• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Rob Clark <robclark@freedesktop.org>
25  */
26 
27 #include <stdarg.h>
28 
29 #include "util/u_string.h"
30 #include "util/u_memory.h"
31 #include "util/u_math.h"
32 
33 #include "ir3_compiler.h"
34 #include "ir3_image.h"
35 #include "ir3_shader.h"
36 #include "ir3_nir.h"
37 
38 #include "instr-a3xx.h"
39 #include "ir3.h"
40 #include "ir3_context.h"
41 
42 void
ir3_handle_bindless_cat6(struct ir3_instruction * instr,nir_src rsrc)43 ir3_handle_bindless_cat6(struct ir3_instruction *instr, nir_src rsrc)
44 {
45 	nir_intrinsic_instr *intrin = ir3_bindless_resource(rsrc);
46 	if (!intrin)
47 		return;
48 
49 	instr->flags |= IR3_INSTR_B;
50 	instr->cat6.base = nir_intrinsic_desc_set(intrin);
51 }
52 
53 static struct ir3_instruction *
create_input(struct ir3_context * ctx,unsigned compmask)54 create_input(struct ir3_context *ctx, unsigned compmask)
55 {
56 	struct ir3_instruction *in;
57 
58 	in = ir3_instr_create(ctx->in_block, OPC_META_INPUT);
59 	in->input.sysval = ~0;
60 	__ssa_dst(in)->wrmask = compmask;
61 
62 	array_insert(ctx->ir, ctx->ir->inputs, in);
63 
64 	return in;
65 }
66 
67 static struct ir3_instruction *
create_frag_input(struct ir3_context * ctx,struct ir3_instruction * coord,unsigned n)68 create_frag_input(struct ir3_context *ctx, struct ir3_instruction *coord, unsigned n)
69 {
70 	struct ir3_block *block = ctx->block;
71 	struct ir3_instruction *instr;
72 	/* packed inloc is fixed up later: */
73 	struct ir3_instruction *inloc = create_immed(block, n);
74 
75 	if (coord) {
76 		instr = ir3_BARY_F(block, inloc, 0, coord, 0);
77 	} else if (ctx->compiler->flat_bypass) {
78 		instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
79 		instr->cat6.type = TYPE_U32;
80 		instr->cat6.iim_val = 1;
81 	} else {
82 		instr = ir3_BARY_F(block, inloc, 0, ctx->ij[IJ_PERSP_PIXEL], 0);
83 		instr->regs[2]->wrmask = 0x3;
84 	}
85 
86 	return instr;
87 }
88 
89 static struct ir3_instruction *
create_driver_param(struct ir3_context * ctx,enum ir3_driver_param dp)90 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
91 {
92 	/* first four vec4 sysval's reserved for UBOs: */
93 	/* NOTE: dp is in scalar, but there can be >4 dp components: */
94 	struct ir3_const_state *const_state = ir3_const_state(ctx->so);
95 	unsigned n = const_state->offsets.driver_param;
96 	unsigned r = regid(n + dp / 4, dp % 4);
97 	return create_uniform(ctx->block, r);
98 }
99 
100 /*
101  * Adreno's comparisons produce a 1 for true and 0 for false, in either 16 or
102  * 32-bit registers.  We use NIR's 1-bit integers to represent bools, and
103  * trust that we will only see and/or/xor on those 1-bit values, so we can
104  * safely store NIR i1s in a 32-bit reg while always containing either a 1 or
105  * 0.
106  */
107 
108 /*
109  * alu/sfu instructions:
110  */
111 
112 static struct ir3_instruction *
create_cov(struct ir3_context * ctx,struct ir3_instruction * src,unsigned src_bitsize,nir_op op)113 create_cov(struct ir3_context *ctx, struct ir3_instruction *src,
114 		unsigned src_bitsize, nir_op op)
115 {
116 	type_t src_type, dst_type;
117 
118 	switch (op) {
119 	case nir_op_f2f32:
120 	case nir_op_f2f16_rtne:
121 	case nir_op_f2f16_rtz:
122 	case nir_op_f2f16:
123 	case nir_op_f2i32:
124 	case nir_op_f2i16:
125 	case nir_op_f2i8:
126 	case nir_op_f2u32:
127 	case nir_op_f2u16:
128 	case nir_op_f2u8:
129 		switch (src_bitsize) {
130 		case 32:
131 			src_type = TYPE_F32;
132 			break;
133 		case 16:
134 			src_type = TYPE_F16;
135 			break;
136 		default:
137 			ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
138 		}
139 		break;
140 
141 	case nir_op_i2f32:
142 	case nir_op_i2f16:
143 	case nir_op_i2i32:
144 	case nir_op_i2i16:
145 	case nir_op_i2i8:
146 		switch (src_bitsize) {
147 		case 32:
148 			src_type = TYPE_S32;
149 			break;
150 		case 16:
151 			src_type = TYPE_S16;
152 			break;
153 		case 8:
154 			src_type = TYPE_S8;
155 			break;
156 		default:
157 			ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
158 		}
159 		break;
160 
161 	case nir_op_u2f32:
162 	case nir_op_u2f16:
163 	case nir_op_u2u32:
164 	case nir_op_u2u16:
165 	case nir_op_u2u8:
166 		switch (src_bitsize) {
167 		case 32:
168 			src_type = TYPE_U32;
169 			break;
170 		case 16:
171 			src_type = TYPE_U16;
172 			break;
173 		case 8:
174 			src_type = TYPE_U8;
175 			break;
176 		default:
177 			ir3_context_error(ctx, "invalid src bit size: %u", src_bitsize);
178 		}
179 		break;
180 
181 	case nir_op_b2f16:
182 	case nir_op_b2f32:
183 	case nir_op_b2i8:
184 	case nir_op_b2i16:
185 	case nir_op_b2i32:
186 		src_type = TYPE_U32;
187 		break;
188 
189 	default:
190 		ir3_context_error(ctx, "invalid conversion op: %u", op);
191 	}
192 
193 	switch (op) {
194 	case nir_op_f2f32:
195 	case nir_op_i2f32:
196 	case nir_op_u2f32:
197 	case nir_op_b2f32:
198 		dst_type = TYPE_F32;
199 		break;
200 
201 	case nir_op_f2f16_rtne:
202 	case nir_op_f2f16_rtz:
203 	case nir_op_f2f16:
204 	case nir_op_i2f16:
205 	case nir_op_u2f16:
206 	case nir_op_b2f16:
207 		dst_type = TYPE_F16;
208 		break;
209 
210 	case nir_op_f2i32:
211 	case nir_op_i2i32:
212 	case nir_op_b2i32:
213 		dst_type = TYPE_S32;
214 		break;
215 
216 	case nir_op_f2i16:
217 	case nir_op_i2i16:
218 	case nir_op_b2i16:
219 		dst_type = TYPE_S16;
220 		break;
221 
222 	case nir_op_f2i8:
223 	case nir_op_i2i8:
224 	case nir_op_b2i8:
225 		dst_type = TYPE_S8;
226 		break;
227 
228 	case nir_op_f2u32:
229 	case nir_op_u2u32:
230 		dst_type = TYPE_U32;
231 		break;
232 
233 	case nir_op_f2u16:
234 	case nir_op_u2u16:
235 		dst_type = TYPE_U16;
236 		break;
237 
238 	case nir_op_f2u8:
239 	case nir_op_u2u8:
240 		dst_type = TYPE_U8;
241 		break;
242 
243 	default:
244 		ir3_context_error(ctx, "invalid conversion op: %u", op);
245 	}
246 
247 	if (src_type == dst_type)
248 		return src;
249 
250 	struct ir3_instruction *cov =
251 		ir3_COV(ctx->block, src, src_type, dst_type);
252 
253 	if (op == nir_op_f2f16_rtne)
254 		cov->regs[0]->flags |= IR3_REG_EVEN;
255 
256 	return cov;
257 }
258 
259 static void
emit_alu(struct ir3_context * ctx,nir_alu_instr * alu)260 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
261 {
262 	const nir_op_info *info = &nir_op_infos[alu->op];
263 	struct ir3_instruction **dst, *src[info->num_inputs];
264 	unsigned bs[info->num_inputs];     /* bit size */
265 	struct ir3_block *b = ctx->block;
266 	unsigned dst_sz, wrmask;
267 	type_t dst_type = nir_dest_bit_size(alu->dest.dest) == 16 ?
268 			TYPE_U16 : TYPE_U32;
269 
270 	if (alu->dest.dest.is_ssa) {
271 		dst_sz = alu->dest.dest.ssa.num_components;
272 		wrmask = (1 << dst_sz) - 1;
273 	} else {
274 		dst_sz = alu->dest.dest.reg.reg->num_components;
275 		wrmask = alu->dest.write_mask;
276 	}
277 
278 	dst = ir3_get_dst(ctx, &alu->dest.dest, dst_sz);
279 
280 	/* Vectors are special in that they have non-scalarized writemasks,
281 	 * and just take the first swizzle channel for each argument in
282 	 * order into each writemask channel.
283 	 */
284 	if ((alu->op == nir_op_vec2) ||
285 			(alu->op == nir_op_vec3) ||
286 			(alu->op == nir_op_vec4)) {
287 
288 		for (int i = 0; i < info->num_inputs; i++) {
289 			nir_alu_src *asrc = &alu->src[i];
290 
291 			compile_assert(ctx, !asrc->abs);
292 			compile_assert(ctx, !asrc->negate);
293 
294 			src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[0]];
295 			if (!src[i])
296 				src[i] = create_immed_typed(ctx->block, 0, dst_type);
297 			dst[i] = ir3_MOV(b, src[i], dst_type);
298 		}
299 
300 		ir3_put_dst(ctx, &alu->dest.dest);
301 		return;
302 	}
303 
304 	/* We also get mov's with more than one component for mov's so
305 	 * handle those specially:
306 	 */
307 	if (alu->op == nir_op_mov) {
308 		nir_alu_src *asrc = &alu->src[0];
309 		struct ir3_instruction *const *src0 = ir3_get_src(ctx, &asrc->src);
310 
311 		for (unsigned i = 0; i < dst_sz; i++) {
312 			if (wrmask & (1 << i)) {
313 				dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], dst_type);
314 			} else {
315 				dst[i] = NULL;
316 			}
317 		}
318 
319 		ir3_put_dst(ctx, &alu->dest.dest);
320 		return;
321 	}
322 
323 	/* General case: We can just grab the one used channel per src. */
324 	for (int i = 0; i < info->num_inputs; i++) {
325 		unsigned chan = ffs(alu->dest.write_mask) - 1;
326 		nir_alu_src *asrc = &alu->src[i];
327 
328 		compile_assert(ctx, !asrc->abs);
329 		compile_assert(ctx, !asrc->negate);
330 
331 		src[i] = ir3_get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
332 		bs[i] = nir_src_bit_size(asrc->src);
333 
334 		compile_assert(ctx, src[i]);
335 	}
336 
337 	switch (alu->op) {
338 	case nir_op_f2f32:
339 	case nir_op_f2f16_rtne:
340 	case nir_op_f2f16_rtz:
341 	case nir_op_f2f16:
342 	case nir_op_f2i32:
343 	case nir_op_f2i16:
344 	case nir_op_f2i8:
345 	case nir_op_f2u32:
346 	case nir_op_f2u16:
347 	case nir_op_f2u8:
348 	case nir_op_i2f32:
349 	case nir_op_i2f16:
350 	case nir_op_i2i32:
351 	case nir_op_i2i16:
352 	case nir_op_i2i8:
353 	case nir_op_u2f32:
354 	case nir_op_u2f16:
355 	case nir_op_u2u32:
356 	case nir_op_u2u16:
357 	case nir_op_u2u8:
358 	case nir_op_b2f16:
359 	case nir_op_b2f32:
360 	case nir_op_b2i8:
361 	case nir_op_b2i16:
362 	case nir_op_b2i32:
363 		dst[0] = create_cov(ctx, src[0], bs[0], alu->op);
364 		break;
365 
366 	case nir_op_fquantize2f16:
367 		dst[0] = create_cov(ctx,
368 							create_cov(ctx, src[0], 32, nir_op_f2f16),
369 							16, nir_op_f2f32);
370 		break;
371 	case nir_op_f2b1:
372 		dst[0] = ir3_CMPS_F(b,
373 				src[0], 0,
374 				create_immed_typed(b, 0, bs[0] == 16 ? TYPE_F16 : TYPE_F32), 0);
375 		dst[0]->cat2.condition = IR3_COND_NE;
376 		break;
377 
378 	case nir_op_i2b1:
379 		/* i2b1 will appear when translating from nir_load_ubo or
380 		 * nir_intrinsic_load_ssbo, where any non-zero value is true.
381 		 */
382 		dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
383 		dst[0]->cat2.condition = IR3_COND_NE;
384 		break;
385 
386 	case nir_op_b2b1:
387 		/* b2b1 will appear when translating from
388 		 *
389 		 * - nir_intrinsic_load_shared of a 32-bit 0/~0 value.
390 		 * - nir_intrinsic_load_constant of a 32-bit 0/~0 value
391 		 *
392 		 * A negate can turn those into a 1 or 0 for us.
393 		 */
394 		dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
395 		break;
396 
397 	case nir_op_b2b32:
398 		/* b2b32 will appear when converting our 1-bit bools to a store_shared
399 		 * argument.
400 		 *
401 		 * A negate can turn those into a ~0 for us.
402 		 */
403 		dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
404 		break;
405 
406 	case nir_op_fneg:
407 		dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
408 		break;
409 	case nir_op_fabs:
410 		dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
411 		break;
412 	case nir_op_fmax:
413 		dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
414 		break;
415 	case nir_op_fmin:
416 		dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
417 		break;
418 	case nir_op_fsat:
419 		/* if there is just a single use of the src, and it supports
420 		 * (sat) bit, we can just fold the (sat) flag back to the
421 		 * src instruction and create a mov.  This is easier for cp
422 		 * to eliminate.
423 		 *
424 		 * NOTE: a3xx definitely seen not working with flat bary.f. Same test
425 		 * uses ldlv on a4xx+, so not definitive. Seems rare enough to apply
426 		 * everywhere.
427 		 *
428 		 * TODO probably opc_cat==4 is ok too
429 		 */
430 		if (alu->src[0].src.is_ssa &&
431 				src[0]->opc != OPC_BARY_F &&
432 				(list_length(&alu->src[0].src.ssa->uses) == 1) &&
433 				((opc_cat(src[0]->opc) == 2) || (opc_cat(src[0]->opc) == 3))) {
434 			src[0]->flags |= IR3_INSTR_SAT;
435 			dst[0] = ir3_MOV(b, src[0], dst_type);
436 		} else {
437 			/* otherwise generate a max.f that saturates.. blob does
438 			 * similar (generating a cat2 mov using max.f)
439 			 */
440 			dst[0] = ir3_MAX_F(b, src[0], 0, src[0], 0);
441 			dst[0]->flags |= IR3_INSTR_SAT;
442 		}
443 		break;
444 	case nir_op_fmul:
445 		dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
446 		break;
447 	case nir_op_fadd:
448 		dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
449 		break;
450 	case nir_op_fsub:
451 		dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
452 		break;
453 	case nir_op_ffma:
454 		dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
455 		break;
456 	case nir_op_fddx:
457 	case nir_op_fddx_coarse:
458 		dst[0] = ir3_DSX(b, src[0], 0);
459 		dst[0]->cat5.type = TYPE_F32;
460 		break;
461 	case nir_op_fddx_fine:
462 		dst[0] = ir3_DSXPP_MACRO(b, src[0], 0);
463 		dst[0]->cat5.type = TYPE_F32;
464 		break;
465 	case nir_op_fddy:
466 	case nir_op_fddy_coarse:
467 		dst[0] = ir3_DSY(b, src[0], 0);
468 		dst[0]->cat5.type = TYPE_F32;
469 		break;
470 		break;
471 	case nir_op_fddy_fine:
472 		dst[0] = ir3_DSYPP_MACRO(b, src[0], 0);
473 		dst[0]->cat5.type = TYPE_F32;
474 		break;
475 	case nir_op_flt:
476 		dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
477 		dst[0]->cat2.condition = IR3_COND_LT;
478 		break;
479 	case nir_op_fge:
480 		dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
481 		dst[0]->cat2.condition = IR3_COND_GE;
482 		break;
483 	case nir_op_feq:
484 		dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
485 		dst[0]->cat2.condition = IR3_COND_EQ;
486 		break;
487 	case nir_op_fneu:
488 		dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
489 		dst[0]->cat2.condition = IR3_COND_NE;
490 		break;
491 	case nir_op_fceil:
492 		dst[0] = ir3_CEIL_F(b, src[0], 0);
493 		break;
494 	case nir_op_ffloor:
495 		dst[0] = ir3_FLOOR_F(b, src[0], 0);
496 		break;
497 	case nir_op_ftrunc:
498 		dst[0] = ir3_TRUNC_F(b, src[0], 0);
499 		break;
500 	case nir_op_fround_even:
501 		dst[0] = ir3_RNDNE_F(b, src[0], 0);
502 		break;
503 	case nir_op_fsign:
504 		dst[0] = ir3_SIGN_F(b, src[0], 0);
505 		break;
506 
507 	case nir_op_fsin:
508 		dst[0] = ir3_SIN(b, src[0], 0);
509 		break;
510 	case nir_op_fcos:
511 		dst[0] = ir3_COS(b, src[0], 0);
512 		break;
513 	case nir_op_frsq:
514 		dst[0] = ir3_RSQ(b, src[0], 0);
515 		break;
516 	case nir_op_frcp:
517 		dst[0] = ir3_RCP(b, src[0], 0);
518 		break;
519 	case nir_op_flog2:
520 		dst[0] = ir3_LOG2(b, src[0], 0);
521 		break;
522 	case nir_op_fexp2:
523 		dst[0] = ir3_EXP2(b, src[0], 0);
524 		break;
525 	case nir_op_fsqrt:
526 		dst[0] = ir3_SQRT(b, src[0], 0);
527 		break;
528 
529 	case nir_op_iabs:
530 		dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
531 		break;
532 	case nir_op_iadd:
533 		dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
534 		break;
535 	case nir_op_iand:
536 		dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
537 		break;
538 	case nir_op_imax:
539 		dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
540 		break;
541 	case nir_op_umax:
542 		dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
543 		break;
544 	case nir_op_imin:
545 		dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
546 		break;
547 	case nir_op_umin:
548 		dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
549 		break;
550 	case nir_op_umul_low:
551 		dst[0] = ir3_MULL_U(b, src[0], 0, src[1], 0);
552 		break;
553 	case nir_op_imadsh_mix16:
554 		dst[0] = ir3_MADSH_M16(b, src[0], 0, src[1], 0, src[2], 0);
555 		break;
556 	case nir_op_imad24_ir3:
557 		dst[0] = ir3_MAD_S24(b, src[0], 0, src[1], 0, src[2], 0);
558 		break;
559 	case nir_op_imul24:
560 		dst[0] = ir3_MUL_S24(b, src[0], 0, src[1], 0);
561 		break;
562 	case nir_op_ineg:
563 		dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
564 		break;
565 	case nir_op_inot:
566 		if (bs[0] == 1) {
567 			dst[0] = ir3_SUB_U(b, create_immed(ctx->block, 1), 0, src[0], 0);
568 		} else {
569 			dst[0] = ir3_NOT_B(b, src[0], 0);
570 		}
571 		break;
572 	case nir_op_ior:
573 		dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
574 		break;
575 	case nir_op_ishl:
576 		dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
577 		break;
578 	case nir_op_ishr:
579 		dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
580 		break;
581 	case nir_op_isub:
582 		dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
583 		break;
584 	case nir_op_ixor:
585 		dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
586 		break;
587 	case nir_op_ushr:
588 		dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
589 		break;
590 	case nir_op_ilt:
591 		dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
592 		dst[0]->cat2.condition = IR3_COND_LT;
593 		break;
594 	case nir_op_ige:
595 		dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
596 		dst[0]->cat2.condition = IR3_COND_GE;
597 		break;
598 	case nir_op_ieq:
599 		dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
600 		dst[0]->cat2.condition = IR3_COND_EQ;
601 		break;
602 	case nir_op_ine:
603 		dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
604 		dst[0]->cat2.condition = IR3_COND_NE;
605 		break;
606 	case nir_op_ult:
607 		dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
608 		dst[0]->cat2.condition = IR3_COND_LT;
609 		break;
610 	case nir_op_uge:
611 		dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
612 		dst[0]->cat2.condition = IR3_COND_GE;
613 		break;
614 
615 	case nir_op_bcsel: {
616 		struct ir3_instruction *cond = src[0];
617 
618 		/* If src[0] is a negation (likely as a result of an ir3_b2n(cond)),
619 		 * we can ignore that and use original cond, since the nonzero-ness of
620 		 * cond stays the same.
621 		 */
622 		if (cond->opc == OPC_ABSNEG_S &&
623 				cond->flags == 0 &&
624 				(cond->regs[1]->flags & (IR3_REG_SNEG | IR3_REG_SABS)) == IR3_REG_SNEG) {
625 			cond = cond->regs[1]->instr;
626 		}
627 
628 		compile_assert(ctx, bs[1] == bs[2]);
629 		/* The condition's size has to match the other two arguments' size, so
630 		 * convert down if necessary.
631 		 */
632 		if (bs[1] == 16) {
633 			struct hash_entry *prev_entry =
634 				_mesa_hash_table_search(ctx->sel_cond_conversions, src[0]);
635 			if (prev_entry) {
636 				cond = prev_entry->data;
637 			} else {
638 				cond = ir3_COV(b, cond, TYPE_U32, TYPE_U16);
639 				_mesa_hash_table_insert(ctx->sel_cond_conversions, src[0], cond);
640 			}
641 		}
642 
643 		if (bs[1] != 16)
644 			dst[0] = ir3_SEL_B32(b, src[1], 0, cond, 0, src[2], 0);
645 		else
646 			dst[0] = ir3_SEL_B16(b, src[1], 0, cond, 0, src[2], 0);
647 		break;
648 	}
649 	case nir_op_bit_count: {
650 		// TODO, we need to do this 16b at a time on a5xx+a6xx.. need to
651 		// double check on earlier gen's.  Once half-precision support is
652 		// in place, this should probably move to a NIR lowering pass:
653 		struct ir3_instruction *hi, *lo;
654 
655 		hi = ir3_COV(b, ir3_SHR_B(b, src[0], 0, create_immed(b, 16), 0),
656 				TYPE_U32, TYPE_U16);
657 		lo = ir3_COV(b, src[0], TYPE_U32, TYPE_U16);
658 
659 		hi = ir3_CBITS_B(b, hi, 0);
660 		lo = ir3_CBITS_B(b, lo, 0);
661 
662 		// TODO maybe the builders should default to making dst half-precision
663 		// if the src's were half precision, to make this less awkward.. otoh
664 		// we should probably just do this lowering in NIR.
665 		hi->regs[0]->flags |= IR3_REG_HALF;
666 		lo->regs[0]->flags |= IR3_REG_HALF;
667 
668 		dst[0] = ir3_ADD_S(b, hi, 0, lo, 0);
669 		dst[0]->regs[0]->flags |= IR3_REG_HALF;
670 		dst[0] = ir3_COV(b, dst[0], TYPE_U16, TYPE_U32);
671 		break;
672 	}
673 	case nir_op_ifind_msb: {
674 		struct ir3_instruction *cmp;
675 		dst[0] = ir3_CLZ_S(b, src[0], 0);
676 		cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
677 		cmp->cat2.condition = IR3_COND_GE;
678 		dst[0] = ir3_SEL_B32(b,
679 				ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
680 				cmp, 0, dst[0], 0);
681 		break;
682 	}
683 	case nir_op_ufind_msb:
684 		dst[0] = ir3_CLZ_B(b, src[0], 0);
685 		dst[0] = ir3_SEL_B32(b,
686 				ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
687 				src[0], 0, dst[0], 0);
688 		break;
689 	case nir_op_find_lsb:
690 		dst[0] = ir3_BFREV_B(b, src[0], 0);
691 		dst[0] = ir3_CLZ_B(b, dst[0], 0);
692 		break;
693 	case nir_op_bitfield_reverse:
694 		dst[0] = ir3_BFREV_B(b, src[0], 0);
695 		break;
696 
697 	default:
698 		ir3_context_error(ctx, "Unhandled ALU op: %s\n",
699 				nir_op_infos[alu->op].name);
700 		break;
701 	}
702 
703 	if (nir_alu_type_get_base_type(info->output_type) == nir_type_bool) {
704 		assert(nir_dest_bit_size(alu->dest.dest) == 1 ||
705 				alu->op == nir_op_b2b32);
706 		assert(dst_sz == 1);
707 	} else {
708 		/* 1-bit values stored in 32-bit registers are only valid for certain
709 		 * ALU ops.
710 		 */
711 		switch (alu->op) {
712 		case nir_op_iand:
713 		case nir_op_ior:
714 		case nir_op_ixor:
715 		case nir_op_inot:
716 		case nir_op_bcsel:
717 			break;
718 		default:
719 			compile_assert(ctx, nir_dest_bit_size(alu->dest.dest) != 1);
720 		}
721 	}
722 
723 	ir3_put_dst(ctx, &alu->dest.dest);
724 }
725 
726 static void
emit_intrinsic_load_ubo_ldc(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)727 emit_intrinsic_load_ubo_ldc(struct ir3_context *ctx, nir_intrinsic_instr *intr,
728 							struct ir3_instruction **dst)
729 {
730 	struct ir3_block *b = ctx->block;
731 
732 	unsigned ncomp = intr->num_components;
733 	struct ir3_instruction *offset = ir3_get_src(ctx, &intr->src[1])[0];
734 	struct ir3_instruction *idx = ir3_get_src(ctx, &intr->src[0])[0];
735 	struct ir3_instruction *ldc = ir3_LDC(b, idx, 0, offset, 0);
736 	ldc->regs[0]->wrmask = MASK(ncomp);
737 	ldc->cat6.iim_val = ncomp;
738 	ldc->cat6.d = nir_intrinsic_component(intr);
739 	ldc->cat6.type = TYPE_U32;
740 
741 	ir3_handle_bindless_cat6(ldc, intr->src[0]);
742 	if (ldc->flags & IR3_INSTR_B)
743 		ctx->so->bindless_ubo = true;
744 
745 	ir3_split_dest(b, dst, ldc, 0, ncomp);
746 }
747 
748 
749 /* handles direct/indirect UBO reads: */
750 static void
emit_intrinsic_load_ubo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)751 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
752 		struct ir3_instruction **dst)
753 {
754 	struct ir3_block *b = ctx->block;
755 	struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
756 	const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
757 	unsigned ubo = regid(const_state->offsets.ubo, 0);
758 	const unsigned ptrsz = ir3_pointer_size(ctx->compiler);
759 
760 	int off = 0;
761 
762 	/* First src is ubo index, which could either be an immed or not: */
763 	src0 = ir3_get_src(ctx, &intr->src[0])[0];
764 	if (is_same_type_mov(src0) &&
765 			(src0->regs[1]->flags & IR3_REG_IMMED)) {
766 		base_lo = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz));
767 		base_hi = create_uniform(b, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
768 	} else {
769 		base_lo = create_uniform_indirect(b, ubo, TYPE_U32, ir3_get_addr0(ctx, src0, ptrsz));
770 		base_hi = create_uniform_indirect(b, ubo + 1, TYPE_U32, ir3_get_addr0(ctx, src0, ptrsz));
771 
772 		/* NOTE: since relative addressing is used, make sure constlen is
773 		 * at least big enough to cover all the UBO addresses, since the
774 		 * assembler won't know what the max address reg is.
775 		 */
776 		ctx->so->constlen = MAX2(ctx->so->constlen,
777 			const_state->offsets.ubo + (ctx->s->info.num_ubos * ptrsz));
778 	}
779 
780 	/* note: on 32bit gpu's base_hi is ignored and DCE'd */
781 	addr = base_lo;
782 
783 	if (nir_src_is_const(intr->src[1])) {
784 		off += nir_src_as_uint(intr->src[1]);
785 	} else {
786 		/* For load_ubo_indirect, second src is indirect offset: */
787 		src1 = ir3_get_src(ctx, &intr->src[1])[0];
788 
789 		/* and add offset to addr: */
790 		addr = ir3_ADD_S(b, addr, 0, src1, 0);
791 	}
792 
793 	/* if offset is to large to encode in the ldg, split it out: */
794 	if ((off + (intr->num_components * 4)) > 1024) {
795 		/* split out the minimal amount to improve the odds that
796 		 * cp can fit the immediate in the add.s instruction:
797 		 */
798 		unsigned off2 = off + (intr->num_components * 4) - 1024;
799 		addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
800 		off -= off2;
801 	}
802 
803 	if (ptrsz == 2) {
804 		struct ir3_instruction *carry;
805 
806 		/* handle 32b rollover, ie:
807 		 *   if (addr < base_lo)
808 		 *      base_hi++
809 		 */
810 		carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
811 		carry->cat2.condition = IR3_COND_LT;
812 		base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
813 
814 		addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){ addr, base_hi }, 2);
815 	}
816 
817 	for (int i = 0; i < intr->num_components; i++) {
818 		struct ir3_instruction *load =
819 			ir3_LDG(b, addr, 0, create_immed(b, 1), 0, /* num components */
820 					create_immed(b, off + i * 4), 0);
821 		load->cat6.type = TYPE_U32;
822 		dst[i] = load;
823 	}
824 }
825 
826 /* src[] = { block_index } */
827 static void
emit_intrinsic_ssbo_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)828 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
829 		struct ir3_instruction **dst)
830 {
831 	if (ir3_bindless_resource(intr->src[0])) {
832 		struct ir3_block *b = ctx->block;
833 		struct ir3_instruction *ibo = ir3_ssbo_to_ibo(ctx, intr->src[0]);
834 		struct ir3_instruction *resinfo = ir3_RESINFO(b, ibo, 0);
835 		resinfo->cat6.iim_val = 1;
836 		resinfo->cat6.d = 1;
837 		resinfo->cat6.type = TYPE_U32;
838 		resinfo->cat6.typed = false;
839 		/* resinfo has no writemask and always writes out 3 components */
840 		resinfo->regs[0]->wrmask = MASK(3);
841 		ir3_handle_bindless_cat6(resinfo, intr->src[0]);
842 		struct ir3_instruction *resinfo_dst;
843 		ir3_split_dest(b, &resinfo_dst, resinfo, 0, 1);
844 		/* Unfortunately resinfo returns the array length, i.e. in dwords,
845 		 * while NIR expects us to return the size in bytes.
846 		 *
847 		 * TODO: fix this in NIR.
848 		 */
849 		*dst = ir3_SHL_B(b, resinfo_dst, 0, create_immed(b, 2), 0);
850 		return;
851 	}
852 
853 	/* SSBO size stored as a const starting at ssbo_sizes: */
854 	const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
855 	unsigned blk_idx = nir_src_as_uint(intr->src[0]);
856 	unsigned idx = regid(const_state->offsets.ssbo_sizes, 0) +
857 		const_state->ssbo_size.off[blk_idx];
858 
859 	debug_assert(const_state->ssbo_size.mask & (1 << blk_idx));
860 
861 	dst[0] = create_uniform(ctx->block, idx);
862 }
863 
864 /* src[] = { offset }. const_index[] = { base } */
865 static void
emit_intrinsic_load_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)866 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
867 		struct ir3_instruction **dst)
868 {
869 	struct ir3_block *b = ctx->block;
870 	struct ir3_instruction *ldl, *offset;
871 	unsigned base;
872 
873 	offset = ir3_get_src(ctx, &intr->src[0])[0];
874 	base   = nir_intrinsic_base(intr);
875 
876 	ldl = ir3_LDL(b, offset, 0,
877 			create_immed(b, intr->num_components), 0,
878 			create_immed(b, base), 0);
879 
880 	ldl->cat6.type = utype_dst(intr->dest);
881 	ldl->regs[0]->wrmask = MASK(intr->num_components);
882 
883 	ldl->barrier_class = IR3_BARRIER_SHARED_R;
884 	ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
885 
886 	ir3_split_dest(b, dst, ldl, 0, intr->num_components);
887 }
888 
889 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
890 static void
emit_intrinsic_store_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)891 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
892 {
893 	struct ir3_block *b = ctx->block;
894 	struct ir3_instruction *stl, *offset;
895 	struct ir3_instruction * const *value;
896 	unsigned base, wrmask, ncomp;
897 
898 	value  = ir3_get_src(ctx, &intr->src[0]);
899 	offset = ir3_get_src(ctx, &intr->src[1])[0];
900 
901 	base   = nir_intrinsic_base(intr);
902 	wrmask = nir_intrinsic_write_mask(intr);
903 	ncomp  = ffs(~wrmask) - 1;
904 
905 	assert(wrmask == BITFIELD_MASK(intr->num_components));
906 
907 	stl = ir3_STL(b, offset, 0,
908 		ir3_create_collect(ctx, value, ncomp), 0,
909 		create_immed(b, ncomp), 0);
910 	stl->cat6.dst_offset = base;
911 	stl->cat6.type = utype_src(intr->src[0]);
912 	stl->barrier_class = IR3_BARRIER_SHARED_W;
913 	stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
914 
915 	array_insert(b, b->keeps, stl);
916 }
917 
918 /* src[] = { offset }. const_index[] = { base } */
919 static void
emit_intrinsic_load_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)920 emit_intrinsic_load_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr,
921 		struct ir3_instruction **dst)
922 {
923 	struct ir3_block *b = ctx->block;
924 	struct ir3_instruction *load, *offset;
925 	unsigned base;
926 
927 	offset = ir3_get_src(ctx, &intr->src[0])[0];
928 	base   = nir_intrinsic_base(intr);
929 
930 	load = ir3_LDLW(b, offset, 0,
931 			create_immed(b, intr->num_components), 0,
932 			create_immed(b, base), 0);
933 
934 	/* for a650, use LDL for tess ctrl inputs: */
935 	if (ctx->so->type == MESA_SHADER_TESS_CTRL && ctx->compiler->tess_use_shared)
936 		load->opc = OPC_LDL;
937 
938 	load->cat6.type = utype_dst(intr->dest);
939 	load->regs[0]->wrmask = MASK(intr->num_components);
940 
941 	load->barrier_class = IR3_BARRIER_SHARED_R;
942 	load->barrier_conflict = IR3_BARRIER_SHARED_W;
943 
944 	ir3_split_dest(b, dst, load, 0, intr->num_components);
945 }
946 
947 /* src[] = { value, offset }. const_index[] = { base } */
948 static void
emit_intrinsic_store_shared_ir3(struct ir3_context * ctx,nir_intrinsic_instr * intr)949 emit_intrinsic_store_shared_ir3(struct ir3_context *ctx, nir_intrinsic_instr *intr)
950 {
951 	struct ir3_block *b = ctx->block;
952 	struct ir3_instruction *store, *offset;
953 	struct ir3_instruction * const *value;
954 
955 	value  = ir3_get_src(ctx, &intr->src[0]);
956 	offset = ir3_get_src(ctx, &intr->src[1])[0];
957 
958 	store = ir3_STLW(b, offset, 0,
959 		ir3_create_collect(ctx, value, intr->num_components), 0,
960 		create_immed(b, intr->num_components), 0);
961 
962 	/* for a650, use STL for vertex outputs used by tess ctrl shader: */
963 	if (ctx->so->type == MESA_SHADER_VERTEX && ctx->so->key.tessellation &&
964 		ctx->compiler->tess_use_shared)
965 		store->opc = OPC_STL;
966 
967 	store->cat6.dst_offset = nir_intrinsic_base(intr);
968 	store->cat6.type = utype_src(intr->src[0]);
969 	store->barrier_class = IR3_BARRIER_SHARED_W;
970 	store->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
971 
972 	array_insert(b, b->keeps, store);
973 }
974 
975 /*
976  * CS shared variable atomic intrinsics
977  *
978  * All of the shared variable atomic memory operations read a value from
979  * memory, compute a new value using one of the operations below, write the
980  * new value to memory, and return the original value read.
981  *
982  * All operations take 2 sources except CompSwap that takes 3. These
983  * sources represent:
984  *
985  * 0: The offset into the shared variable storage region that the atomic
986  *    operation will operate on.
987  * 1: The data parameter to the atomic function (i.e. the value to add
988  *    in shared_atomic_add, etc).
989  * 2: For CompSwap only: the second data parameter.
990  */
991 static struct ir3_instruction *
emit_intrinsic_atomic_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)992 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
993 {
994 	struct ir3_block *b = ctx->block;
995 	struct ir3_instruction *atomic, *src0, *src1;
996 	type_t type = TYPE_U32;
997 
998 	src0 = ir3_get_src(ctx, &intr->src[0])[0];   /* offset */
999 	src1 = ir3_get_src(ctx, &intr->src[1])[0];   /* value */
1000 
1001 	switch (intr->intrinsic) {
1002 	case nir_intrinsic_shared_atomic_add:
1003 		atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1004 		break;
1005 	case nir_intrinsic_shared_atomic_imin:
1006 		atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1007 		type = TYPE_S32;
1008 		break;
1009 	case nir_intrinsic_shared_atomic_umin:
1010 		atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1011 		break;
1012 	case nir_intrinsic_shared_atomic_imax:
1013 		atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1014 		type = TYPE_S32;
1015 		break;
1016 	case nir_intrinsic_shared_atomic_umax:
1017 		atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1018 		break;
1019 	case nir_intrinsic_shared_atomic_and:
1020 		atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1021 		break;
1022 	case nir_intrinsic_shared_atomic_or:
1023 		atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1024 		break;
1025 	case nir_intrinsic_shared_atomic_xor:
1026 		atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1027 		break;
1028 	case nir_intrinsic_shared_atomic_exchange:
1029 		atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1030 		break;
1031 	case nir_intrinsic_shared_atomic_comp_swap:
1032 		/* for cmpxchg, src1 is [ui]vec2(data, compare): */
1033 		src1 = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1034 			ir3_get_src(ctx, &intr->src[2])[0],
1035 			src1,
1036 		}, 2);
1037 		atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1038 		break;
1039 	default:
1040 		unreachable("boo");
1041 	}
1042 
1043 	atomic->cat6.iim_val = 1;
1044 	atomic->cat6.d = 1;
1045 	atomic->cat6.type = type;
1046 	atomic->barrier_class = IR3_BARRIER_SHARED_W;
1047 	atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1048 
1049 	/* even if nothing consume the result, we can't DCE the instruction: */
1050 	array_insert(b, b->keeps, atomic);
1051 
1052 	return atomic;
1053 }
1054 
1055 struct tex_src_info {
1056 	/* For prefetch */
1057 	unsigned tex_base, samp_base, tex_idx, samp_idx;
1058 	/* For normal tex instructions */
1059 	unsigned base, combined_idx, a1_val, flags;
1060 	struct ir3_instruction *samp_tex;
1061 };
1062 
1063 /* TODO handle actual indirect/dynamic case.. which is going to be weird
1064  * to handle with the image_mapping table..
1065  */
1066 static struct tex_src_info
get_image_samp_tex_src(struct ir3_context * ctx,nir_intrinsic_instr * intr)1067 get_image_samp_tex_src(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1068 {
1069 	struct ir3_block *b = ctx->block;
1070 	struct tex_src_info info = { 0 };
1071 	nir_intrinsic_instr *bindless_tex = ir3_bindless_resource(intr->src[0]);
1072 	ctx->so->bindless_tex = true;
1073 
1074 	if (bindless_tex) {
1075 		/* Bindless case */
1076 		info.flags |= IR3_INSTR_B;
1077 
1078 		/* Gather information required to determine which encoding to
1079 		 * choose as well as for prefetch.
1080 		 */
1081 		info.tex_base = nir_intrinsic_desc_set(bindless_tex);
1082 		bool tex_const = nir_src_is_const(bindless_tex->src[0]);
1083 		if (tex_const)
1084 			info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
1085 		info.samp_idx = 0;
1086 
1087 		/* Choose encoding. */
1088 		if (tex_const && info.tex_idx < 256) {
1089 			if (info.tex_idx < 16) {
1090 				/* Everything fits within the instruction */
1091 				info.base = info.tex_base;
1092 				info.combined_idx = info.samp_idx | (info.tex_idx << 4);
1093 			} else {
1094 				info.base = info.tex_base;
1095 				info.a1_val = info.tex_idx << 3;
1096 				info.combined_idx = 0;
1097 				info.flags |= IR3_INSTR_A1EN;
1098 			}
1099 			info.samp_tex = NULL;
1100 		} else {
1101 			info.flags |= IR3_INSTR_S2EN;
1102 			info.base = info.tex_base;
1103 
1104 			/* Note: the indirect source is now a vec2 instead of hvec2 */
1105 			struct ir3_instruction *texture, *sampler;
1106 
1107 			texture = ir3_get_src(ctx, &intr->src[0])[0];
1108 			sampler = create_immed(b, 0);
1109 			info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1110 				texture,
1111 				sampler,
1112 			}, 2);
1113 		}
1114 	} else {
1115 		info.flags |= IR3_INSTR_S2EN;
1116 		unsigned slot = nir_src_as_uint(intr->src[0]);
1117 		unsigned tex_idx = ir3_image_to_tex(&ctx->so->image_mapping, slot);
1118 		struct ir3_instruction *texture, *sampler;
1119 
1120 		texture = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1121 		sampler = create_immed_typed(ctx->block, tex_idx, TYPE_U16);
1122 
1123 		info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1124 			sampler,
1125 			texture,
1126 		}, 2);
1127 	}
1128 
1129 	return info;
1130 }
1131 
1132 static struct ir3_instruction *
emit_sam(struct ir3_context * ctx,opc_t opc,struct tex_src_info info,type_t type,unsigned wrmask,struct ir3_instruction * src0,struct ir3_instruction * src1)1133 emit_sam(struct ir3_context *ctx, opc_t opc, struct tex_src_info info,
1134 		 type_t type, unsigned wrmask, struct ir3_instruction *src0,
1135 		 struct ir3_instruction *src1)
1136 {
1137 	struct ir3_instruction *sam, *addr;
1138 	if (info.flags & IR3_INSTR_A1EN) {
1139 		addr = ir3_get_addr1(ctx, info.a1_val);
1140 	}
1141 	sam = ir3_SAM(ctx->block, opc, type, 0b1111, info.flags,
1142 			info.samp_tex, src0, src1);
1143 	if (info.flags & IR3_INSTR_A1EN) {
1144 		ir3_instr_set_address(sam, addr);
1145 	}
1146 	if (info.flags & IR3_INSTR_B) {
1147 		sam->cat5.tex_base = info.base;
1148 		sam->cat5.samp = info.combined_idx;
1149 	}
1150 	return sam;
1151 }
1152 
1153 /* src[] = { deref, coord, sample_index }. const_index[] = {} */
1154 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1155 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1156 		struct ir3_instruction **dst)
1157 {
1158 	struct ir3_block *b = ctx->block;
1159 	struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1160 	struct ir3_instruction *sam;
1161 	struct ir3_instruction * const *src0 = ir3_get_src(ctx, &intr->src[1]);
1162 	struct ir3_instruction *coords[4];
1163 	unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1164 	type_t type = ir3_get_type_for_image_intrinsic(intr);
1165 
1166 	/* hmm, this seems a bit odd, but it is what blob does and (at least
1167 	 * a5xx) just faults on bogus addresses otherwise:
1168 	 */
1169 	if (flags & IR3_INSTR_3D) {
1170 		flags &= ~IR3_INSTR_3D;
1171 		flags |= IR3_INSTR_A;
1172 	}
1173 	info.flags |= flags;
1174 
1175 	for (unsigned i = 0; i < ncoords; i++)
1176 		coords[i] = src0[i];
1177 
1178 	if (ncoords == 1)
1179 		coords[ncoords++] = create_immed(b, 0);
1180 
1181 	sam = emit_sam(ctx, OPC_ISAM, info, type, 0b1111,
1182 				   ir3_create_collect(ctx, coords, ncoords), NULL);
1183 
1184 	sam->barrier_class = IR3_BARRIER_IMAGE_R;
1185 	sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1186 
1187 	ir3_split_dest(b, dst, sam, 0, 4);
1188 }
1189 
1190 /* A4xx version of image_size, see ir3_a6xx.c for newer resinfo version. */
1191 void
emit_intrinsic_image_size_tex(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1192 emit_intrinsic_image_size_tex(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1193 		struct ir3_instruction **dst)
1194 {
1195 	struct ir3_block *b = ctx->block;
1196 	struct tex_src_info info = get_image_samp_tex_src(ctx, intr);
1197 	struct ir3_instruction *sam, *lod;
1198 	unsigned flags, ncoords = ir3_get_image_coords(intr, &flags);
1199 	type_t dst_type = nir_dest_bit_size(intr->dest) == 16 ?
1200 			TYPE_U16 : TYPE_U32;
1201 
1202 	info.flags |= flags;
1203 	assert(nir_src_as_uint(intr->src[1]) == 0);
1204 	lod = create_immed(b, 0);
1205 	sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
1206 
1207 	/* Array size actually ends up in .w rather than .z. This doesn't
1208 	 * matter for miplevel 0, but for higher mips the value in z is
1209 	 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
1210 	 * returned, which means that we have to add 1 to it for arrays for
1211 	 * a3xx.
1212 	 *
1213 	 * Note use a temporary dst and then copy, since the size of the dst
1214 	 * array that is passed in is based on nir's understanding of the
1215 	 * result size, not the hardware's
1216 	 */
1217 	struct ir3_instruction *tmp[4];
1218 
1219 	ir3_split_dest(b, tmp, sam, 0, 4);
1220 
1221 	/* get_size instruction returns size in bytes instead of texels
1222 	 * for imageBuffer, so we need to divide it by the pixel size
1223 	 * of the image format.
1224 	 *
1225 	 * TODO: This is at least true on a5xx. Check other gens.
1226 	 */
1227 	if (nir_intrinsic_image_dim(intr) == GLSL_SAMPLER_DIM_BUF) {
1228 		/* Since all the possible values the divisor can take are
1229 		 * power-of-two (4, 8, or 16), the division is implemented
1230 		 * as a shift-right.
1231 		 * During shader setup, the log2 of the image format's
1232 		 * bytes-per-pixel should have been emitted in 2nd slot of
1233 		 * image_dims. See ir3_shader::emit_image_dims().
1234 		 */
1235 		const struct ir3_const_state *const_state =
1236 				ir3_const_state(ctx->so);
1237 		unsigned cb = regid(const_state->offsets.image_dims, 0) +
1238 			const_state->image_dims.off[nir_src_as_uint(intr->src[0])];
1239 		struct ir3_instruction *aux = create_uniform(b, cb + 1);
1240 
1241 		tmp[0] = ir3_SHR_B(b, tmp[0], 0, aux, 0);
1242 	}
1243 
1244 	for (unsigned i = 0; i < ncoords; i++)
1245 		dst[i] = tmp[i];
1246 
1247 	if (flags & IR3_INSTR_A) {
1248 		if (ctx->compiler->levels_add_one) {
1249 			dst[ncoords-1] = ir3_ADD_U(b, tmp[3], 0, create_immed(b, 1), 0);
1250 		} else {
1251 			dst[ncoords-1] = ir3_MOV(b, tmp[3], TYPE_U32);
1252 		}
1253 	}
1254 }
1255 
1256 static void
emit_intrinsic_barrier(struct ir3_context * ctx,nir_intrinsic_instr * intr)1257 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1258 {
1259 	struct ir3_block *b = ctx->block;
1260 	struct ir3_instruction *barrier;
1261 
1262 	switch (intr->intrinsic) {
1263 	case nir_intrinsic_control_barrier:
1264 		barrier = ir3_BAR(b);
1265 		barrier->cat7.g = true;
1266 		barrier->cat7.l = true;
1267 		barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1268 		barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1269 		break;
1270 	case nir_intrinsic_memory_barrier:
1271 		barrier = ir3_FENCE(b);
1272 		barrier->cat7.g = true;
1273 		barrier->cat7.r = true;
1274 		barrier->cat7.w = true;
1275 		barrier->cat7.l = true;
1276 		barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1277 				IR3_BARRIER_BUFFER_W;
1278 		barrier->barrier_conflict =
1279 				IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1280 				IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1281 		break;
1282 	case nir_intrinsic_memory_barrier_buffer:
1283 		barrier = ir3_FENCE(b);
1284 		barrier->cat7.g = true;
1285 		barrier->cat7.r = true;
1286 		barrier->cat7.w = true;
1287 		barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1288 		barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1289 				IR3_BARRIER_BUFFER_W;
1290 		break;
1291 	case nir_intrinsic_memory_barrier_image:
1292 		// TODO double check if this should have .g set
1293 		barrier = ir3_FENCE(b);
1294 		barrier->cat7.g = true;
1295 		barrier->cat7.r = true;
1296 		barrier->cat7.w = true;
1297 		barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1298 		barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1299 				IR3_BARRIER_IMAGE_W;
1300 		break;
1301 	case nir_intrinsic_memory_barrier_shared:
1302 		barrier = ir3_FENCE(b);
1303 		barrier->cat7.g = true;
1304 		barrier->cat7.l = true;
1305 		barrier->cat7.r = true;
1306 		barrier->cat7.w = true;
1307 		barrier->barrier_class = IR3_BARRIER_SHARED_W;
1308 		barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1309 				IR3_BARRIER_SHARED_W;
1310 		break;
1311 	case nir_intrinsic_group_memory_barrier:
1312 		barrier = ir3_FENCE(b);
1313 		barrier->cat7.g = true;
1314 		barrier->cat7.l = true;
1315 		barrier->cat7.r = true;
1316 		barrier->cat7.w = true;
1317 		barrier->barrier_class = IR3_BARRIER_SHARED_W |
1318 				IR3_BARRIER_IMAGE_W |
1319 				IR3_BARRIER_BUFFER_W;
1320 		barrier->barrier_conflict =
1321 				IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1322 				IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1323 				IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1324 		break;
1325 	default:
1326 		unreachable("boo");
1327 	}
1328 
1329 	/* make sure barrier doesn't get DCE'd */
1330 	array_insert(b, b->keeps, barrier);
1331 }
1332 
add_sysval_input_compmask(struct ir3_context * ctx,gl_system_value slot,unsigned compmask,struct ir3_instruction * instr)1333 static void add_sysval_input_compmask(struct ir3_context *ctx,
1334 		gl_system_value slot, unsigned compmask,
1335 		struct ir3_instruction *instr)
1336 {
1337 	struct ir3_shader_variant *so = ctx->so;
1338 	unsigned n = so->inputs_count++;
1339 
1340 	assert(instr->opc == OPC_META_INPUT);
1341 	instr->input.inidx = n;
1342 	instr->input.sysval = slot;
1343 
1344 	so->inputs[n].sysval = true;
1345 	so->inputs[n].slot = slot;
1346 	so->inputs[n].compmask = compmask;
1347 	so->total_in++;
1348 }
1349 
1350 static struct ir3_instruction *
create_sysval_input(struct ir3_context * ctx,gl_system_value slot,unsigned compmask)1351 create_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1352 		unsigned compmask)
1353 {
1354 	assert(compmask);
1355 	struct ir3_instruction *sysval = create_input(ctx, compmask);
1356 	add_sysval_input_compmask(ctx, slot, compmask, sysval);
1357 	return sysval;
1358 }
1359 
1360 static struct ir3_instruction *
get_barycentric(struct ir3_context * ctx,enum ir3_bary bary)1361 get_barycentric(struct ir3_context *ctx, enum ir3_bary bary)
1362 {
1363 	static const gl_system_value sysval_base = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1364 
1365 	STATIC_ASSERT(sysval_base + IJ_PERSP_PIXEL == SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL);
1366 	STATIC_ASSERT(sysval_base + IJ_PERSP_SAMPLE == SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE);
1367 	STATIC_ASSERT(sysval_base + IJ_PERSP_CENTROID == SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID);
1368 	STATIC_ASSERT(sysval_base + IJ_PERSP_SIZE == SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE);
1369 	STATIC_ASSERT(sysval_base + IJ_LINEAR_PIXEL == SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL);
1370 	STATIC_ASSERT(sysval_base + IJ_LINEAR_CENTROID == SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID);
1371 	STATIC_ASSERT(sysval_base + IJ_LINEAR_SAMPLE == SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE);
1372 
1373 	if (!ctx->ij[bary]) {
1374 		struct ir3_instruction *xy[2];
1375 		struct ir3_instruction *ij;
1376 
1377 		ij = create_sysval_input(ctx, sysval_base + bary, 0x3);
1378 		ir3_split_dest(ctx->block, xy, ij, 0, 2);
1379 
1380 		ctx->ij[bary] = ir3_create_collect(ctx, xy, 2);
1381 	}
1382 
1383 	return ctx->ij[bary];
1384 }
1385 
1386 /* TODO: make this a common NIR helper?
1387  * there is a nir_system_value_from_intrinsic but it takes nir_intrinsic_op so it
1388  * can't be extended to work with this
1389  */
1390 static gl_system_value
nir_intrinsic_barycentric_sysval(nir_intrinsic_instr * intr)1391 nir_intrinsic_barycentric_sysval(nir_intrinsic_instr *intr)
1392 {
1393 	enum glsl_interp_mode interp_mode = nir_intrinsic_interp_mode(intr);
1394 	gl_system_value sysval;
1395 
1396 	switch (intr->intrinsic) {
1397 	case nir_intrinsic_load_barycentric_pixel:
1398 		if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1399 			sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1400 		else
1401 			sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1402 		break;
1403 	case nir_intrinsic_load_barycentric_centroid:
1404 		if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1405 			sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_CENTROID;
1406 		else
1407 			sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_CENTROID;
1408 		break;
1409 	case nir_intrinsic_load_barycentric_sample:
1410 		if (interp_mode == INTERP_MODE_NOPERSPECTIVE)
1411 			sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE;
1412 		else
1413 			sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE;
1414 		break;
1415 	default:
1416 		unreachable("invalid barycentric intrinsic");
1417 	}
1418 
1419 	return sysval;
1420 }
1421 
1422 static void
emit_intrinsic_barycentric(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1423 emit_intrinsic_barycentric(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1424 		struct ir3_instruction **dst)
1425 {
1426 	gl_system_value sysval = nir_intrinsic_barycentric_sysval(intr);
1427 
1428 	if (!ctx->so->key.msaa) {
1429 		if (sysval == SYSTEM_VALUE_BARYCENTRIC_PERSP_SAMPLE)
1430 			sysval = SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1431 		if (sysval == SYSTEM_VALUE_BARYCENTRIC_LINEAR_SAMPLE)
1432 			sysval = SYSTEM_VALUE_BARYCENTRIC_LINEAR_PIXEL;
1433 	}
1434 
1435 	enum ir3_bary bary = sysval - SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL;
1436 
1437 	struct ir3_instruction *ij = get_barycentric(ctx, bary);
1438 	ir3_split_dest(ctx->block, dst, ij, 0, 2);
1439 }
1440 
1441 static struct ir3_instruction *
get_frag_coord(struct ir3_context * ctx,nir_intrinsic_instr * intr)1442 get_frag_coord(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1443 {
1444 	if (!ctx->frag_coord) {
1445 		struct ir3_block *b = ctx->in_block;
1446 		struct ir3_instruction *xyzw[4];
1447 		struct ir3_instruction *hw_frag_coord;
1448 
1449 		hw_frag_coord = create_sysval_input(ctx, SYSTEM_VALUE_FRAG_COORD, 0xf);
1450 		ir3_split_dest(b, xyzw, hw_frag_coord, 0, 4);
1451 
1452 		/* for frag_coord.xy, we get unsigned values.. we need
1453 		 * to subtract (integer) 8 and divide by 16 (right-
1454 		 * shift by 4) then convert to float:
1455 		 *
1456 		 *    sub.s tmp, src, 8
1457 		 *    shr.b tmp, tmp, 4
1458 		 *    mov.u32f32 dst, tmp
1459 		 *
1460 		 */
1461 		for (int i = 0; i < 2; i++) {
1462 			xyzw[i] = ir3_COV(b, xyzw[i], TYPE_U32, TYPE_F32);
1463 			xyzw[i] = ir3_MUL_F(b, xyzw[i], 0, create_immed(b, fui(1.0 / 16.0)), 0);
1464 		}
1465 
1466 		ctx->frag_coord = ir3_create_collect(ctx, xyzw, 4);
1467 	}
1468 
1469 	ctx->so->fragcoord_compmask |=
1470 			nir_ssa_def_components_read(&intr->dest.ssa);
1471 
1472 	return ctx->frag_coord;
1473 }
1474 
1475 static void setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr);
1476 static void setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr);
1477 
1478 static void
emit_intrinsic(struct ir3_context * ctx,nir_intrinsic_instr * intr)1479 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1480 {
1481 	const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1482 	struct ir3_instruction **dst;
1483 	struct ir3_instruction * const *src;
1484 	struct ir3_block *b = ctx->block;
1485 	unsigned dest_components = nir_intrinsic_dest_components(intr);
1486 	int idx;
1487 
1488 	if (info->has_dest) {
1489 		dst = ir3_get_dst(ctx, &intr->dest, dest_components);
1490 	} else {
1491 		dst = NULL;
1492 	}
1493 
1494 	const struct ir3_const_state *const_state = ir3_const_state(ctx->so);
1495 	const unsigned primitive_param = const_state->offsets.primitive_param * 4;
1496 	const unsigned primitive_map = const_state->offsets.primitive_map * 4;
1497 
1498 	switch (intr->intrinsic) {
1499 	case nir_intrinsic_load_uniform:
1500 		idx = nir_intrinsic_base(intr);
1501 		if (nir_src_is_const(intr->src[0])) {
1502 			idx += nir_src_as_uint(intr->src[0]);
1503 			for (int i = 0; i < dest_components; i++) {
1504 				dst[i] = create_uniform_typed(b, idx + i,
1505 					nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32);
1506 			}
1507 		} else {
1508 			src = ir3_get_src(ctx, &intr->src[0]);
1509 			for (int i = 0; i < dest_components; i++) {
1510 				dst[i] = create_uniform_indirect(b, idx + i,
1511 						nir_dest_bit_size(intr->dest) == 16 ? TYPE_F16 : TYPE_F32,
1512 						ir3_get_addr0(ctx, src[0], 1));
1513 			}
1514 			/* NOTE: if relative addressing is used, we set
1515 			 * constlen in the compiler (to worst-case value)
1516 			 * since we don't know in the assembler what the max
1517 			 * addr reg value can be:
1518 			 */
1519 			ctx->so->constlen = MAX2(ctx->so->constlen,
1520 					const_state->ubo_state.size / 16);
1521 		}
1522 		break;
1523 
1524 	case nir_intrinsic_load_vs_primitive_stride_ir3:
1525 		dst[0] = create_uniform(b, primitive_param + 0);
1526 		break;
1527 	case nir_intrinsic_load_vs_vertex_stride_ir3:
1528 		dst[0] = create_uniform(b, primitive_param + 1);
1529 		break;
1530 	case nir_intrinsic_load_hs_patch_stride_ir3:
1531 		dst[0] = create_uniform(b, primitive_param + 2);
1532 		break;
1533 	case nir_intrinsic_load_patch_vertices_in:
1534 		dst[0] = create_uniform(b, primitive_param + 3);
1535 		break;
1536 	case nir_intrinsic_load_tess_param_base_ir3:
1537 		dst[0] = create_uniform(b, primitive_param + 4);
1538 		dst[1] = create_uniform(b, primitive_param + 5);
1539 		break;
1540 	case nir_intrinsic_load_tess_factor_base_ir3:
1541 		dst[0] = create_uniform(b, primitive_param + 6);
1542 		dst[1] = create_uniform(b, primitive_param + 7);
1543 		break;
1544 
1545 	case nir_intrinsic_load_primitive_location_ir3:
1546 		idx = nir_intrinsic_driver_location(intr);
1547 		dst[0] = create_uniform(b, primitive_map + idx);
1548 		break;
1549 
1550 	case nir_intrinsic_load_gs_header_ir3:
1551 		dst[0] = ctx->gs_header;
1552 		break;
1553 	case nir_intrinsic_load_tcs_header_ir3:
1554 		dst[0] = ctx->tcs_header;
1555 		break;
1556 
1557 	case nir_intrinsic_load_primitive_id:
1558 		dst[0] = ctx->primitive_id;
1559 		break;
1560 
1561 	case nir_intrinsic_load_tess_coord:
1562 		if (!ctx->tess_coord) {
1563 			ctx->tess_coord =
1564 				create_sysval_input(ctx, SYSTEM_VALUE_TESS_COORD, 0x3);
1565 		}
1566 		ir3_split_dest(b, dst, ctx->tess_coord, 0, 2);
1567 
1568 		/* Unused, but ir3_put_dst() below wants to free something */
1569 		dst[2] = create_immed(b, 0);
1570 		break;
1571 
1572 	case nir_intrinsic_end_patch_ir3:
1573 		assert(ctx->so->type == MESA_SHADER_TESS_CTRL);
1574 		struct ir3_instruction *end = ir3_PREDE(b);
1575 		array_insert(b, b->keeps, end);
1576 
1577 		end->barrier_class = IR3_BARRIER_EVERYTHING;
1578 		end->barrier_conflict = IR3_BARRIER_EVERYTHING;
1579 		break;
1580 
1581 	case nir_intrinsic_store_global_ir3: {
1582 		struct ir3_instruction *value, *addr, *offset;
1583 		unsigned ncomp = nir_intrinsic_src_components(intr, 0);
1584 
1585 		addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1586 				ir3_get_src(ctx, &intr->src[1])[0],
1587 				ir3_get_src(ctx, &intr->src[1])[1]
1588 		}, 2);
1589 
1590 		offset = ir3_get_src(ctx, &intr->src[2])[0];
1591 
1592 		value = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), ncomp);
1593 
1594 		struct ir3_instruction *stg =
1595 			ir3_STG_G(ctx->block, addr, 0, value, 0,
1596 					  create_immed(ctx->block, ncomp), 0, offset, 0);
1597 		stg->cat6.type = TYPE_U32;
1598 		stg->cat6.iim_val = 1;
1599 
1600 		array_insert(b, b->keeps, stg);
1601 
1602 		stg->barrier_class = IR3_BARRIER_BUFFER_W;
1603 		stg->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1604 		break;
1605 	}
1606 
1607 	case nir_intrinsic_load_global_ir3: {
1608 		struct ir3_instruction *addr, *offset;
1609 
1610 		addr = ir3_create_collect(ctx, (struct ir3_instruction*[]){
1611 				ir3_get_src(ctx, &intr->src[0])[0],
1612 				ir3_get_src(ctx, &intr->src[0])[1]
1613 		}, 2);
1614 
1615 		offset = ir3_get_src(ctx, &intr->src[1])[0];
1616 
1617 		struct ir3_instruction *load =
1618 			ir3_LDG(b, addr, 0, create_immed(ctx->block, dest_components),
1619 					0, offset, 0);
1620 		load->cat6.type = TYPE_U32;
1621 		load->regs[0]->wrmask = MASK(dest_components);
1622 
1623 		load->barrier_class = IR3_BARRIER_BUFFER_R;
1624 		load->barrier_conflict = IR3_BARRIER_BUFFER_W;
1625 
1626 		ir3_split_dest(b, dst, load, 0, dest_components);
1627 		break;
1628 	}
1629 
1630 	case nir_intrinsic_load_ubo:
1631 		emit_intrinsic_load_ubo(ctx, intr, dst);
1632 		break;
1633 	case nir_intrinsic_load_ubo_vec4:
1634 		emit_intrinsic_load_ubo_ldc(ctx, intr, dst);
1635 		break;
1636 	case nir_intrinsic_load_frag_coord:
1637 		ir3_split_dest(b, dst, get_frag_coord(ctx, intr), 0, 4);
1638 		break;
1639 	case nir_intrinsic_load_sample_pos_from_id: {
1640 		/* NOTE: blob seems to always use TYPE_F16 and then cov.f16f32,
1641 		 * but that doesn't seem necessary.
1642 		 */
1643 		struct ir3_instruction *offset =
1644 			ir3_RGETPOS(b, ir3_get_src(ctx, &intr->src[0])[0], 0);
1645 		offset->regs[0]->wrmask = 0x3;
1646 		offset->cat5.type = TYPE_F32;
1647 
1648 		ir3_split_dest(b, dst, offset, 0, 2);
1649 
1650 		break;
1651 	}
1652 	case nir_intrinsic_load_size_ir3:
1653 		if (!ctx->ij[IJ_PERSP_SIZE]) {
1654 			ctx->ij[IJ_PERSP_SIZE] =
1655 				create_sysval_input(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_SIZE, 0x1);
1656 		}
1657 		dst[0] = ctx->ij[IJ_PERSP_SIZE];
1658 		break;
1659 	case nir_intrinsic_load_barycentric_centroid:
1660 	case nir_intrinsic_load_barycentric_sample:
1661 	case nir_intrinsic_load_barycentric_pixel:
1662 		emit_intrinsic_barycentric(ctx, intr, dst);
1663 		break;
1664 	case nir_intrinsic_load_interpolated_input:
1665 	case nir_intrinsic_load_input:
1666 		setup_input(ctx, intr);
1667 		break;
1668 	/* All SSBO intrinsics should have been lowered by 'lower_io_offsets'
1669 	 * pass and replaced by an ir3-specifc version that adds the
1670 	 * dword-offset in the last source.
1671 	 */
1672 	case nir_intrinsic_load_ssbo_ir3:
1673 		ctx->funcs->emit_intrinsic_load_ssbo(ctx, intr, dst);
1674 		break;
1675 	case nir_intrinsic_store_ssbo_ir3:
1676 		if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1677 				!ctx->s->info.fs.early_fragment_tests)
1678 			ctx->so->no_earlyz = true;
1679 		ctx->funcs->emit_intrinsic_store_ssbo(ctx, intr);
1680 		break;
1681 	case nir_intrinsic_get_ssbo_size:
1682 		emit_intrinsic_ssbo_size(ctx, intr, dst);
1683 		break;
1684 	case nir_intrinsic_ssbo_atomic_add_ir3:
1685 	case nir_intrinsic_ssbo_atomic_imin_ir3:
1686 	case nir_intrinsic_ssbo_atomic_umin_ir3:
1687 	case nir_intrinsic_ssbo_atomic_imax_ir3:
1688 	case nir_intrinsic_ssbo_atomic_umax_ir3:
1689 	case nir_intrinsic_ssbo_atomic_and_ir3:
1690 	case nir_intrinsic_ssbo_atomic_or_ir3:
1691 	case nir_intrinsic_ssbo_atomic_xor_ir3:
1692 	case nir_intrinsic_ssbo_atomic_exchange_ir3:
1693 	case nir_intrinsic_ssbo_atomic_comp_swap_ir3:
1694 		if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1695 				!ctx->s->info.fs.early_fragment_tests)
1696 			ctx->so->no_earlyz = true;
1697 		dst[0] = ctx->funcs->emit_intrinsic_atomic_ssbo(ctx, intr);
1698 		break;
1699 	case nir_intrinsic_load_shared:
1700 		emit_intrinsic_load_shared(ctx, intr, dst);
1701 		break;
1702 	case nir_intrinsic_store_shared:
1703 		emit_intrinsic_store_shared(ctx, intr);
1704 		break;
1705 	case nir_intrinsic_shared_atomic_add:
1706 	case nir_intrinsic_shared_atomic_imin:
1707 	case nir_intrinsic_shared_atomic_umin:
1708 	case nir_intrinsic_shared_atomic_imax:
1709 	case nir_intrinsic_shared_atomic_umax:
1710 	case nir_intrinsic_shared_atomic_and:
1711 	case nir_intrinsic_shared_atomic_or:
1712 	case nir_intrinsic_shared_atomic_xor:
1713 	case nir_intrinsic_shared_atomic_exchange:
1714 	case nir_intrinsic_shared_atomic_comp_swap:
1715 		dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
1716 		break;
1717 	case nir_intrinsic_image_load:
1718 		emit_intrinsic_load_image(ctx, intr, dst);
1719 		break;
1720 	case nir_intrinsic_bindless_image_load:
1721 		/* Bindless uses the IBO state, which doesn't have swizzle filled out,
1722 		 * so using isam doesn't work.
1723 		 *
1724 		 * TODO: can we use isam if we fill out more fields?
1725 		 */
1726 		ctx->funcs->emit_intrinsic_load_image(ctx, intr, dst);
1727 		break;
1728 	case nir_intrinsic_image_store:
1729 	case nir_intrinsic_bindless_image_store:
1730 		if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1731 				!ctx->s->info.fs.early_fragment_tests)
1732 			ctx->so->no_earlyz = true;
1733 		ctx->funcs->emit_intrinsic_store_image(ctx, intr);
1734 		break;
1735 	case nir_intrinsic_image_size:
1736 	case nir_intrinsic_bindless_image_size:
1737 		ctx->funcs->emit_intrinsic_image_size(ctx, intr, dst);
1738 		break;
1739 	case nir_intrinsic_image_atomic_add:
1740 	case nir_intrinsic_bindless_image_atomic_add:
1741 	case nir_intrinsic_image_atomic_imin:
1742 	case nir_intrinsic_bindless_image_atomic_imin:
1743 	case nir_intrinsic_image_atomic_umin:
1744 	case nir_intrinsic_bindless_image_atomic_umin:
1745 	case nir_intrinsic_image_atomic_imax:
1746 	case nir_intrinsic_bindless_image_atomic_imax:
1747 	case nir_intrinsic_image_atomic_umax:
1748 	case nir_intrinsic_bindless_image_atomic_umax:
1749 	case nir_intrinsic_image_atomic_and:
1750 	case nir_intrinsic_bindless_image_atomic_and:
1751 	case nir_intrinsic_image_atomic_or:
1752 	case nir_intrinsic_bindless_image_atomic_or:
1753 	case nir_intrinsic_image_atomic_xor:
1754 	case nir_intrinsic_bindless_image_atomic_xor:
1755 	case nir_intrinsic_image_atomic_exchange:
1756 	case nir_intrinsic_bindless_image_atomic_exchange:
1757 	case nir_intrinsic_image_atomic_comp_swap:
1758 	case nir_intrinsic_bindless_image_atomic_comp_swap:
1759 		if ((ctx->so->type == MESA_SHADER_FRAGMENT) &&
1760 				!ctx->s->info.fs.early_fragment_tests)
1761 			ctx->so->no_earlyz = true;
1762 		dst[0] = ctx->funcs->emit_intrinsic_atomic_image(ctx, intr);
1763 		break;
1764 	case nir_intrinsic_control_barrier:
1765 	case nir_intrinsic_memory_barrier:
1766 	case nir_intrinsic_group_memory_barrier:
1767 	case nir_intrinsic_memory_barrier_buffer:
1768 	case nir_intrinsic_memory_barrier_image:
1769 	case nir_intrinsic_memory_barrier_shared:
1770 		emit_intrinsic_barrier(ctx, intr);
1771 		/* note that blk ptr no longer valid, make that obvious: */
1772 		b = NULL;
1773 		break;
1774 	case nir_intrinsic_store_output:
1775 		setup_output(ctx, intr);
1776 		break;
1777 	case nir_intrinsic_load_base_vertex:
1778 	case nir_intrinsic_load_first_vertex:
1779 		if (!ctx->basevertex) {
1780 			ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
1781 		}
1782 		dst[0] = ctx->basevertex;
1783 		break;
1784 	case nir_intrinsic_load_draw_id:
1785 		if (!ctx->draw_id) {
1786 			ctx->draw_id = create_driver_param(ctx, IR3_DP_DRAWID);
1787 		}
1788 		dst[0] = ctx->draw_id;
1789 		break;
1790 	case nir_intrinsic_load_base_instance:
1791 		if (!ctx->base_instance) {
1792 			ctx->base_instance = create_driver_param(ctx, IR3_DP_INSTID_BASE);
1793 		}
1794 		dst[0] = ctx->base_instance;
1795 		break;
1796 	case nir_intrinsic_load_view_index:
1797 		if (!ctx->view_index) {
1798 			ctx->view_index = create_sysval_input(ctx, SYSTEM_VALUE_VIEW_INDEX, 0x1);
1799 		}
1800 		dst[0] = ctx->view_index;
1801 		break;
1802 	case nir_intrinsic_load_vertex_id_zero_base:
1803 	case nir_intrinsic_load_vertex_id:
1804 		if (!ctx->vertex_id) {
1805 			gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
1806 				SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
1807 			ctx->vertex_id = create_sysval_input(ctx, sv, 0x1);
1808 		}
1809 		dst[0] = ctx->vertex_id;
1810 		break;
1811 	case nir_intrinsic_load_instance_id:
1812 		if (!ctx->instance_id) {
1813 			ctx->instance_id = create_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID, 0x1);
1814 		}
1815 		dst[0] = ctx->instance_id;
1816 		break;
1817 	case nir_intrinsic_load_sample_id:
1818 		ctx->so->per_samp = true;
1819 		/* fall-thru */
1820 	case nir_intrinsic_load_sample_id_no_per_sample:
1821 		if (!ctx->samp_id) {
1822 			ctx->samp_id = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_ID, 0x1);
1823 			ctx->samp_id->regs[0]->flags |= IR3_REG_HALF;
1824 		}
1825 		dst[0] = ir3_COV(b, ctx->samp_id, TYPE_U16, TYPE_U32);
1826 		break;
1827 	case nir_intrinsic_load_sample_mask_in:
1828 		if (!ctx->samp_mask_in) {
1829 			ctx->samp_mask_in = create_sysval_input(ctx, SYSTEM_VALUE_SAMPLE_MASK_IN, 0x1);
1830 		}
1831 		dst[0] = ctx->samp_mask_in;
1832 		break;
1833 	case nir_intrinsic_load_user_clip_plane:
1834 		idx = nir_intrinsic_ucp_id(intr);
1835 		for (int i = 0; i < dest_components; i++) {
1836 			unsigned n = idx * 4 + i;
1837 			dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
1838 		}
1839 		break;
1840 	case nir_intrinsic_load_front_face:
1841 		if (!ctx->frag_face) {
1842 			ctx->so->frag_face = true;
1843 			ctx->frag_face = create_sysval_input(ctx, SYSTEM_VALUE_FRONT_FACE, 0x1);
1844 			ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
1845 		}
1846 		/* for fragface, we get -1 for back and 0 for front. However this is
1847 		 * the inverse of what nir expects (where ~0 is true).
1848 		 */
1849 		dst[0] = ir3_CMPS_S(b,
1850 				ctx->frag_face, 0,
1851 				create_immed_typed(b, 0, TYPE_U16), 0);
1852 		dst[0]->cat2.condition = IR3_COND_EQ;
1853 		break;
1854 	case nir_intrinsic_load_local_invocation_id:
1855 		if (!ctx->local_invocation_id) {
1856 			ctx->local_invocation_id =
1857 				create_sysval_input(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID, 0x7);
1858 		}
1859 		ir3_split_dest(b, dst, ctx->local_invocation_id, 0, 3);
1860 		break;
1861 	case nir_intrinsic_load_work_group_id:
1862 		if (!ctx->work_group_id) {
1863 			ctx->work_group_id =
1864 				create_sysval_input(ctx, SYSTEM_VALUE_WORK_GROUP_ID, 0x7);
1865 			ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
1866 		}
1867 		ir3_split_dest(b, dst, ctx->work_group_id, 0, 3);
1868 		break;
1869 	case nir_intrinsic_load_num_work_groups:
1870 		for (int i = 0; i < dest_components; i++) {
1871 			dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
1872 		}
1873 		break;
1874 	case nir_intrinsic_load_local_group_size:
1875 		for (int i = 0; i < dest_components; i++) {
1876 			dst[i] = create_driver_param(ctx, IR3_DP_LOCAL_GROUP_SIZE_X + i);
1877 		}
1878 		break;
1879 	case nir_intrinsic_discard_if:
1880 	case nir_intrinsic_discard: {
1881 		struct ir3_instruction *cond, *kill;
1882 
1883 		if (intr->intrinsic == nir_intrinsic_discard_if) {
1884 			/* conditional discard: */
1885 			src = ir3_get_src(ctx, &intr->src[0]);
1886 			cond = src[0];
1887 		} else {
1888 			/* unconditional discard: */
1889 			cond = create_immed(b, 1);
1890 		}
1891 
1892 		/* NOTE: only cmps.*.* can write p0.x: */
1893 		cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1894 		cond->cat2.condition = IR3_COND_NE;
1895 
1896 		/* condition always goes in predicate register: */
1897 		cond->regs[0]->num = regid(REG_P0, 0);
1898 		cond->regs[0]->flags &= ~IR3_REG_SSA;
1899 
1900 		kill = ir3_KILL(b, cond, 0);
1901 		kill->regs[1]->num = regid(REG_P0, 0);
1902 		array_insert(ctx->ir, ctx->ir->predicates, kill);
1903 
1904 		array_insert(b, b->keeps, kill);
1905 		ctx->so->has_kill = true;
1906 
1907 		break;
1908 	}
1909 
1910 	case nir_intrinsic_cond_end_ir3: {
1911 		struct ir3_instruction *cond, *kill;
1912 
1913 		src = ir3_get_src(ctx, &intr->src[0]);
1914 		cond = src[0];
1915 
1916 		/* NOTE: only cmps.*.* can write p0.x: */
1917 		cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
1918 		cond->cat2.condition = IR3_COND_NE;
1919 
1920 		/* condition always goes in predicate register: */
1921 		cond->regs[0]->num = regid(REG_P0, 0);
1922 
1923 		kill = ir3_PREDT(b, cond, 0);
1924 
1925 		kill->barrier_class = IR3_BARRIER_EVERYTHING;
1926 		kill->barrier_conflict = IR3_BARRIER_EVERYTHING;
1927 
1928 		array_insert(ctx->ir, ctx->ir->predicates, kill);
1929 		array_insert(b, b->keeps, kill);
1930 		break;
1931 	}
1932 
1933 	case nir_intrinsic_load_shared_ir3:
1934 		emit_intrinsic_load_shared_ir3(ctx, intr, dst);
1935 		break;
1936 	case nir_intrinsic_store_shared_ir3:
1937 		emit_intrinsic_store_shared_ir3(ctx, intr);
1938 		break;
1939 	case nir_intrinsic_bindless_resource_ir3:
1940 		dst[0] = ir3_get_src(ctx, &intr->src[0])[0];
1941 		break;
1942 	default:
1943 		ir3_context_error(ctx, "Unhandled intrinsic type: %s\n",
1944 				nir_intrinsic_infos[intr->intrinsic].name);
1945 		break;
1946 	}
1947 
1948 	if (info->has_dest)
1949 		ir3_put_dst(ctx, &intr->dest);
1950 }
1951 
1952 static void
emit_load_const(struct ir3_context * ctx,nir_load_const_instr * instr)1953 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
1954 {
1955 	struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &instr->def,
1956 			instr->def.num_components);
1957 
1958 	if (instr->def.bit_size == 16) {
1959 		for (int i = 0; i < instr->def.num_components; i++)
1960 			dst[i] = create_immed_typed(ctx->block,
1961 										instr->value[i].u16,
1962 										TYPE_U16);
1963 	} else {
1964 		for (int i = 0; i < instr->def.num_components; i++)
1965 			dst[i] = create_immed_typed(ctx->block,
1966 										instr->value[i].u32,
1967 										TYPE_U32);
1968 	}
1969 
1970 }
1971 
1972 static void
emit_undef(struct ir3_context * ctx,nir_ssa_undef_instr * undef)1973 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
1974 {
1975 	struct ir3_instruction **dst = ir3_get_dst_ssa(ctx, &undef->def,
1976 			undef->def.num_components);
1977 	type_t type = (undef->def.bit_size == 16) ? TYPE_U16 : TYPE_U32;
1978 
1979 	/* backend doesn't want undefined instructions, so just plug
1980 	 * in 0.0..
1981 	 */
1982 	for (int i = 0; i < undef->def.num_components; i++)
1983 		dst[i] = create_immed_typed(ctx->block, fui(0.0), type);
1984 }
1985 
1986 /*
1987  * texture fetch/sample instructions:
1988  */
1989 
1990 static type_t
get_tex_dest_type(nir_tex_instr * tex)1991 get_tex_dest_type(nir_tex_instr *tex)
1992 {
1993 	type_t type;
1994 
1995 	switch (nir_alu_type_get_base_type(tex->dest_type)) {
1996 	case nir_type_invalid:
1997 	case nir_type_float:
1998 		type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_F16 : TYPE_F32;
1999 		break;
2000 	case nir_type_int:
2001 		type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_S16 : TYPE_S32;
2002 		break;
2003 	case nir_type_uint:
2004 	case nir_type_bool:
2005 		type = nir_dest_bit_size(tex->dest) == 16 ? TYPE_U16 : TYPE_U32;
2006 		break;
2007 	default:
2008 		unreachable("bad dest_type");
2009 	}
2010 
2011 	return type;
2012 }
2013 
2014 static void
tex_info(nir_tex_instr * tex,unsigned * flagsp,unsigned * coordsp)2015 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2016 {
2017 	unsigned coords = glsl_get_sampler_dim_coordinate_components(tex->sampler_dim);
2018 	unsigned flags = 0;
2019 
2020 	/* note: would use tex->coord_components.. except txs.. also,
2021 	 * since array index goes after shadow ref, we don't want to
2022 	 * count it:
2023 	 */
2024 	if (coords == 3)
2025 		flags |= IR3_INSTR_3D;
2026 
2027 	if (tex->is_shadow && tex->op != nir_texop_lod)
2028 		flags |= IR3_INSTR_S;
2029 
2030 	if (tex->is_array && tex->op != nir_texop_lod)
2031 		flags |= IR3_INSTR_A;
2032 
2033 	*flagsp = flags;
2034 	*coordsp = coords;
2035 }
2036 
2037 /* Gets the sampler/texture idx as a hvec2.  Which could either be dynamic
2038  * or immediate (in which case it will get lowered later to a non .s2en
2039  * version of the tex instruction which encode tex/samp as immediates:
2040  */
2041 static struct tex_src_info
get_tex_samp_tex_src(struct ir3_context * ctx,nir_tex_instr * tex)2042 get_tex_samp_tex_src(struct ir3_context *ctx, nir_tex_instr *tex)
2043 {
2044 	struct ir3_block *b = ctx->block;
2045 	struct tex_src_info info = { 0 };
2046 	int texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_handle);
2047 	int sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_handle);
2048 	struct ir3_instruction *texture, *sampler;
2049 
2050 	if (texture_idx >= 0 || sampler_idx >= 0) {
2051 		/* Bindless case */
2052 		info.flags |= IR3_INSTR_B;
2053 
2054 		/* Gather information required to determine which encoding to
2055 		 * choose as well as for prefetch.
2056 		 */
2057 		nir_intrinsic_instr *bindless_tex = NULL;
2058 		bool tex_const;
2059 		if (texture_idx >= 0) {
2060 			ctx->so->bindless_tex = true;
2061 			bindless_tex = ir3_bindless_resource(tex->src[texture_idx].src);
2062 			assert(bindless_tex);
2063 			info.tex_base = nir_intrinsic_desc_set(bindless_tex);
2064 			tex_const = nir_src_is_const(bindless_tex->src[0]);
2065 			if (tex_const)
2066 				info.tex_idx = nir_src_as_uint(bindless_tex->src[0]);
2067 		} else {
2068 			/* To simplify some of the logic below, assume the index is
2069 			 * constant 0 when it's not enabled.
2070 			 */
2071 			tex_const = true;
2072 			info.tex_idx = 0;
2073 		}
2074 		nir_intrinsic_instr *bindless_samp = NULL;
2075 		bool samp_const;
2076 		if (sampler_idx >= 0) {
2077 			ctx->so->bindless_samp = true;
2078 			bindless_samp = ir3_bindless_resource(tex->src[sampler_idx].src);
2079 			assert(bindless_samp);
2080 			info.samp_base = nir_intrinsic_desc_set(bindless_samp);
2081 			samp_const = nir_src_is_const(bindless_samp->src[0]);
2082 			if (samp_const)
2083 				info.samp_idx = nir_src_as_uint(bindless_samp->src[0]);
2084 		} else {
2085 			samp_const = true;
2086 			info.samp_idx = 0;
2087 		}
2088 
2089 		/* Choose encoding. */
2090 		if (tex_const && samp_const && info.tex_idx < 256 && info.samp_idx < 256) {
2091 			if (info.tex_idx < 16 && info.samp_idx < 16 &&
2092 				(!bindless_tex || !bindless_samp || info.tex_base == info.samp_base)) {
2093 				/* Everything fits within the instruction */
2094 				info.base = info.tex_base;
2095 				info.combined_idx = info.samp_idx | (info.tex_idx << 4);
2096 			} else {
2097 				info.base = info.tex_base;
2098 				info.a1_val = info.tex_idx << 3 | info.samp_base;
2099 				info.combined_idx = info.samp_idx;
2100 				info.flags |= IR3_INSTR_A1EN;
2101 			}
2102 			info.samp_tex = NULL;
2103 		} else {
2104 			info.flags |= IR3_INSTR_S2EN;
2105 			/* In the indirect case, we only use a1.x to store the sampler
2106 			 * base if it differs from the texture base.
2107 			 */
2108 			if (!bindless_tex || !bindless_samp || info.tex_base == info.samp_base) {
2109 				info.base = info.tex_base;
2110 			} else {
2111 				info.base = info.tex_base;
2112 				info.a1_val = info.samp_base;
2113 				info.flags |= IR3_INSTR_A1EN;
2114 			}
2115 
2116 			/* Note: the indirect source is now a vec2 instead of hvec2, and
2117 			 * for some reason the texture and sampler are swapped.
2118 			 */
2119 			struct ir3_instruction *texture, *sampler;
2120 
2121 			if (bindless_tex) {
2122 				texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2123 			} else {
2124 				texture = create_immed(b, 0);
2125 			}
2126 
2127 			if (bindless_samp) {
2128 				sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2129 			} else {
2130 				sampler = create_immed(b, 0);
2131 			}
2132 			info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2133 				texture,
2134 				sampler,
2135 			}, 2);
2136 		}
2137 	} else {
2138 		info.flags |= IR3_INSTR_S2EN;
2139 		texture_idx = nir_tex_instr_src_index(tex, nir_tex_src_texture_offset);
2140 		sampler_idx = nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset);
2141 		if (texture_idx >= 0) {
2142 			texture = ir3_get_src(ctx, &tex->src[texture_idx].src)[0];
2143 			texture = ir3_COV(ctx->block, texture, TYPE_U32, TYPE_U16);
2144 		} else {
2145 			/* TODO what to do for dynamic case? I guess we only need the
2146 			 * max index for astc srgb workaround so maybe not a problem
2147 			 * to worry about if we don't enable indirect samplers for
2148 			 * a4xx?
2149 			 */
2150 			ctx->max_texture_index = MAX2(ctx->max_texture_index, tex->texture_index);
2151 			texture = create_immed_typed(ctx->block, tex->texture_index, TYPE_U16);
2152 			info.tex_idx = tex->texture_index;
2153 		}
2154 
2155 		if (sampler_idx >= 0) {
2156 			sampler = ir3_get_src(ctx, &tex->src[sampler_idx].src)[0];
2157 			sampler = ir3_COV(ctx->block, sampler, TYPE_U32, TYPE_U16);
2158 		} else {
2159 			sampler = create_immed_typed(ctx->block, tex->sampler_index, TYPE_U16);
2160 			info.samp_idx = tex->texture_index;
2161 		}
2162 
2163 		info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2164 			sampler,
2165 			texture,
2166 		}, 2);
2167 	}
2168 
2169 	return info;
2170 }
2171 
2172 static void
emit_tex(struct ir3_context * ctx,nir_tex_instr * tex)2173 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2174 {
2175 	struct ir3_block *b = ctx->block;
2176 	struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2177 	struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2178 	struct ir3_instruction *lod, *compare, *proj, *sample_index;
2179 	struct tex_src_info info = { 0 };
2180 	bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2181 	unsigned i, coords, flags, ncomp;
2182 	unsigned nsrc0 = 0, nsrc1 = 0;
2183 	type_t type;
2184 	opc_t opc = 0;
2185 
2186 	ncomp = nir_dest_num_components(tex->dest);
2187 
2188 	coord = off = ddx = ddy = NULL;
2189 	lod = proj = compare = sample_index = NULL;
2190 
2191 	dst = ir3_get_dst(ctx, &tex->dest, ncomp);
2192 
2193 	for (unsigned i = 0; i < tex->num_srcs; i++) {
2194 		switch (tex->src[i].src_type) {
2195 		case nir_tex_src_coord:
2196 			coord = ir3_get_src(ctx, &tex->src[i].src);
2197 			break;
2198 		case nir_tex_src_bias:
2199 			lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2200 			has_bias = true;
2201 			break;
2202 		case nir_tex_src_lod:
2203 			lod = ir3_get_src(ctx, &tex->src[i].src)[0];
2204 			has_lod = true;
2205 			break;
2206 		case nir_tex_src_comparator: /* shadow comparator */
2207 			compare = ir3_get_src(ctx, &tex->src[i].src)[0];
2208 			break;
2209 		case nir_tex_src_projector:
2210 			proj = ir3_get_src(ctx, &tex->src[i].src)[0];
2211 			has_proj = true;
2212 			break;
2213 		case nir_tex_src_offset:
2214 			off = ir3_get_src(ctx, &tex->src[i].src);
2215 			has_off = true;
2216 			break;
2217 		case nir_tex_src_ddx:
2218 			ddx = ir3_get_src(ctx, &tex->src[i].src);
2219 			break;
2220 		case nir_tex_src_ddy:
2221 			ddy = ir3_get_src(ctx, &tex->src[i].src);
2222 			break;
2223 		case nir_tex_src_ms_index:
2224 			sample_index = ir3_get_src(ctx, &tex->src[i].src)[0];
2225 			break;
2226 		case nir_tex_src_texture_offset:
2227 		case nir_tex_src_sampler_offset:
2228 		case nir_tex_src_texture_handle:
2229 		case nir_tex_src_sampler_handle:
2230 			/* handled in get_tex_samp_src() */
2231 			break;
2232 		default:
2233 			ir3_context_error(ctx, "Unhandled NIR tex src type: %d\n",
2234 					tex->src[i].src_type);
2235 			return;
2236 		}
2237 	}
2238 
2239 	switch (tex->op) {
2240 	case nir_texop_tex_prefetch:
2241 		compile_assert(ctx, !has_bias);
2242 		compile_assert(ctx, !has_lod);
2243 		compile_assert(ctx, !compare);
2244 		compile_assert(ctx, !has_proj);
2245 		compile_assert(ctx, !has_off);
2246 		compile_assert(ctx, !ddx);
2247 		compile_assert(ctx, !ddy);
2248 		compile_assert(ctx, !sample_index);
2249 		compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_texture_offset) < 0);
2250 		compile_assert(ctx, nir_tex_instr_src_index(tex, nir_tex_src_sampler_offset) < 0);
2251 
2252 		if (ctx->so->num_sampler_prefetch < ctx->prefetch_limit) {
2253 			opc = OPC_META_TEX_PREFETCH;
2254 			ctx->so->num_sampler_prefetch++;
2255 			break;
2256 		}
2257 		/* fallthru */
2258 	case nir_texop_tex:      opc = has_lod ? OPC_SAML : OPC_SAM; break;
2259 	case nir_texop_txb:      opc = OPC_SAMB;     break;
2260 	case nir_texop_txl:      opc = OPC_SAML;     break;
2261 	case nir_texop_txd:      opc = OPC_SAMGQ;    break;
2262 	case nir_texop_txf:      opc = OPC_ISAML;    break;
2263 	case nir_texop_lod:      opc = OPC_GETLOD;   break;
2264 	case nir_texop_tg4:
2265 		/* NOTE: a4xx might need to emulate gather w/ txf (this is
2266 		 * what blob does, seems gather  is broken?), and a3xx did
2267 		 * not support it (but probably could also emulate).
2268 		 */
2269 		switch (tex->component) {
2270 		case 0:              opc = OPC_GATHER4R; break;
2271 		case 1:              opc = OPC_GATHER4G; break;
2272 		case 2:              opc = OPC_GATHER4B; break;
2273 		case 3:              opc = OPC_GATHER4A; break;
2274 		}
2275 		break;
2276 	case nir_texop_txf_ms_fb:
2277 	case nir_texop_txf_ms:   opc = OPC_ISAMM;    break;
2278 	default:
2279 		ir3_context_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2280 		return;
2281 	}
2282 
2283 	tex_info(tex, &flags, &coords);
2284 
2285 	/*
2286 	 * lay out the first argument in the proper order:
2287 	 *  - actual coordinates first
2288 	 *  - shadow reference
2289 	 *  - array index
2290 	 *  - projection w
2291 	 *  - starting at offset 4, dpdx.xy, dpdy.xy
2292 	 *
2293 	 * bias/lod go into the second arg
2294 	 */
2295 
2296 	/* insert tex coords: */
2297 	for (i = 0; i < coords; i++)
2298 		src0[i] = coord[i];
2299 
2300 	nsrc0 = i;
2301 
2302 	/* scale up integer coords for TXF based on the LOD */
2303 	if (ctx->compiler->unminify_coords && (opc == OPC_ISAML)) {
2304 		assert(has_lod);
2305 		for (i = 0; i < coords; i++)
2306 			src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2307 	}
2308 
2309 	if (coords == 1) {
2310 		/* hw doesn't do 1d, so we treat it as 2d with
2311 		 * height of 1, and patch up the y coord.
2312 		 */
2313 		if (is_isam(opc)) {
2314 			src0[nsrc0++] = create_immed(b, 0);
2315 		} else {
2316 			src0[nsrc0++] = create_immed(b, fui(0.5));
2317 		}
2318 	}
2319 
2320 	if (tex->is_shadow && tex->op != nir_texop_lod)
2321 		src0[nsrc0++] = compare;
2322 
2323 	if (tex->is_array && tex->op != nir_texop_lod) {
2324 		struct ir3_instruction *idx = coord[coords];
2325 
2326 		/* the array coord for cube arrays needs 0.5 added to it */
2327 		if (ctx->compiler->array_index_add_half && !is_isam(opc))
2328 			idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2329 
2330 		src0[nsrc0++] = idx;
2331 	}
2332 
2333 	if (has_proj) {
2334 		src0[nsrc0++] = proj;
2335 		flags |= IR3_INSTR_P;
2336 	}
2337 
2338 	/* pad to 4, then ddx/ddy: */
2339 	if (tex->op == nir_texop_txd) {
2340 		while (nsrc0 < 4)
2341 			src0[nsrc0++] = create_immed(b, fui(0.0));
2342 		for (i = 0; i < coords; i++)
2343 			src0[nsrc0++] = ddx[i];
2344 		if (coords < 2)
2345 			src0[nsrc0++] = create_immed(b, fui(0.0));
2346 		for (i = 0; i < coords; i++)
2347 			src0[nsrc0++] = ddy[i];
2348 		if (coords < 2)
2349 			src0[nsrc0++] = create_immed(b, fui(0.0));
2350 	}
2351 
2352 	/* NOTE a3xx (and possibly a4xx?) might be different, using isaml
2353 	 * with scaled x coord according to requested sample:
2354 	 */
2355 	if (opc == OPC_ISAMM) {
2356 		if (ctx->compiler->txf_ms_with_isaml) {
2357 			/* the samples are laid out in x dimension as
2358 			 *     0 1 2 3
2359 			 * x_ms = (x << ms) + sample_index;
2360 			 */
2361 			struct ir3_instruction *ms;
2362 			ms = create_immed(b, (ctx->samples >> (2 * tex->texture_index)) & 3);
2363 
2364 			src0[0] = ir3_SHL_B(b, src0[0], 0, ms, 0);
2365 			src0[0] = ir3_ADD_U(b, src0[0], 0, sample_index, 0);
2366 
2367 			opc = OPC_ISAML;
2368 		} else {
2369 			src0[nsrc0++] = sample_index;
2370 		}
2371 	}
2372 
2373 	/*
2374 	 * second argument (if applicable):
2375 	 *  - offsets
2376 	 *  - lod
2377 	 *  - bias
2378 	 */
2379 	if (has_off | has_lod | has_bias) {
2380 		if (has_off) {
2381 			unsigned off_coords = coords;
2382 			if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2383 				off_coords--;
2384 			for (i = 0; i < off_coords; i++)
2385 				src1[nsrc1++] = off[i];
2386 			if (off_coords < 2)
2387 				src1[nsrc1++] = create_immed(b, fui(0.0));
2388 			flags |= IR3_INSTR_O;
2389 		}
2390 
2391 		if (has_lod | has_bias)
2392 			src1[nsrc1++] = lod;
2393 	}
2394 
2395 	type = get_tex_dest_type(tex);
2396 
2397 	if (opc == OPC_GETLOD)
2398 		type = TYPE_S32;
2399 
2400 
2401 	if (tex->op == nir_texop_txf_ms_fb) {
2402 		/* only expect a single txf_ms_fb per shader: */
2403 		compile_assert(ctx, !ctx->so->fb_read);
2404 		compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT);
2405 
2406 		ctx->so->fb_read = true;
2407 		info.samp_tex = ir3_create_collect(ctx, (struct ir3_instruction*[]){
2408 			create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2409 			create_immed_typed(ctx->block, ctx->so->num_samp, TYPE_U16),
2410 		}, 2);
2411 		info.flags = IR3_INSTR_S2EN;
2412 
2413 		ctx->so->num_samp++;
2414 	} else {
2415 		info = get_tex_samp_tex_src(ctx, tex);
2416 	}
2417 
2418 	struct ir3_instruction *col0 = ir3_create_collect(ctx, src0, nsrc0);
2419 	struct ir3_instruction *col1 = ir3_create_collect(ctx, src1, nsrc1);
2420 
2421 	if (opc == OPC_META_TEX_PREFETCH) {
2422 		int idx = nir_tex_instr_src_index(tex, nir_tex_src_coord);
2423 
2424 		compile_assert(ctx, tex->src[idx].src.is_ssa);
2425 
2426 		sam = ir3_META_TEX_PREFETCH(b);
2427 		__ssa_dst(sam)->wrmask = MASK(ncomp);   /* dst */
2428 		__ssa_src(sam, get_barycentric(ctx, IJ_PERSP_PIXEL), 0);
2429 		sam->prefetch.input_offset =
2430 				ir3_nir_coord_offset(tex->src[idx].src.ssa);
2431 		/* make sure not to add irrelevant flags like S2EN */
2432 		sam->flags = flags | (info.flags & IR3_INSTR_B);
2433 		sam->prefetch.tex  = info.tex_idx;
2434 		sam->prefetch.samp = info.samp_idx;
2435 		sam->prefetch.tex_base = info.tex_base;
2436 		sam->prefetch.samp_base = info.samp_base;
2437 	} else {
2438 		info.flags |= flags;
2439 		sam = emit_sam(ctx, opc, info, type, MASK(ncomp), col0, col1);
2440 	}
2441 
2442 	if ((ctx->astc_srgb & (1 << tex->texture_index)) && !nir_tex_instr_is_query(tex)) {
2443 		assert(opc != OPC_META_TEX_PREFETCH);
2444 
2445 		/* only need first 3 components: */
2446 		sam->regs[0]->wrmask = 0x7;
2447 		ir3_split_dest(b, dst, sam, 0, 3);
2448 
2449 		/* we need to sample the alpha separately with a non-ASTC
2450 		 * texture state:
2451 		 */
2452 		sam = ir3_SAM(b, opc, type, 0b1000, flags | info.flags,
2453 				info.samp_tex, col0, col1);
2454 
2455 		array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2456 
2457 		/* fixup .w component: */
2458 		ir3_split_dest(b, &dst[3], sam, 3, 1);
2459 	} else {
2460 		/* normal (non-workaround) case: */
2461 		ir3_split_dest(b, dst, sam, 0, ncomp);
2462 	}
2463 
2464 	/* GETLOD returns results in 4.8 fixed point */
2465 	if (opc == OPC_GETLOD) {
2466 		struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2467 
2468 		compile_assert(ctx, tex->dest_type == nir_type_float);
2469 		for (i = 0; i < 2; i++) {
2470 			dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_S32, TYPE_F32), 0,
2471 							   factor, 0);
2472 		}
2473 	}
2474 
2475 	ir3_put_dst(ctx, &tex->dest);
2476 }
2477 
2478 static void
emit_tex_info(struct ir3_context * ctx,nir_tex_instr * tex,unsigned idx)2479 emit_tex_info(struct ir3_context *ctx, nir_tex_instr *tex, unsigned idx)
2480 {
2481 	struct ir3_block *b = ctx->block;
2482 	struct ir3_instruction **dst, *sam;
2483 	type_t dst_type = get_tex_dest_type(tex);
2484 	struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2485 
2486 	dst = ir3_get_dst(ctx, &tex->dest, 1);
2487 
2488 	sam = emit_sam(ctx, OPC_GETINFO, info, dst_type, 1 << idx, NULL, NULL);
2489 
2490 	/* even though there is only one component, since it ends
2491 	 * up in .y/.z/.w rather than .x, we need a split_dest()
2492 	 */
2493 	ir3_split_dest(b, dst, sam, idx, 1);
2494 
2495 	/* The # of levels comes from getinfo.z. We need to add 1 to it, since
2496 	 * the value in TEX_CONST_0 is zero-based.
2497 	 */
2498 	if (ctx->compiler->levels_add_one)
2499 		dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2500 
2501 	ir3_put_dst(ctx, &tex->dest);
2502 }
2503 
2504 static void
emit_tex_txs(struct ir3_context * ctx,nir_tex_instr * tex)2505 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2506 {
2507 	struct ir3_block *b = ctx->block;
2508 	struct ir3_instruction **dst, *sam;
2509 	struct ir3_instruction *lod;
2510 	unsigned flags, coords;
2511 	type_t dst_type = get_tex_dest_type(tex);
2512 	struct tex_src_info info = get_tex_samp_tex_src(ctx, tex);
2513 
2514 	tex_info(tex, &flags, &coords);
2515 	info.flags |= flags;
2516 
2517 	/* Actually we want the number of dimensions, not coordinates. This
2518 	 * distinction only matters for cubes.
2519 	 */
2520 	if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2521 		coords = 2;
2522 
2523 	dst = ir3_get_dst(ctx, &tex->dest, 4);
2524 
2525 	int lod_idx = nir_tex_instr_src_index(tex, nir_tex_src_lod);
2526 	compile_assert(ctx, lod_idx >= 0);
2527 
2528 	lod = ir3_get_src(ctx, &tex->src[lod_idx].src)[0];
2529 
2530 	sam = emit_sam(ctx, OPC_GETSIZE, info, dst_type, 0b1111, lod, NULL);
2531 	ir3_split_dest(b, dst, sam, 0, 4);
2532 
2533 	/* Array size actually ends up in .w rather than .z. This doesn't
2534 	 * matter for miplevel 0, but for higher mips the value in z is
2535 	 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2536 	 * returned, which means that we have to add 1 to it for arrays.
2537 	 */
2538 	if (tex->is_array) {
2539 		if (ctx->compiler->levels_add_one) {
2540 			dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2541 		} else {
2542 			dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2543 		}
2544 	}
2545 
2546 	ir3_put_dst(ctx, &tex->dest);
2547 }
2548 
2549 static void
emit_jump(struct ir3_context * ctx,nir_jump_instr * jump)2550 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2551 {
2552 	switch (jump->type) {
2553 	case nir_jump_break:
2554 	case nir_jump_continue:
2555 	case nir_jump_return:
2556 		/* I *think* we can simply just ignore this, and use the
2557 		 * successor block link to figure out where we need to
2558 		 * jump to for break/continue
2559 		 */
2560 		break;
2561 	default:
2562 		ir3_context_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2563 		break;
2564 	}
2565 }
2566 
2567 static void
emit_instr(struct ir3_context * ctx,nir_instr * instr)2568 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2569 {
2570 	switch (instr->type) {
2571 	case nir_instr_type_alu:
2572 		emit_alu(ctx, nir_instr_as_alu(instr));
2573 		break;
2574 	case nir_instr_type_deref:
2575 		/* ignored, handled as part of the intrinsic they are src to */
2576 		break;
2577 	case nir_instr_type_intrinsic:
2578 		emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2579 		break;
2580 	case nir_instr_type_load_const:
2581 		emit_load_const(ctx, nir_instr_as_load_const(instr));
2582 		break;
2583 	case nir_instr_type_ssa_undef:
2584 		emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2585 		break;
2586 	case nir_instr_type_tex: {
2587 		nir_tex_instr *tex = nir_instr_as_tex(instr);
2588 		/* couple tex instructions get special-cased:
2589 		 */
2590 		switch (tex->op) {
2591 		case nir_texop_txs:
2592 			emit_tex_txs(ctx, tex);
2593 			break;
2594 		case nir_texop_query_levels:
2595 			emit_tex_info(ctx, tex, 2);
2596 			break;
2597 		case nir_texop_texture_samples:
2598 			emit_tex_info(ctx, tex, 3);
2599 			break;
2600 		default:
2601 			emit_tex(ctx, tex);
2602 			break;
2603 		}
2604 		break;
2605 	}
2606 	case nir_instr_type_jump:
2607 		emit_jump(ctx, nir_instr_as_jump(instr));
2608 		break;
2609 	case nir_instr_type_phi:
2610 		/* we have converted phi webs to regs in NIR by now */
2611 		ir3_context_error(ctx, "Unexpected NIR instruction type: %d\n", instr->type);
2612 		break;
2613 	case nir_instr_type_call:
2614 	case nir_instr_type_parallel_copy:
2615 		ir3_context_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2616 		break;
2617 	}
2618 }
2619 
2620 static struct ir3_block *
get_block(struct ir3_context * ctx,const nir_block * nblock)2621 get_block(struct ir3_context *ctx, const nir_block *nblock)
2622 {
2623 	struct ir3_block *block;
2624 	struct hash_entry *hentry;
2625 
2626 	hentry = _mesa_hash_table_search(ctx->block_ht, nblock);
2627 	if (hentry)
2628 		return hentry->data;
2629 
2630 	block = ir3_block_create(ctx->ir);
2631 	block->nblock = nblock;
2632 	_mesa_hash_table_insert(ctx->block_ht, nblock, block);
2633 
2634 	set_foreach(nblock->predecessors, sentry) {
2635 		_mesa_set_add(block->predecessors, get_block(ctx, sentry->key));
2636 	}
2637 
2638 	return block;
2639 }
2640 
2641 static void
emit_block(struct ir3_context * ctx,nir_block * nblock)2642 emit_block(struct ir3_context *ctx, nir_block *nblock)
2643 {
2644 	struct ir3_block *block = get_block(ctx, nblock);
2645 
2646 	for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2647 		if (nblock->successors[i]) {
2648 			block->successors[i] =
2649 				get_block(ctx, nblock->successors[i]);
2650 		}
2651 	}
2652 
2653 	ctx->block = block;
2654 	list_addtail(&block->node, &ctx->ir->block_list);
2655 
2656 	/* re-emit addr register in each block if needed: */
2657 	for (int i = 0; i < ARRAY_SIZE(ctx->addr0_ht); i++) {
2658 		_mesa_hash_table_destroy(ctx->addr0_ht[i], NULL);
2659 		ctx->addr0_ht[i] = NULL;
2660 	}
2661 
2662 	_mesa_hash_table_u64_destroy(ctx->addr1_ht, NULL);
2663 	ctx->addr1_ht = NULL;
2664 
2665 	nir_foreach_instr (instr, nblock) {
2666 		ctx->cur_instr = instr;
2667 		emit_instr(ctx, instr);
2668 		ctx->cur_instr = NULL;
2669 		if (ctx->error)
2670 			return;
2671 	}
2672 
2673 	_mesa_hash_table_clear(ctx->sel_cond_conversions, NULL);
2674 }
2675 
2676 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2677 
2678 static void
emit_if(struct ir3_context * ctx,nir_if * nif)2679 emit_if(struct ir3_context *ctx, nir_if *nif)
2680 {
2681 	struct ir3_instruction *condition = ir3_get_src(ctx, &nif->condition)[0];
2682 
2683 	ctx->block->condition = ir3_get_predicate(ctx, condition);
2684 
2685 	emit_cf_list(ctx, &nif->then_list);
2686 	emit_cf_list(ctx, &nif->else_list);
2687 }
2688 
2689 static void
emit_loop(struct ir3_context * ctx,nir_loop * nloop)2690 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2691 {
2692 	emit_cf_list(ctx, &nloop->body);
2693 	ctx->so->loops++;
2694 }
2695 
2696 static void
stack_push(struct ir3_context * ctx)2697 stack_push(struct ir3_context *ctx)
2698 {
2699 	ctx->stack++;
2700 	ctx->max_stack = MAX2(ctx->max_stack, ctx->stack);
2701 }
2702 
2703 static void
stack_pop(struct ir3_context * ctx)2704 stack_pop(struct ir3_context *ctx)
2705 {
2706 	compile_assert(ctx, ctx->stack > 0);
2707 	ctx->stack--;
2708 }
2709 
2710 static void
emit_cf_list(struct ir3_context * ctx,struct exec_list * list)2711 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2712 {
2713 	foreach_list_typed (nir_cf_node, node, node, list) {
2714 		switch (node->type) {
2715 		case nir_cf_node_block:
2716 			emit_block(ctx, nir_cf_node_as_block(node));
2717 			break;
2718 		case nir_cf_node_if:
2719 			stack_push(ctx);
2720 			emit_if(ctx, nir_cf_node_as_if(node));
2721 			stack_pop(ctx);
2722 			break;
2723 		case nir_cf_node_loop:
2724 			stack_push(ctx);
2725 			emit_loop(ctx, nir_cf_node_as_loop(node));
2726 			stack_pop(ctx);
2727 			break;
2728 		case nir_cf_node_function:
2729 			ir3_context_error(ctx, "TODO\n");
2730 			break;
2731 		}
2732 	}
2733 }
2734 
2735 /* emit stream-out code.  At this point, the current block is the original
2736  * (nir) end block, and nir ensures that all flow control paths terminate
2737  * into the end block.  We re-purpose the original end block to generate
2738  * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2739  * block holding stream-out write instructions, followed by the new end
2740  * block:
2741  *
2742  *   blockOrigEnd {
2743  *      p0.x = (vtxcnt < maxvtxcnt)
2744  *      // succs: blockStreamOut, blockNewEnd
2745  *   }
2746  *   blockStreamOut {
2747  *      // preds: blockOrigEnd
2748  *      ... stream-out instructions ...
2749  *      // succs: blockNewEnd
2750  *   }
2751  *   blockNewEnd {
2752  *      // preds: blockOrigEnd, blockStreamOut
2753  *   }
2754  */
2755 static void
emit_stream_out(struct ir3_context * ctx)2756 emit_stream_out(struct ir3_context *ctx)
2757 {
2758 	struct ir3 *ir = ctx->ir;
2759 	struct ir3_stream_output_info *strmout =
2760 			&ctx->so->shader->stream_output;
2761 	struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2762 	struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2763 	struct ir3_instruction *bases[IR3_MAX_SO_BUFFERS];
2764 
2765 	/* create vtxcnt input in input block at top of shader,
2766 	 * so that it is seen as live over the entire duration
2767 	 * of the shader:
2768 	 */
2769 	vtxcnt = create_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, 0x1);
2770 	maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2771 
2772 	/* at this point, we are at the original 'end' block,
2773 	 * re-purpose this block to stream-out condition, then
2774 	 * append stream-out block and new-end block
2775 	 */
2776 	orig_end_block = ctx->block;
2777 
2778 // maybe w/ store_global intrinsic, we could do this
2779 // stuff in nir->nir pass
2780 
2781 	stream_out_block = ir3_block_create(ir);
2782 	list_addtail(&stream_out_block->node, &ir->block_list);
2783 
2784 	new_end_block = ir3_block_create(ir);
2785 	list_addtail(&new_end_block->node, &ir->block_list);
2786 
2787 	orig_end_block->successors[0] = stream_out_block;
2788 	orig_end_block->successors[1] = new_end_block;
2789 
2790 	stream_out_block->successors[0] = new_end_block;
2791 	_mesa_set_add(stream_out_block->predecessors, orig_end_block);
2792 
2793 	_mesa_set_add(new_end_block->predecessors, orig_end_block);
2794 	_mesa_set_add(new_end_block->predecessors, stream_out_block);
2795 
2796 	/* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2797 	cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2798 	cond->regs[0]->num = regid(REG_P0, 0);
2799 	cond->regs[0]->flags &= ~IR3_REG_SSA;
2800 	cond->cat2.condition = IR3_COND_LT;
2801 
2802 	/* condition goes on previous block to the conditional,
2803 	 * since it is used to pick which of the two successor
2804 	 * paths to take:
2805 	 */
2806 	orig_end_block->condition = cond;
2807 
2808 	/* switch to stream_out_block to generate the stream-out
2809 	 * instructions:
2810 	 */
2811 	ctx->block = stream_out_block;
2812 
2813 	/* Calculate base addresses based on vtxcnt.  Instructions
2814 	 * generated for bases not used in following loop will be
2815 	 * stripped out in the backend.
2816 	 */
2817 	for (unsigned i = 0; i < IR3_MAX_SO_BUFFERS; i++) {
2818 		const struct ir3_const_state *const_state =
2819 				ir3_const_state(ctx->so);
2820 		unsigned stride = strmout->stride[i];
2821 		struct ir3_instruction *base, *off;
2822 
2823 		base = create_uniform(ctx->block, regid(const_state->offsets.tfbo, i));
2824 
2825 		/* 24-bit should be enough: */
2826 		off = ir3_MUL_U24(ctx->block, vtxcnt, 0,
2827 				create_immed(ctx->block, stride * 4), 0);
2828 
2829 		bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2830 	}
2831 
2832 	/* Generate the per-output store instructions: */
2833 	for (unsigned i = 0; i < strmout->num_outputs; i++) {
2834 		for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2835 			unsigned c = j + strmout->output[i].start_component;
2836 			struct ir3_instruction *base, *out, *stg;
2837 
2838 			base = bases[strmout->output[i].output_buffer];
2839 			out = ctx->outputs[regid(strmout->output[i].register_index, c)];
2840 
2841 			stg = ir3_STG(ctx->block, base, 0, out, 0,
2842 					create_immed(ctx->block, 1), 0);
2843 			stg->cat6.type = TYPE_U32;
2844 			stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2845 
2846 			array_insert(ctx->block, ctx->block->keeps, stg);
2847 		}
2848 	}
2849 
2850 	/* and finally switch to the new_end_block: */
2851 	ctx->block = new_end_block;
2852 }
2853 
2854 static void
emit_function(struct ir3_context * ctx,nir_function_impl * impl)2855 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2856 {
2857 	nir_metadata_require(impl, nir_metadata_block_index);
2858 
2859 	compile_assert(ctx, ctx->stack == 0);
2860 
2861 	emit_cf_list(ctx, &impl->body);
2862 	emit_block(ctx, impl->end_block);
2863 
2864 	compile_assert(ctx, ctx->stack == 0);
2865 
2866 	/* at this point, we should have a single empty block,
2867 	 * into which we emit the 'end' instruction.
2868 	 */
2869 	compile_assert(ctx, list_is_empty(&ctx->block->instr_list));
2870 
2871 	/* If stream-out (aka transform-feedback) enabled, emit the
2872 	 * stream-out instructions, followed by a new empty block (into
2873 	 * which the 'end' instruction lands).
2874 	 *
2875 	 * NOTE: it is done in this order, rather than inserting before
2876 	 * we emit end_block, because NIR guarantees that all blocks
2877 	 * flow into end_block, and that end_block has no successors.
2878 	 * So by re-purposing end_block as the first block of stream-
2879 	 * out, we guarantee that all exit paths flow into the stream-
2880 	 * out instructions.
2881 	 */
2882 	if ((ctx->compiler->gpu_id < 500) &&
2883 			(ctx->so->shader->stream_output.num_outputs > 0) &&
2884 			!ctx->so->binning_pass) {
2885 		debug_assert(ctx->so->type == MESA_SHADER_VERTEX);
2886 		emit_stream_out(ctx);
2887 	}
2888 
2889 	/* Vertex shaders in a tessellation or geometry pipeline treat END as a
2890 	 * NOP and has an epilogue that writes the VS outputs to local storage, to
2891 	 * be read by the HS.  Then it resets execution mask (chmask) and chains
2892 	 * to the next shader (chsh).
2893 	 */
2894 	if ((ctx->so->type == MESA_SHADER_VERTEX &&
2895 				(ctx->so->key.has_gs || ctx->so->key.tessellation)) ||
2896 			(ctx->so->type == MESA_SHADER_TESS_EVAL && ctx->so->key.has_gs)) {
2897 		struct ir3_instruction *chmask =
2898 			ir3_CHMASK(ctx->block);
2899 		chmask->barrier_class = IR3_BARRIER_EVERYTHING;
2900 		chmask->barrier_conflict = IR3_BARRIER_EVERYTHING;
2901 
2902 		struct ir3_instruction *chsh =
2903 			ir3_CHSH(ctx->block);
2904 		chsh->barrier_class = IR3_BARRIER_EVERYTHING;
2905 		chsh->barrier_conflict = IR3_BARRIER_EVERYTHING;
2906 	} else {
2907 		ir3_END(ctx->block);
2908 	}
2909 }
2910 
2911 static void
setup_input(struct ir3_context * ctx,nir_intrinsic_instr * intr)2912 setup_input(struct ir3_context *ctx, nir_intrinsic_instr *intr)
2913 {
2914 	struct ir3_shader_variant *so = ctx->so;
2915 	struct ir3_instruction *coord = NULL;
2916 
2917 	if (intr->intrinsic == nir_intrinsic_load_interpolated_input)
2918 		coord = ir3_create_collect(ctx, ir3_get_src(ctx, &intr->src[0]), 2);
2919 
2920 	compile_assert(ctx, nir_src_is_const(intr->src[coord ? 1 : 0]));
2921 
2922 	unsigned frac = nir_intrinsic_component(intr);
2923 	unsigned offset = nir_src_as_uint(intr->src[coord ? 1 : 0]);
2924 	unsigned ncomp = nir_intrinsic_dest_components(intr);
2925 	unsigned n = nir_intrinsic_base(intr) + offset;
2926 	unsigned slot = nir_intrinsic_io_semantics(intr).location + offset;
2927 	unsigned compmask;
2928 
2929 	/* Inputs are loaded using ldlw or ldg for other stages. */
2930 	compile_assert(ctx, ctx->so->type == MESA_SHADER_FRAGMENT ||
2931 						ctx->so->type == MESA_SHADER_VERTEX);
2932 
2933 	if (ctx->so->type == MESA_SHADER_FRAGMENT)
2934 		compmask = BITFIELD_MASK(ncomp) << frac;
2935 	else
2936 		compmask = BITFIELD_MASK(ncomp + frac);
2937 
2938 	/* for a4xx+ rasterflat */
2939 	if (so->inputs[n].rasterflat && ctx->so->key.rasterflat)
2940 		coord = NULL;
2941 
2942 	so->total_in += util_bitcount(compmask & ~so->inputs[n].compmask);
2943 
2944 	so->inputs[n].slot = slot;
2945 	so->inputs[n].compmask |= compmask;
2946 	so->inputs_count = MAX2(so->inputs_count, n + 1);
2947 	so->inputs[n].flat = !coord;
2948 
2949 	if (ctx->so->type == MESA_SHADER_FRAGMENT) {
2950 		compile_assert(ctx, slot != VARYING_SLOT_POS);
2951 
2952 		so->inputs[n].bary = true;
2953 
2954 		for (int i = 0; i < ncomp; i++) {
2955 			unsigned idx = (n * 4) + i + frac;
2956 			ctx->last_dst[i] = create_frag_input(ctx, coord, idx);
2957 		}
2958 	} else {
2959 		struct ir3_instruction *input = NULL;
2960 
2961 		foreach_input (in, ctx->ir) {
2962 			if (in->input.inidx == n) {
2963 				input = in;
2964 				break;
2965 			}
2966 		}
2967 
2968 		if (!input) {
2969 			input = create_input(ctx, compmask);
2970 			input->input.inidx = n;
2971 		} else {
2972 			/* For aliased inputs, just append to the wrmask.. ie. if we
2973 			 * first see a vec2 index at slot N, and then later a vec4,
2974 			 * the wrmask of the resulting overlapped vec2 and vec4 is 0xf
2975 			 */
2976 			input->regs[0]->wrmask |= compmask;
2977 		}
2978 
2979 		for (int i = 0; i < ncomp + frac; i++) {
2980 			unsigned idx = (n * 4) + i;
2981 			compile_assert(ctx, idx < ctx->ninputs);
2982 
2983 			/* fixup the src wrmask to avoid validation fail */
2984 			if (ctx->inputs[idx] && (ctx->inputs[idx] != input)) {
2985 				ctx->inputs[idx]->regs[1]->wrmask = input->regs[0]->wrmask;
2986 				continue;
2987 			}
2988 
2989 			ir3_split_dest(ctx->block, &ctx->inputs[idx], input, i, 1);
2990 		}
2991 
2992 		for (int i = 0; i < ncomp; i++) {
2993 			unsigned idx = (n * 4) + i + frac;
2994 			ctx->last_dst[i] = ctx->inputs[idx];
2995 		}
2996 	}
2997 }
2998 
2999 /* Initially we assign non-packed inloc's for varyings, as we don't really
3000  * know up-front which components will be unused.  After all the compilation
3001  * stages we scan the shader to see which components are actually used, and
3002  * re-pack the inlocs to eliminate unneeded varyings.
3003  */
3004 static void
pack_inlocs(struct ir3_context * ctx)3005 pack_inlocs(struct ir3_context *ctx)
3006 {
3007 	struct ir3_shader_variant *so = ctx->so;
3008 	uint8_t used_components[so->inputs_count];
3009 
3010 	memset(used_components, 0, sizeof(used_components));
3011 
3012 	/*
3013 	 * First Step: scan shader to find which bary.f/ldlv remain:
3014 	 */
3015 
3016 	foreach_block (block, &ctx->ir->block_list) {
3017 		foreach_instr (instr, &block->instr_list) {
3018 			if (is_input(instr)) {
3019 				unsigned inloc = instr->regs[1]->iim_val;
3020 				unsigned i = inloc / 4;
3021 				unsigned j = inloc % 4;
3022 
3023 				compile_assert(ctx, instr->regs[1]->flags & IR3_REG_IMMED);
3024 				compile_assert(ctx, i < so->inputs_count);
3025 
3026 				used_components[i] |= 1 << j;
3027 			} else if (instr->opc == OPC_META_TEX_PREFETCH) {
3028 				for (int n = 0; n < 2; n++) {
3029 					unsigned inloc = instr->prefetch.input_offset + n;
3030 					unsigned i = inloc / 4;
3031 					unsigned j = inloc % 4;
3032 
3033 					compile_assert(ctx, i < so->inputs_count);
3034 
3035 					used_components[i] |= 1 << j;
3036 				}
3037 			}
3038 		}
3039 	}
3040 
3041 	/*
3042 	 * Second Step: reassign varying inloc/slots:
3043 	 */
3044 
3045 	unsigned actual_in = 0;
3046 	unsigned inloc = 0;
3047 
3048 	/* for clip+cull distances, unused components can't be eliminated because
3049 	 * they're read by fixed-function, even if there's a hole.  Note that
3050 	 * clip/cull distance arrays must be declared in the FS, so we can just
3051 	 * use the NIR clip/cull distances to avoid reading ucp_enables in the
3052 	 * shader key.
3053 	 */
3054 	unsigned clip_cull_size =
3055 		ctx->so->shader->nir->info.clip_distance_array_size +
3056 		ctx->so->shader->nir->info.cull_distance_array_size;
3057 	unsigned clip_cull_mask = MASK(clip_cull_size);
3058 
3059 	for (unsigned i = 0; i < so->inputs_count; i++) {
3060 		unsigned compmask = 0, maxcomp = 0;
3061 
3062 		so->inputs[i].inloc = inloc;
3063 		so->inputs[i].bary = false;
3064 
3065 		if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0 ||
3066 			so->inputs[i].slot == VARYING_SLOT_CLIP_DIST1) {
3067 			if (so->inputs[i].slot == VARYING_SLOT_CLIP_DIST0)
3068 				compmask = clip_cull_mask & 0xf;
3069 			else
3070 				compmask = clip_cull_mask >> 4;
3071 			used_components[i] = compmask;
3072 		}
3073 
3074 		for (unsigned j = 0; j < 4; j++) {
3075 			if (!(used_components[i] & (1 << j)))
3076 				continue;
3077 
3078 			compmask |= (1 << j);
3079 			actual_in++;
3080 			maxcomp = j + 1;
3081 
3082 			/* at this point, since used_components[i] mask is only
3083 			 * considering varyings (ie. not sysvals) we know this
3084 			 * is a varying:
3085 			 */
3086 			so->inputs[i].bary = true;
3087 		}
3088 
3089 		if (so->inputs[i].bary) {
3090 			so->varying_in++;
3091 			so->inputs[i].compmask = (1 << maxcomp) - 1;
3092 			inloc += maxcomp;
3093 		}
3094 	}
3095 
3096 	/*
3097 	 * Third Step: reassign packed inloc's:
3098 	 */
3099 
3100 	foreach_block (block, &ctx->ir->block_list) {
3101 		foreach_instr (instr, &block->instr_list) {
3102 			if (is_input(instr)) {
3103 				unsigned inloc = instr->regs[1]->iim_val;
3104 				unsigned i = inloc / 4;
3105 				unsigned j = inloc % 4;
3106 
3107 				instr->regs[1]->iim_val = so->inputs[i].inloc + j;
3108 			} else if (instr->opc == OPC_META_TEX_PREFETCH) {
3109 				unsigned i = instr->prefetch.input_offset / 4;
3110 				unsigned j = instr->prefetch.input_offset % 4;
3111 				instr->prefetch.input_offset = so->inputs[i].inloc + j;
3112 			}
3113 		}
3114 	}
3115 }
3116 
3117 static void
setup_output(struct ir3_context * ctx,nir_intrinsic_instr * intr)3118 setup_output(struct ir3_context *ctx, nir_intrinsic_instr *intr)
3119 {
3120 	struct ir3_shader_variant *so = ctx->so;
3121 	nir_io_semantics io = nir_intrinsic_io_semantics(intr);
3122 
3123 	compile_assert(ctx, nir_src_is_const(intr->src[1]));
3124 
3125 	unsigned offset = nir_src_as_uint(intr->src[1]);
3126 	unsigned n = nir_intrinsic_base(intr) + offset;
3127 	unsigned frac = nir_intrinsic_component(intr);
3128 	unsigned ncomp = nir_intrinsic_src_components(intr, 0);
3129 
3130 	/* For per-view variables, each user-facing slot corresponds to multiple
3131 	 * views, each with a corresponding driver_location, and the offset is for
3132 	 * the driver_location. To properly figure out of the slot, we'd need to
3133 	 * plumb through the number of views. However, for now we only use
3134 	 * per-view with gl_Position, so we assume that the variable is not an
3135 	 * array or matrix (so there are no indirect accesses to the variable
3136 	 * itself) and the indirect offset corresponds to the view.
3137 	 */
3138 	unsigned slot = io.location + (io.per_view ? 0 : offset);
3139 
3140 	if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3141 		switch (slot) {
3142 		case FRAG_RESULT_DEPTH:
3143 			so->writes_pos = true;
3144 			break;
3145 		case FRAG_RESULT_COLOR:
3146 			so->color0_mrt = 1;
3147 			break;
3148 		case FRAG_RESULT_SAMPLE_MASK:
3149 			so->writes_smask = true;
3150 			break;
3151 		case FRAG_RESULT_STENCIL:
3152 			so->writes_stencilref = true;
3153 			break;
3154 		default:
3155 			slot += io.dual_source_blend_index; /* For dual-src blend */
3156 			if (slot >= FRAG_RESULT_DATA0)
3157 				break;
3158 			ir3_context_error(ctx, "unknown FS output name: %s\n",
3159 					gl_frag_result_name(slot));
3160 		}
3161 	} else if (ctx->so->type == MESA_SHADER_VERTEX ||
3162 			ctx->so->type == MESA_SHADER_TESS_EVAL ||
3163 			ctx->so->type == MESA_SHADER_GEOMETRY) {
3164 		switch (slot) {
3165 		case VARYING_SLOT_POS:
3166 			so->writes_pos = true;
3167 			break;
3168 		case VARYING_SLOT_PSIZ:
3169 			so->writes_psize = true;
3170 			break;
3171 		case VARYING_SLOT_PRIMITIVE_ID:
3172 		case VARYING_SLOT_GS_VERTEX_FLAGS_IR3:
3173 			debug_assert(ctx->so->type == MESA_SHADER_GEOMETRY);
3174 			/* fall through */
3175 		case VARYING_SLOT_COL0:
3176 		case VARYING_SLOT_COL1:
3177 		case VARYING_SLOT_BFC0:
3178 		case VARYING_SLOT_BFC1:
3179 		case VARYING_SLOT_FOGC:
3180 		case VARYING_SLOT_CLIP_DIST0:
3181 		case VARYING_SLOT_CLIP_DIST1:
3182 		case VARYING_SLOT_CLIP_VERTEX:
3183 		case VARYING_SLOT_LAYER:
3184 		case VARYING_SLOT_VIEWPORT:
3185 			break;
3186 		default:
3187 			if (slot >= VARYING_SLOT_VAR0)
3188 				break;
3189 			if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3190 				break;
3191 			ir3_context_error(ctx, "unknown %s shader output name: %s\n",
3192 					_mesa_shader_stage_to_string(ctx->so->type),
3193 					gl_varying_slot_name(slot));
3194 		}
3195 	} else {
3196 		ir3_context_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3197 	}
3198 
3199 
3200 	so->outputs_count = MAX2(so->outputs_count, n + 1);
3201 	compile_assert(ctx, so->outputs_count < ARRAY_SIZE(so->outputs));
3202 
3203 	so->outputs[n].slot = slot;
3204 	if (io.per_view)
3205 		so->outputs[n].view = offset;
3206 
3207 	for (int i = 0; i < ncomp; i++) {
3208 		unsigned idx = (n * 4) + i + frac;
3209 		compile_assert(ctx, idx < ctx->noutputs);
3210 		ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3211 	}
3212 
3213 	/* if varying packing doesn't happen, we could end up in a situation
3214 	 * with "holes" in the output, and since the per-generation code that
3215 	 * sets up varying linkage registers doesn't expect to have more than
3216 	 * one varying per vec4 slot, pad the holes.
3217 	 *
3218 	 * Note that this should probably generate a performance warning of
3219 	 * some sort.
3220 	 */
3221 	for (int i = 0; i < frac; i++) {
3222 		unsigned idx = (n * 4) + i;
3223 		if (!ctx->outputs[idx]) {
3224 			ctx->outputs[idx] = create_immed(ctx->block, fui(0.0));
3225 		}
3226 	}
3227 
3228 	struct ir3_instruction * const *src = ir3_get_src(ctx, &intr->src[0]);
3229 	for (int i = 0; i < ncomp; i++) {
3230 		unsigned idx = (n * 4) + i + frac;
3231 		ctx->outputs[idx] = src[i];
3232 	}
3233 }
3234 
3235 static void
emit_instructions(struct ir3_context * ctx)3236 emit_instructions(struct ir3_context *ctx)
3237 {
3238 	nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3239 
3240 	/* some varying setup which can't be done in setup_input(): */
3241 	if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3242 		nir_foreach_shader_in_variable (var, ctx->s) {
3243 			/* if any varyings have 'sample' qualifer, that triggers us
3244 			 * to run in per-sample mode:
3245 			 */
3246 			if (var->data.sample)
3247 				ctx->so->per_samp = true;
3248 
3249 			/* set rasterflat flag for front/back color */
3250 			if (var->data.interpolation == INTERP_MODE_NONE) {
3251 				switch (var->data.location) {
3252 				case VARYING_SLOT_COL0:
3253 				case VARYING_SLOT_COL1:
3254 				case VARYING_SLOT_BFC0:
3255 				case VARYING_SLOT_BFC1:
3256 					ctx->so->inputs[var->data.driver_location].rasterflat = true;
3257 					break;
3258 				default:
3259 					break;
3260 				}
3261 			}
3262 		}
3263 	}
3264 
3265 	/* TODO: for GS/HS/DS, load_input isn't used. but ctx->s->num_inputs is non-zero
3266 	 * likely the same for num_outputs in cases where store_output isn't used
3267 	 */
3268 	ctx->so->inputs_count = ctx->s->num_inputs;
3269 	ctx->ninputs = ctx->s->num_inputs * 4;
3270 	ctx->noutputs = ctx->s->num_outputs * 4;
3271 	ctx->inputs  = rzalloc_array(ctx, struct ir3_instruction *, ctx->ninputs);
3272 	ctx->outputs = rzalloc_array(ctx, struct ir3_instruction *, ctx->noutputs);
3273 
3274 	ctx->ir = ir3_create(ctx->compiler, ctx->so);
3275 
3276 	/* Create inputs in first block: */
3277 	ctx->block = get_block(ctx, nir_start_block(fxn));
3278 	ctx->in_block = ctx->block;
3279 
3280 	/* for fragment shader, the vcoord input register is used as the
3281 	 * base for bary.f varying fetch instrs:
3282 	 *
3283 	 * TODO defer creating ctx->ij_pixel and corresponding sysvals
3284 	 * until emit_intrinsic when we know they are actually needed.
3285 	 * For now, we defer creating ctx->ij_centroid, etc, since we
3286 	 * only need ij_pixel for "old style" varying inputs (ie.
3287 	 * tgsi_to_nir)
3288 	 */
3289 	if (ctx->so->type == MESA_SHADER_FRAGMENT) {
3290 		ctx->ij[IJ_PERSP_PIXEL] = create_input(ctx, 0x3);
3291 	}
3292 
3293 	/* Defer add_sysval_input() stuff until after setup_inputs(),
3294 	 * because sysvals need to be appended after varyings:
3295 	 */
3296 	if (ctx->ij[IJ_PERSP_PIXEL]) {
3297 		add_sysval_input_compmask(ctx, SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL,
3298 				0x3, ctx->ij[IJ_PERSP_PIXEL]);
3299 	}
3300 
3301 
3302 	/* Tesselation shaders always need primitive ID for indexing the
3303 	 * BO. Geometry shaders don't always need it but when they do it has be
3304 	 * delivered and unclobbered in the VS. To make things easy, we always
3305 	 * make room for it in VS/DS.
3306 	 */
3307 	bool has_tess = ctx->so->key.tessellation != IR3_TESS_NONE;
3308 	bool has_gs = ctx->so->key.has_gs;
3309 	switch (ctx->so->type) {
3310 	case MESA_SHADER_VERTEX:
3311 		if (has_tess) {
3312 			ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3313 			ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3314 		} else if (has_gs) {
3315 			ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3316 			ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3317 		}
3318 		break;
3319 	case MESA_SHADER_TESS_CTRL:
3320 		ctx->tcs_header = create_sysval_input(ctx, SYSTEM_VALUE_TCS_HEADER_IR3, 0x1);
3321 		ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3322 		break;
3323 	case MESA_SHADER_TESS_EVAL:
3324 		if (has_gs)
3325 			ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3326 		ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3327 		break;
3328 	case MESA_SHADER_GEOMETRY:
3329 		ctx->gs_header = create_sysval_input(ctx, SYSTEM_VALUE_GS_HEADER_IR3, 0x1);
3330 		ctx->primitive_id = create_sysval_input(ctx, SYSTEM_VALUE_PRIMITIVE_ID, 0x1);
3331 		break;
3332 	default:
3333 		break;
3334 	}
3335 
3336 	/* Find # of samplers. Just assume that we'll be reading from images.. if
3337 	 * it is write-only we don't have to count it, but after lowering derefs
3338 	 * is too late to compact indices for that.
3339 	 */
3340 	ctx->so->num_samp = util_last_bit(ctx->s->info.textures_used) + ctx->s->info.num_images;
3341 
3342 	/* Save off clip+cull information. Note that in OpenGL clip planes may
3343 	 * be individually enabled/disabled, so we can't use the
3344 	 * clip_distance_array_size for them.
3345 	 */
3346 	ctx->so->clip_mask = ctx->so->key.ucp_enables;
3347 	ctx->so->cull_mask = MASK(ctx->s->info.cull_distance_array_size) <<
3348 		ctx->s->info.clip_distance_array_size;
3349 
3350 	/* NOTE: need to do something more clever when we support >1 fxn */
3351 	nir_foreach_register (reg, &fxn->registers) {
3352 		ir3_declare_array(ctx, reg);
3353 	}
3354 	/* And emit the body: */
3355 	ctx->impl = fxn;
3356 	emit_function(ctx, fxn);
3357 }
3358 
3359 /* Fixup tex sampler state for astc/srgb workaround instructions.  We
3360  * need to assign the tex state indexes for these after we know the
3361  * max tex index.
3362  */
3363 static void
fixup_astc_srgb(struct ir3_context * ctx)3364 fixup_astc_srgb(struct ir3_context *ctx)
3365 {
3366 	struct ir3_shader_variant *so = ctx->so;
3367 	/* indexed by original tex idx, value is newly assigned alpha sampler
3368 	 * state tex idx.  Zero is invalid since there is at least one sampler
3369 	 * if we get here.
3370 	 */
3371 	unsigned alt_tex_state[16] = {0};
3372 	unsigned tex_idx = ctx->max_texture_index + 1;
3373 	unsigned idx = 0;
3374 
3375 	so->astc_srgb.base = tex_idx;
3376 
3377 	for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3378 		struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3379 
3380 		compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3381 
3382 		if (alt_tex_state[sam->cat5.tex] == 0) {
3383 			/* assign new alternate/alpha tex state slot: */
3384 			alt_tex_state[sam->cat5.tex] = tex_idx++;
3385 			so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3386 			so->astc_srgb.count++;
3387 		}
3388 
3389 		sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3390 	}
3391 }
3392 
3393 static bool
output_slot_used_for_binning(gl_varying_slot slot)3394 output_slot_used_for_binning(gl_varying_slot slot)
3395 {
3396 	return slot == VARYING_SLOT_POS || slot == VARYING_SLOT_PSIZ ||
3397 		   slot == VARYING_SLOT_CLIP_DIST0 || slot == VARYING_SLOT_CLIP_DIST1;
3398 }
3399 
3400 static void
fixup_binning_pass(struct ir3_context * ctx)3401 fixup_binning_pass(struct ir3_context *ctx)
3402 {
3403 	struct ir3_shader_variant *so = ctx->so;
3404 	struct ir3 *ir = ctx->ir;
3405 	unsigned i, j;
3406 
3407 	/* first pass, remove unused outputs from the IR level outputs: */
3408 	for (i = 0, j = 0; i < ir->outputs_count; i++) {
3409 		struct ir3_instruction *out = ir->outputs[i];
3410 		assert(out->opc == OPC_META_COLLECT);
3411 		unsigned outidx = out->collect.outidx;
3412 		unsigned slot = so->outputs[outidx].slot;
3413 
3414 		if (output_slot_used_for_binning(slot)) {
3415 			ir->outputs[j] = ir->outputs[i];
3416 			j++;
3417 		}
3418 	}
3419 	ir->outputs_count = j;
3420 
3421 	/* second pass, cleanup the unused slots in ir3_shader_variant::outputs
3422 	 * table:
3423 	 */
3424 	for (i = 0, j = 0; i < so->outputs_count; i++) {
3425 		unsigned slot = so->outputs[i].slot;
3426 
3427 		if (output_slot_used_for_binning(slot)) {
3428 			so->outputs[j] = so->outputs[i];
3429 
3430 			/* fixup outidx to point to new output table entry: */
3431 			foreach_output (out, ir) {
3432 				if (out->collect.outidx == i) {
3433 					out->collect.outidx = j;
3434 					break;
3435 				}
3436 			}
3437 
3438 			j++;
3439 		}
3440 	}
3441 	so->outputs_count = j;
3442 }
3443 
3444 static void
collect_tex_prefetches(struct ir3_context * ctx,struct ir3 * ir)3445 collect_tex_prefetches(struct ir3_context *ctx, struct ir3 *ir)
3446 {
3447 	unsigned idx = 0;
3448 
3449 	/* Collect sampling instructions eligible for pre-dispatch. */
3450 	foreach_block (block, &ir->block_list) {
3451 		foreach_instr_safe (instr, &block->instr_list) {
3452 			if (instr->opc == OPC_META_TEX_PREFETCH) {
3453 				assert(idx < ARRAY_SIZE(ctx->so->sampler_prefetch));
3454 				struct ir3_sampler_prefetch *fetch =
3455 					&ctx->so->sampler_prefetch[idx];
3456 				idx++;
3457 
3458 				if (instr->flags & IR3_INSTR_B) {
3459 					fetch->cmd = IR3_SAMPLER_BINDLESS_PREFETCH_CMD;
3460 					/* In bindless mode, the index is actually the base */
3461 					fetch->tex_id = instr->prefetch.tex_base;
3462 					fetch->samp_id = instr->prefetch.samp_base;
3463 					fetch->tex_bindless_id = instr->prefetch.tex;
3464 					fetch->samp_bindless_id = instr->prefetch.samp;
3465 				} else {
3466 					fetch->cmd = IR3_SAMPLER_PREFETCH_CMD;
3467 					fetch->tex_id = instr->prefetch.tex;
3468 					fetch->samp_id = instr->prefetch.samp;
3469 				}
3470 				fetch->wrmask = instr->regs[0]->wrmask;
3471 				fetch->dst = instr->regs[0]->num;
3472 				fetch->src = instr->prefetch.input_offset;
3473 
3474 				/* These are the limits on a5xx/a6xx, we might need to
3475 				 * revisit if SP_FS_PREFETCH[n] changes on later gens:
3476 				 */
3477 				assert(fetch->dst <= 0x3f);
3478 				assert(fetch->tex_id <= 0x1f);
3479 				assert(fetch->samp_id < 0xf);
3480 
3481 				ctx->so->total_in =
3482 					MAX2(ctx->so->total_in, instr->prefetch.input_offset + 2);
3483 
3484 				fetch->half_precision = !!(instr->regs[0]->flags & IR3_REG_HALF);
3485 
3486 				/* Remove the prefetch placeholder instruction: */
3487 				list_delinit(&instr->node);
3488 			}
3489 		}
3490 	}
3491 }
3492 
3493 int
ir3_compile_shader_nir(struct ir3_compiler * compiler,struct ir3_shader_variant * so)3494 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3495 		struct ir3_shader_variant *so)
3496 {
3497 	struct ir3_context *ctx;
3498 	struct ir3 *ir;
3499 	int ret = 0, max_bary;
3500 	bool progress;
3501 
3502 	assert(!so->ir);
3503 
3504 	ctx = ir3_context_init(compiler, so);
3505 	if (!ctx) {
3506 		DBG("INIT failed!");
3507 		ret = -1;
3508 		goto out;
3509 	}
3510 
3511 	emit_instructions(ctx);
3512 
3513 	if (ctx->error) {
3514 		DBG("EMIT failed!");
3515 		ret = -1;
3516 		goto out;
3517 	}
3518 
3519 	ir = so->ir = ctx->ir;
3520 
3521 	assert((ctx->noutputs % 4) == 0);
3522 
3523 	/* Setup IR level outputs, which are "collects" that gather
3524 	 * the scalar components of outputs.
3525 	 */
3526 	for (unsigned i = 0; i < ctx->noutputs; i += 4) {
3527 		unsigned ncomp = 0;
3528 		/* figure out the # of components written:
3529 		 *
3530 		 * TODO do we need to handle holes, ie. if .x and .z
3531 		 * components written, but .y component not written?
3532 		 */
3533 		for (unsigned j = 0; j < 4; j++) {
3534 			if (!ctx->outputs[i + j])
3535 				break;
3536 			ncomp++;
3537 		}
3538 
3539 		/* Note that in some stages, like TCS, store_output is
3540 		 * lowered to memory writes, so no components of the
3541 		 * are "written" from the PoV of traditional store-
3542 		 * output instructions:
3543 		 */
3544 		if (!ncomp)
3545 			continue;
3546 
3547 		struct ir3_instruction *out =
3548 			ir3_create_collect(ctx, &ctx->outputs[i], ncomp);
3549 
3550 		int outidx = i / 4;
3551 		assert(outidx < so->outputs_count);
3552 
3553 		/* stash index into so->outputs[] so we can map the
3554 		 * output back to slot/etc later:
3555 		 */
3556 		out->collect.outidx = outidx;
3557 
3558 		array_insert(ir, ir->outputs, out);
3559 	}
3560 
3561 	/* Set up the gs header as an output for the vertex shader so it won't
3562 	 * clobber it for the tess ctrl shader.
3563 	 *
3564 	 * TODO this could probably be done more cleanly in a nir pass.
3565 	 */
3566 	if (ctx->so->type == MESA_SHADER_VERTEX ||
3567 			(ctx->so->key.has_gs && ctx->so->type == MESA_SHADER_TESS_EVAL)) {
3568 		if (ctx->primitive_id) {
3569 			unsigned n = so->outputs_count++;
3570 			so->outputs[n].slot = VARYING_SLOT_PRIMITIVE_ID;
3571 
3572 			struct ir3_instruction *out =
3573 				ir3_create_collect(ctx, &ctx->primitive_id, 1);
3574 			out->collect.outidx = n;
3575 			array_insert(ir, ir->outputs, out);
3576 		}
3577 
3578 		if (ctx->gs_header) {
3579 			unsigned n = so->outputs_count++;
3580 			so->outputs[n].slot = VARYING_SLOT_GS_HEADER_IR3;
3581 			struct ir3_instruction *out =
3582 				ir3_create_collect(ctx, &ctx->gs_header, 1);
3583 			out->collect.outidx = n;
3584 			array_insert(ir, ir->outputs, out);
3585 		}
3586 
3587 		if (ctx->tcs_header) {
3588 			unsigned n = so->outputs_count++;
3589 			so->outputs[n].slot = VARYING_SLOT_TCS_HEADER_IR3;
3590 			struct ir3_instruction *out =
3591 				ir3_create_collect(ctx, &ctx->tcs_header, 1);
3592 			out->collect.outidx = n;
3593 			array_insert(ir, ir->outputs, out);
3594 		}
3595 	}
3596 
3597 	/* for a6xx+, binning and draw pass VS use same VBO state, so we
3598 	 * need to make sure not to remove any inputs that are used by
3599 	 * the nonbinning VS.
3600 	 */
3601 	if (ctx->compiler->gpu_id >= 600 && so->binning_pass &&
3602 			so->type == MESA_SHADER_VERTEX) {
3603 		for (int i = 0; i < ctx->ninputs; i++) {
3604 			struct ir3_instruction *in = ctx->inputs[i];
3605 
3606 			if (!in)
3607 				continue;
3608 
3609 			unsigned n = i / 4;
3610 			unsigned c = i % 4;
3611 
3612 			debug_assert(n < so->nonbinning->inputs_count);
3613 
3614 			if (so->nonbinning->inputs[n].sysval)
3615 				continue;
3616 
3617 			/* be sure to keep inputs, even if only used in VS */
3618 			if (so->nonbinning->inputs[n].compmask & (1 << c))
3619 				array_insert(in->block, in->block->keeps, in);
3620 		}
3621 	}
3622 
3623 	/* at this point, for binning pass, throw away unneeded outputs: */
3624 	if (so->binning_pass && (ctx->compiler->gpu_id < 600))
3625 		fixup_binning_pass(ctx);
3626 
3627 	ir3_debug_print(ir, "AFTER: nir->ir3");
3628 	ir3_validate(ir);
3629 
3630 	do {
3631 		progress = false;
3632 
3633 		progress |= IR3_PASS(ir, ir3_cf);
3634 		progress |= IR3_PASS(ir, ir3_cp, so);
3635 		progress |= IR3_PASS(ir, ir3_dce, so);
3636 	} while (progress);
3637 
3638 	/* at this point, for binning pass, throw away unneeded outputs:
3639 	 * Note that for a6xx and later, we do this after ir3_cp to ensure
3640 	 * that the uniform/constant layout for BS and VS matches, so that
3641 	 * we can re-use same VS_CONST state group.
3642 	 */
3643 	if (so->binning_pass && (ctx->compiler->gpu_id >= 600)) {
3644 		fixup_binning_pass(ctx);
3645 		/* cleanup the result of removing unneeded outputs: */
3646 		while (IR3_PASS(ir, ir3_dce, so)) {}
3647 	}
3648 
3649 	IR3_PASS(ir, ir3_sched_add_deps);
3650 
3651 	/* Group left/right neighbors, inserting mov's where needed to
3652 	 * solve conflicts:
3653 	 */
3654 	IR3_PASS(ir, ir3_group);
3655 
3656 	/* At this point, all the dead code should be long gone: */
3657 	assert(!IR3_PASS(ir, ir3_dce, so));
3658 
3659 	ret = ir3_sched(ir);
3660 	if (ret) {
3661 		DBG("SCHED failed!");
3662 		goto out;
3663 	}
3664 
3665 	ir3_debug_print(ir, "AFTER: ir3_sched");
3666 
3667 	if (IR3_PASS(ir, ir3_cp_postsched)) {
3668 		/* cleanup the result of removing unneeded mov's: */
3669 		while (IR3_PASS(ir, ir3_dce, so)) {}
3670 	}
3671 
3672 	/* Pre-assign VS inputs on a6xx+ binning pass shader, to align
3673 	 * with draw pass VS, so binning and draw pass can both use the
3674 	 * same VBO state.
3675 	 *
3676 	 * Note that VS inputs are expected to be full precision.
3677 	 */
3678 	bool pre_assign_inputs = (ir->compiler->gpu_id >= 600) &&
3679 			(ir->type == MESA_SHADER_VERTEX) &&
3680 			so->binning_pass;
3681 
3682 	if (pre_assign_inputs) {
3683 		for (unsigned i = 0; i < ctx->ninputs; i++) {
3684 			struct ir3_instruction *instr = ctx->inputs[i];
3685 
3686 			if (!instr)
3687 				continue;
3688 
3689 			unsigned n = i / 4;
3690 			unsigned c = i % 4;
3691 			unsigned regid = so->nonbinning->inputs[n].regid + c;
3692 
3693 			instr->regs[0]->num = regid;
3694 		}
3695 
3696 		ret = ir3_ra(so, ctx->inputs, ctx->ninputs);
3697 	} else if (ctx->tcs_header) {
3698 		/* We need to have these values in the same registers between VS and TCS
3699 		 * since the VS chains to TCS and doesn't get the sysvals redelivered.
3700 		 */
3701 
3702 		ctx->tcs_header->regs[0]->num = regid(0, 0);
3703 		ctx->primitive_id->regs[0]->num = regid(0, 1);
3704 		struct ir3_instruction *precolor[] = { ctx->tcs_header, ctx->primitive_id };
3705 		ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3706 	} else if (ctx->gs_header) {
3707 		/* We need to have these values in the same registers between producer
3708 		 * (VS or DS) and GS since the producer chains to GS and doesn't get
3709 		 * the sysvals redelivered.
3710 		 */
3711 
3712 		ctx->gs_header->regs[0]->num = regid(0, 0);
3713 		ctx->primitive_id->regs[0]->num = regid(0, 1);
3714 		struct ir3_instruction *precolor[] = { ctx->gs_header, ctx->primitive_id };
3715 		ret = ir3_ra(so, precolor, ARRAY_SIZE(precolor));
3716 	} else if (so->num_sampler_prefetch) {
3717 		assert(so->type == MESA_SHADER_FRAGMENT);
3718 		struct ir3_instruction *precolor[2];
3719 		int idx = 0;
3720 
3721 		foreach_input (instr, ir) {
3722 			if (instr->input.sysval != SYSTEM_VALUE_BARYCENTRIC_PERSP_PIXEL)
3723 				continue;
3724 
3725 			assert(idx < ARRAY_SIZE(precolor));
3726 
3727 			precolor[idx] = instr;
3728 			instr->regs[0]->num = idx;
3729 
3730 			idx++;
3731 		}
3732 		ret = ir3_ra(so, precolor, idx);
3733 	} else {
3734 		ret = ir3_ra(so, NULL, 0);
3735 	}
3736 
3737 	if (ret) {
3738 		DBG("RA failed!");
3739 		goto out;
3740 	}
3741 
3742 	IR3_PASS(ir, ir3_postsched, so);
3743 
3744 	if (compiler->gpu_id >= 600) {
3745 		IR3_PASS(ir, ir3_a6xx_fixup_atomic_dests, so);
3746 	}
3747 
3748 	if (so->type == MESA_SHADER_FRAGMENT)
3749 		pack_inlocs(ctx);
3750 
3751 	/*
3752 	 * Fixup inputs/outputs to point to the actual registers assigned:
3753 	 *
3754 	 * 1) initialize to r63.x (invalid/unused)
3755 	 * 2) iterate IR level inputs/outputs and update the variants
3756 	 *    inputs/outputs table based on the assigned registers for
3757 	 *    the remaining inputs/outputs.
3758 	 */
3759 
3760 	for (unsigned i = 0; i < so->inputs_count; i++)
3761 		so->inputs[i].regid = INVALID_REG;
3762 	for (unsigned i = 0; i < so->outputs_count; i++)
3763 		so->outputs[i].regid = INVALID_REG;
3764 
3765 	foreach_output (out, ir) {
3766 		assert(out->opc == OPC_META_COLLECT);
3767 		unsigned outidx = out->collect.outidx;
3768 
3769 		so->outputs[outidx].regid = out->regs[0]->num;
3770 		so->outputs[outidx].half  = !!(out->regs[0]->flags & IR3_REG_HALF);
3771 	}
3772 
3773 	foreach_input (in, ir) {
3774 		assert(in->opc == OPC_META_INPUT);
3775 		unsigned inidx = in->input.inidx;
3776 
3777 		if (pre_assign_inputs && !so->inputs[inidx].sysval) {
3778 			if (VALIDREG(so->nonbinning->inputs[inidx].regid)) {
3779 				compile_assert(ctx, in->regs[0]->num ==
3780 						so->nonbinning->inputs[inidx].regid);
3781 				compile_assert(ctx, !!(in->regs[0]->flags & IR3_REG_HALF) ==
3782 						so->nonbinning->inputs[inidx].half);
3783 			}
3784 			so->inputs[inidx].regid = so->nonbinning->inputs[inidx].regid;
3785 			so->inputs[inidx].half  = so->nonbinning->inputs[inidx].half;
3786 		} else {
3787 			so->inputs[inidx].regid = in->regs[0]->num;
3788 			so->inputs[inidx].half  = !!(in->regs[0]->flags & IR3_REG_HALF);
3789 		}
3790 	}
3791 
3792 	if (ctx->astc_srgb)
3793 		fixup_astc_srgb(ctx);
3794 
3795 	/* We need to do legalize after (for frag shader's) the "bary.f"
3796 	 * offsets (inloc) have been assigned.
3797 	 */
3798 	IR3_PASS(ir, ir3_legalize, so, &max_bary);
3799 
3800 	/* Set (ss)(sy) on first TCS and GEOMETRY instructions, since we don't
3801 	 * know what we might have to wait on when coming in from VS chsh.
3802 	 */
3803 	if (so->type == MESA_SHADER_TESS_CTRL ||
3804 		so->type == MESA_SHADER_GEOMETRY ) {
3805 		foreach_block (block, &ir->block_list) {
3806 			foreach_instr (instr, &block->instr_list) {
3807 				instr->flags |= IR3_INSTR_SS | IR3_INSTR_SY;
3808 				break;
3809 			}
3810 		}
3811 	}
3812 
3813 	so->branchstack = ctx->max_stack;
3814 
3815 	/* Note that actual_in counts inputs that are not bary.f'd for FS: */
3816 	if (so->type == MESA_SHADER_FRAGMENT)
3817 		so->total_in = max_bary + 1;
3818 
3819 	/* Collect sampling instructions eligible for pre-dispatch. */
3820 	collect_tex_prefetches(ctx, ir);
3821 
3822 	if (so->type == MESA_SHADER_FRAGMENT &&
3823 			ctx->s->info.fs.needs_helper_invocations)
3824 		so->need_pixlod = true;
3825 
3826 out:
3827 	if (ret) {
3828 		if (so->ir)
3829 			ir3_destroy(so->ir);
3830 		so->ir = NULL;
3831 	}
3832 	ir3_context_free(ctx);
3833 
3834 	return ret;
3835 }
3836