435 */
1436 if (depth < io_iter) {
1437 io_iter = depth;
1438 fprintf(stderr, "dropping io_iter to %d\n", io_iter);
1439 }
1440
1441 if (optind >= ac) {
1442 print_usage();
1443 exit(1);
1444 }
1445
1446 num_files = ac - optind;
1447
1448 if (num_threads > (num_files * num_contexts)) {
1449 num_threads = num_files * num_contexts;
1450 fprintf(stderr,
1451 "dropping thread count to the number of contexts %d\n",
1452 num_threads);
1453 }
1454
1455 t = malloc(num_threads * sizeof(*t));
1456 if (!t) {
1457 perror("malloc");
1458 exit(1);
1459 }
1460 memset(t, 0, num_threads * sizeof(*t));
1461 global_thread_info = t;
1462
1463 /* by default, allow a huge number of iocbs to be sent towards
1464 * io_submit
1465 */
1466 if (!max_io_submit)
1467 max_io_submit = num_files * io_iter * num_contexts;
1468
1469 /*
1470 * make sure we don't try to submit more I/O than max_io_submit allows
1471 */
1472 if (max_io_submit < io_iter) {
1473 io_iter = max_io_submit;
1474 fprintf(stderr, "dropping io_iter to %d\n", io_iter);
1475 }
1476
1477 if (!stages) {
1478 stages =
1479 (1 << WRITE) | (1 << READ) | (1 << RREAD) | (1 << RWRITE);
1480 } else {
1481 for (i = 0; i < LAST_STAGE; i++) {
1482 if (stages & (1 << i)) {
1483 first_stage = i;
1484 fprintf(stderr, "starting with %s\n",
1485 stage_name(i));
1486 break;
1487 }
1488 }
1489 }
1490
1491 if (file_size < num_contexts * context_offset) {
1492 fprintf(stderr, "file size %ld too small for %d contexts\n",
1493 (long)file_size, num_contexts);
1494 exit(1);
1495 }
1496
1497 fprintf(stderr, "file size %ldMB, record size %ldKB, depth %d, "
1498 "I/O per iteration %d\n",
1499 (long)(file_size / (1024 * 1024)),
1500 rec_len / 1024, depth, io_iter);
1501 fprintf(stderr, "max io_submit %d, buffer alignment set to %luKB\n",
1502 max_io_submit, (page_size_mask + 1) / 1024);
1503 fprintf(stderr, "threads %d files %d contexts %d context offset %ldMB "
1504 "verification %s\n", num_threads, num_files, num_contexts,
1505 (long)(context_offset / (1024 * 1024)), verify ? "on" : "off");
1506 /* open all the files and do any required setup for them */
1507 for (i = optind; i < ac; i++) {
1508 int thread_index;
1509 for (j = 0; j < num_contexts; j++) {
1510 thread_index = open_fds % num_threads;
1511 open_fds++;
1512
1513 rwfd =
1514 open(av[i], O_CREAT | O_RDWR | o_direct | o_sync,
1515 0600);
1516 if (rwfd == -1) {
1517 fprintf(stderr,
1518 "error while creating file %s: %s",
1519 av[i], strerror(errno));
1520 exit(1);
1521 }
1522
1523 oper =
1524 create_oper(rwfd, first_stage, j * context_offset,
1525 file_size - j * context_offset, rec_len,
1526 depth, io_iter, av[i]);
1527 if (!oper) {
1528 fprintf(stderr, "error in create_oper\n");
1529 exit(-1);
1530 }
1531 oper_list_add(oper, &t[thread_index].active_opers);
1532 t[thread_index].num_files++;
1533 }
1534 }
1535 if (setup_shared_mem(num_threads, num_files * num_contexts,
1536 depth, rec_len, max_io_submit)) {
1537 exit(1);
1538 }
1539 for (i = 0; i < num_threads; i++) {
1540 if (setup_ious
1541 (&t[i], t[i].num_files, depth, rec_len, max_io_submit))
1542 exit(1);
1543 }
1544 if (num_threads > 1) {
1545 printf("Running multi thread version num_threads:%d\n",
1546 num_threads);
1547 run_workers(t, num_threads);
1548 } else {
1549 printf("Running single thread version \n");
1550 status = worker(t);
1551 }
1552 if (unlink_files) {
1553 for (i = optind; i < ac; i++) {
1554 printf("Cleaning up file %s \n", av[i]);
1555 unlink(av[i]);
1556 }
1557 }
1558
1559 if (status) {
1560 exit(1);
1561 }
1562 return status;
1563 }
1564 #else
1565 int main(void)
1566 {
1567 fprintf(stderr, "test requires libaio and it's development packages\n");
1568 return TCONF;
1569 }
1570 #endif
1571