1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs_visitor.cpp
26 *
27 * Geometry-shader-specific code derived from the vec4_visitor class.
28 */
29
30 #include "brw_vec4_gs_visitor.h"
31 #include "gen6_gs_visitor.h"
32 #include "brw_cfg.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "dev/gen_debug.h"
36
37 namespace brw {
38
vec4_gs_visitor(const struct brw_compiler * compiler,void * log_data,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,void * mem_ctx,bool no_spills,int shader_time_index)39 vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
40 void *log_data,
41 struct brw_gs_compile *c,
42 struct brw_gs_prog_data *prog_data,
43 const nir_shader *shader,
44 void *mem_ctx,
45 bool no_spills,
46 int shader_time_index)
47 : vec4_visitor(compiler, log_data, &c->key.base.tex,
48 &prog_data->base, shader, mem_ctx,
49 no_spills, shader_time_index),
50 c(c),
51 gs_prog_data(prog_data)
52 {
53 }
54
55
56 static inline struct brw_reg
attribute_to_hw_reg(int attr,brw_reg_type type,bool interleaved)57 attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
58 {
59 struct brw_reg reg;
60
61 unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
62 if (interleaved) {
63 reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
64 } else {
65 reg = brw_vecn_grf(width, attr, 0);
66 }
67
68 reg.type = type;
69 return reg;
70 }
71
72 /**
73 * Replace each register of type ATTR in this->instructions with a reference
74 * to a fixed HW register.
75 *
76 * If interleaved is true, then each attribute takes up half a register, with
77 * register N containing attribute 2*N in its first half and attribute 2*N+1
78 * in its second half (this corresponds to the payload setup used by geometry
79 * shaders in "single" or "dual instanced" dispatch mode). If interleaved is
80 * false, then each attribute takes up a whole register, with register N
81 * containing attribute N (this corresponds to the payload setup used by
82 * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
83 */
84 int
setup_varying_inputs(int payload_reg,int attributes_per_reg)85 vec4_gs_visitor::setup_varying_inputs(int payload_reg,
86 int attributes_per_reg)
87 {
88 /* For geometry shaders there are N copies of the input attributes, where N
89 * is the number of input vertices. attribute_map[BRW_VARYING_SLOT_COUNT *
90 * i + j] represents attribute j for vertex i.
91 *
92 * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
93 * so the total number of input slots that will be delivered to the GS (and
94 * thus the stride of the input arrays) is urb_read_length * 2.
95 */
96 const unsigned num_input_vertices = nir->info.gs.vertices_in;
97 assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
98 unsigned input_array_stride = prog_data->urb_read_length * 2;
99
100 foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
101 for (int i = 0; i < 3; i++) {
102 if (inst->src[i].file != ATTR)
103 continue;
104
105 assert(inst->src[i].offset % REG_SIZE == 0);
106 int grf = payload_reg * attributes_per_reg +
107 inst->src[i].nr + inst->src[i].offset / REG_SIZE;
108
109 struct brw_reg reg =
110 attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
111 reg.swizzle = inst->src[i].swizzle;
112 if (inst->src[i].abs)
113 reg = brw_abs(reg);
114 if (inst->src[i].negate)
115 reg = negate(reg);
116
117 inst->src[i] = reg;
118 }
119 }
120
121 int regs_used = ALIGN(input_array_stride * num_input_vertices,
122 attributes_per_reg) / attributes_per_reg;
123 return payload_reg + regs_used;
124 }
125
126 void
setup_payload()127 vec4_gs_visitor::setup_payload()
128 {
129 /* If we are in dual instanced or single mode, then attributes are going
130 * to be interleaved, so one register contains two attribute slots.
131 */
132 int attributes_per_reg =
133 prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
134
135 int reg = 0;
136
137 /* The payload always contains important data in r0, which contains
138 * the URB handles that are passed on to the URB write at the end
139 * of the thread.
140 */
141 reg++;
142
143 /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
144 if (gs_prog_data->include_primitive_id)
145 reg++;
146
147 reg = setup_uniforms(reg);
148
149 reg = setup_varying_inputs(reg, attributes_per_reg);
150
151 this->first_non_payload_grf = reg;
152 }
153
154
155 void
emit_prolog()156 vec4_gs_visitor::emit_prolog()
157 {
158 /* In vertex shaders, r0.2 is guaranteed to be initialized to zero. In
159 * geometry shaders, it isn't (it contains a bunch of information we don't
160 * need, like the input primitive type). We need r0.2 to be zero in order
161 * to build scratch read/write messages correctly (otherwise this value
162 * will be interpreted as a global offset, causing us to do our scratch
163 * reads/writes to garbage memory). So just set it to zero at the top of
164 * the shader.
165 */
166 this->current_annotation = "clear r0.2";
167 dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
168 vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
169 inst->force_writemask_all = true;
170
171 /* Create a virtual register to hold the vertex count */
172 this->vertex_count = src_reg(this, glsl_type::uint_type);
173
174 /* Initialize the vertex_count register to 0 */
175 this->current_annotation = "initialize vertex_count";
176 inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
177 inst->force_writemask_all = true;
178
179 if (c->control_data_header_size_bits > 0) {
180 /* Create a virtual register to hold the current set of control data
181 * bits.
182 */
183 this->control_data_bits = src_reg(this, glsl_type::uint_type);
184
185 /* If we're outputting more than 32 control data bits, then EmitVertex()
186 * will set control_data_bits to 0 after emitting the first vertex.
187 * Otherwise, we need to initialize it to 0 here.
188 */
189 if (c->control_data_header_size_bits <= 32) {
190 this->current_annotation = "initialize control data bits";
191 inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
192 inst->force_writemask_all = true;
193 }
194 }
195
196 this->current_annotation = NULL;
197 }
198
199 void
emit_thread_end()200 vec4_gs_visitor::emit_thread_end()
201 {
202 if (c->control_data_header_size_bits > 0) {
203 /* During shader execution, we only ever call emit_control_data_bits()
204 * just prior to outputting a vertex. Therefore, the control data bits
205 * corresponding to the most recently output vertex still need to be
206 * emitted.
207 */
208 current_annotation = "thread end: emit control data bits";
209 emit_control_data_bits();
210 }
211
212 /* MRF 0 is reserved for the debugger, so start with message header
213 * in MRF 1.
214 */
215 int base_mrf = 1;
216
217 current_annotation = "thread end";
218 dst_reg mrf_reg(MRF, base_mrf);
219 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
220 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
221 inst->force_writemask_all = true;
222 emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
223 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
224 emit_shader_time_end();
225 inst = emit(GS_OPCODE_THREAD_END);
226 inst->base_mrf = base_mrf;
227 inst->mlen = 1;
228 }
229
230
231 void
emit_urb_write_header(int mrf)232 vec4_gs_visitor::emit_urb_write_header(int mrf)
233 {
234 /* The SEND instruction that writes the vertex data to the VUE will use
235 * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
236 * header specify an offset (in multiples of 256 bits) into the URB entry
237 * at which the write should take place.
238 *
239 * So we have to prepare a message header with the appropriate offset
240 * values.
241 */
242 dst_reg mrf_reg(MRF, mrf);
243 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
244 this->current_annotation = "URB write header";
245 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
246 inst->force_writemask_all = true;
247 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
248 brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
249 }
250
251
252 vec4_instruction *
emit_urb_write_opcode(bool complete)253 vec4_gs_visitor::emit_urb_write_opcode(bool complete)
254 {
255 /* We don't care whether the vertex is complete, because in general
256 * geometry shaders output multiple vertices, and we don't terminate the
257 * thread until all vertices are complete.
258 */
259 (void) complete;
260
261 vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
262 inst->offset = gs_prog_data->control_data_header_size_hwords;
263
264 inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
265 return inst;
266 }
267
268
269 /**
270 * Write out a batch of 32 control data bits from the control_data_bits
271 * register to the URB.
272 *
273 * The current value of the vertex_count register determines which DWORD in
274 * the URB receives the control data bits. The control_data_bits register is
275 * assumed to contain the correct data for the vertex that was most recently
276 * output, and all previous vertices that share the same DWORD.
277 *
278 * This function takes care of ensuring that if no vertices have been output
279 * yet, no control bits are emitted.
280 */
281 void
emit_control_data_bits()282 vec4_gs_visitor::emit_control_data_bits()
283 {
284 assert(c->control_data_bits_per_vertex != 0);
285
286 /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
287 * granularity, we need to use two tricks to ensure that the batch of 32
288 * control data bits is written to the appropriate DWORD in the URB. To
289 * select which vec4 we are writing to, we use the "slot {0,1} offset"
290 * fields of the message header. To select which DWORD in the vec4 we are
291 * writing to, we use the channel mask fields of the message header. To
292 * avoid penalizing geometry shaders that emit a small number of vertices
293 * with extra bookkeeping, we only do each of these tricks when
294 * c->prog_data.control_data_header_size_bits is large enough to make it
295 * necessary.
296 *
297 * Note: this means that if we're outputting just a single DWORD of control
298 * data bits, we'll actually replicate it four times since we won't do any
299 * channel masking. But that's not a problem since in this case the
300 * hardware only pays attention to the first DWORD.
301 */
302 enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
303 if (c->control_data_header_size_bits > 32)
304 urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
305 if (c->control_data_header_size_bits > 128)
306 urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
307
308 /* If we are using either channel masks or a per-slot offset, then we
309 * need to figure out which DWORD we are trying to write to, using the
310 * formula:
311 *
312 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
313 *
314 * Since bits_per_vertex is a power of two, and is known at compile
315 * time, this can be optimized to:
316 *
317 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
318 */
319 src_reg dword_index(this, glsl_type::uint_type);
320 if (urb_write_flags) {
321 src_reg prev_count(this, glsl_type::uint_type);
322 emit(ADD(dst_reg(prev_count), this->vertex_count,
323 brw_imm_ud(0xffffffffu)));
324 unsigned log2_bits_per_vertex =
325 util_last_bit(c->control_data_bits_per_vertex);
326 emit(SHR(dst_reg(dword_index), prev_count,
327 brw_imm_ud(6 - log2_bits_per_vertex)));
328 }
329
330 /* Start building the URB write message. The first MRF gets a copy of
331 * R0.
332 */
333 int base_mrf = 1;
334 dst_reg mrf_reg(MRF, base_mrf);
335 src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
336 vec4_instruction *inst = emit(MOV(mrf_reg, r0));
337 inst->force_writemask_all = true;
338
339 if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
340 /* Set the per-slot offset to dword_index / 4, to that we'll write to
341 * the appropriate OWORD within the control data header.
342 */
343 src_reg per_slot_offset(this, glsl_type::uint_type);
344 emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
345 emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
346 brw_imm_ud(1u));
347 }
348
349 if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
350 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
351 * write to the appropriate DWORD within the OWORD. We need to do
352 * this computation with force_writemask_all, otherwise garbage data
353 * from invocation 0 might clobber the mask for invocation 1 when
354 * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
355 * together.
356 */
357 src_reg channel(this, glsl_type::uint_type);
358 inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
359 inst->force_writemask_all = true;
360 src_reg one(this, glsl_type::uint_type);
361 inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
362 inst->force_writemask_all = true;
363 src_reg channel_mask(this, glsl_type::uint_type);
364 inst = emit(SHL(dst_reg(channel_mask), one, channel));
365 inst->force_writemask_all = true;
366 emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
367 channel_mask);
368 emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
369 }
370
371 /* Store the control data bits in the message payload and send it. */
372 dst_reg mrf_reg2(MRF, base_mrf + 1);
373 inst = emit(MOV(mrf_reg2, this->control_data_bits));
374 inst->force_writemask_all = true;
375 inst = emit(GS_OPCODE_URB_WRITE);
376 inst->urb_write_flags = urb_write_flags;
377 inst->base_mrf = base_mrf;
378 inst->mlen = 2;
379 }
380
381 void
set_stream_control_data_bits(unsigned stream_id)382 vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
383 {
384 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
385
386 /* Note: we are calling this *before* increasing vertex_count, so
387 * this->vertex_count == vertex_count - 1 in the formula above.
388 */
389
390 /* Stream mode uses 2 bits per vertex */
391 assert(c->control_data_bits_per_vertex == 2);
392
393 /* Must be a valid stream */
394 assert(stream_id < MAX_VERTEX_STREAMS);
395
396 /* Control data bits are initialized to 0 so we don't have to set any
397 * bits when sending vertices to stream 0.
398 */
399 if (stream_id == 0)
400 return;
401
402 /* reg::sid = stream_id */
403 src_reg sid(this, glsl_type::uint_type);
404 emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
405
406 /* reg:shift_count = 2 * (vertex_count - 1) */
407 src_reg shift_count(this, glsl_type::uint_type);
408 emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
409
410 /* Note: we're relying on the fact that the GEN SHL instruction only pays
411 * attention to the lower 5 bits of its second source argument, so on this
412 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
413 * stream_id << ((2 * (vertex_count - 1)) % 32).
414 */
415 src_reg mask(this, glsl_type::uint_type);
416 emit(SHL(dst_reg(mask), sid, shift_count));
417 emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
418 }
419
420 void
gs_emit_vertex(int stream_id)421 vec4_gs_visitor::gs_emit_vertex(int stream_id)
422 {
423 this->current_annotation = "emit vertex: safety check";
424
425 /* Haswell and later hardware ignores the "Render Stream Select" bits
426 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
427 * and instead sends all primitives down the pipeline for rasterization.
428 * If the SOL stage is enabled, "Render Stream Select" is honored and
429 * primitives bound to non-zero streams are discarded after stream output.
430 *
431 * Since the only purpose of primives sent to non-zero streams is to
432 * be recorded by transform feedback, we can simply discard all geometry
433 * bound to these streams when transform feedback is disabled.
434 */
435 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
436 return;
437
438 /* If we're outputting 32 control data bits or less, then we can wait
439 * until the shader is over to output them all. Otherwise we need to
440 * output them as we go. Now is the time to do it, since we're about to
441 * output the vertex_count'th vertex, so it's guaranteed that the
442 * control data bits associated with the (vertex_count - 1)th vertex are
443 * correct.
444 */
445 if (c->control_data_header_size_bits > 32) {
446 this->current_annotation = "emit vertex: emit control data bits";
447 /* Only emit control data bits if we've finished accumulating a batch
448 * of 32 bits. This is the case when:
449 *
450 * (vertex_count * bits_per_vertex) % 32 == 0
451 *
452 * (in other words, when the last 5 bits of vertex_count *
453 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
454 * integer n (which is always the case, since bits_per_vertex is
455 * always 1 or 2), this is equivalent to requiring that the last 5-n
456 * bits of vertex_count are 0:
457 *
458 * vertex_count & (2^(5-n) - 1) == 0
459 *
460 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
461 * equivalent to:
462 *
463 * vertex_count & (32 / bits_per_vertex - 1) == 0
464 */
465 vec4_instruction *inst =
466 emit(AND(dst_null_ud(), this->vertex_count,
467 brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
468 inst->conditional_mod = BRW_CONDITIONAL_Z;
469
470 emit(IF(BRW_PREDICATE_NORMAL));
471 {
472 /* If vertex_count is 0, then no control data bits have been
473 * accumulated yet, so we skip emitting them.
474 */
475 emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
476 BRW_CONDITIONAL_NEQ));
477 emit(IF(BRW_PREDICATE_NORMAL));
478 emit_control_data_bits();
479 emit(BRW_OPCODE_ENDIF);
480
481 /* Reset control_data_bits to 0 so we can start accumulating a new
482 * batch.
483 *
484 * Note: in the case where vertex_count == 0, this neutralizes the
485 * effect of any call to EndPrimitive() that the shader may have
486 * made before outputting its first vertex.
487 */
488 inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
489 inst->force_writemask_all = true;
490 }
491 emit(BRW_OPCODE_ENDIF);
492 }
493
494 this->current_annotation = "emit vertex: vertex data";
495 emit_vertex();
496
497 /* In stream mode we have to set control data bits for all vertices
498 * unless we have disabled control data bits completely (which we do
499 * do for GL_POINTS outputs that don't use streams).
500 */
501 if (c->control_data_header_size_bits > 0 &&
502 gs_prog_data->control_data_format ==
503 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
504 this->current_annotation = "emit vertex: Stream control data bits";
505 set_stream_control_data_bits(stream_id);
506 }
507
508 this->current_annotation = NULL;
509 }
510
511 void
gs_end_primitive()512 vec4_gs_visitor::gs_end_primitive()
513 {
514 /* We can only do EndPrimitive() functionality when the control data
515 * consists of cut bits. Fortunately, the only time it isn't is when the
516 * output type is points, in which case EndPrimitive() is a no-op.
517 */
518 if (gs_prog_data->control_data_format !=
519 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
520 return;
521 }
522
523 if (c->control_data_header_size_bits == 0)
524 return;
525
526 /* Cut bits use one bit per vertex. */
527 assert(c->control_data_bits_per_vertex == 1);
528
529 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
530 * vertex n, 0 otherwise. So all we need to do here is mark bit
531 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
532 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
533 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
534 *
535 * Note that if EndPrimitve() is called before emitting any vertices, this
536 * will cause us to set bit 31 of the control_data_bits register to 1.
537 * That's fine because:
538 *
539 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
540 * output, so the hardware will ignore cut bit 31.
541 *
542 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
543 * last vertex, so setting cut bit 31 has no effect (since the primitive
544 * is automatically ended when the GS terminates).
545 *
546 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
547 * control_data_bits register to 0 when the first vertex is emitted.
548 */
549
550 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
551 src_reg one(this, glsl_type::uint_type);
552 emit(MOV(dst_reg(one), brw_imm_ud(1u)));
553 src_reg prev_count(this, glsl_type::uint_type);
554 emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
555 src_reg mask(this, glsl_type::uint_type);
556 /* Note: we're relying on the fact that the GEN SHL instruction only pays
557 * attention to the lower 5 bits of its second source argument, so on this
558 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
559 * ((vertex_count - 1) % 32).
560 */
561 emit(SHL(dst_reg(mask), one, prev_count));
562 emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
563 }
564
565 static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
566 [GL_POINTS] =_3DPRIM_POINTLIST,
567 [GL_LINES] = _3DPRIM_LINELIST,
568 [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
569 [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
570 [GL_TRIANGLES] = _3DPRIM_TRILIST,
571 [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
572 [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
573 [GL_QUADS] = _3DPRIM_QUADLIST,
574 [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
575 [GL_POLYGON] = _3DPRIM_POLYGON,
576 [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
577 [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
578 [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
579 [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
580 };
581
582 } /* namespace brw */
583
584 extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_gs_prog_key * key,struct brw_gs_prog_data * prog_data,nir_shader * nir,struct gl_program * prog,int shader_time_index,struct brw_compile_stats * stats,char ** error_str)585 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
586 void *mem_ctx,
587 const struct brw_gs_prog_key *key,
588 struct brw_gs_prog_data *prog_data,
589 nir_shader *nir,
590 struct gl_program *prog,
591 int shader_time_index,
592 struct brw_compile_stats *stats,
593 char **error_str)
594 {
595 struct brw_gs_compile c;
596 memset(&c, 0, sizeof(c));
597 c.key = *key;
598
599 const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
600
601 /* The GLSL linker will have already matched up GS inputs and the outputs
602 * of prior stages. The driver does extend VS outputs in some cases, but
603 * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
604 * geometry shader support. So we can safely ignore that.
605 *
606 * For SSO pipelines, we use a fixed VUE map layout based on variable
607 * locations, so we can rely on rendezvous-by-location making this work.
608 */
609 GLbitfield64 inputs_read = nir->info.inputs_read;
610 brw_compute_vue_map(compiler->devinfo,
611 &c.input_vue_map, inputs_read,
612 nir->info.separate_shader, 1);
613
614 brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
615 brw_nir_lower_vue_inputs(nir, &c.input_vue_map);
616 brw_nir_lower_vue_outputs(nir);
617 brw_postprocess_nir(nir, compiler, is_scalar);
618
619 prog_data->base.clip_distance_mask =
620 ((1 << nir->info.clip_distance_array_size) - 1);
621 prog_data->base.cull_distance_mask =
622 ((1 << nir->info.cull_distance_array_size) - 1) <<
623 nir->info.clip_distance_array_size;
624
625 prog_data->include_primitive_id =
626 BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
627
628 prog_data->invocations = nir->info.gs.invocations;
629
630 if (compiler->devinfo->gen >= 8)
631 nir_gs_count_vertices_and_primitives(
632 nir, &prog_data->static_vertex_count, nullptr, 1u);
633
634 if (compiler->devinfo->gen >= 7) {
635 if (nir->info.gs.output_primitive == GL_POINTS) {
636 /* When the output type is points, the geometry shader may output data
637 * to multiple streams, and EndPrimitive() has no effect. So we
638 * configure the hardware to interpret the control data as stream ID.
639 */
640 prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
641
642 /* We only have to emit control bits if we are using non-zero streams */
643 if (nir->info.gs.active_stream_mask != (1 << 0))
644 c.control_data_bits_per_vertex = 2;
645 else
646 c.control_data_bits_per_vertex = 0;
647 } else {
648 /* When the output type is triangle_strip or line_strip, EndPrimitive()
649 * may be used to terminate the current strip and start a new one
650 * (similar to primitive restart), and outputting data to multiple
651 * streams is not supported. So we configure the hardware to interpret
652 * the control data as EndPrimitive information (a.k.a. "cut bits").
653 */
654 prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
655
656 /* We only need to output control data if the shader actually calls
657 * EndPrimitive().
658 */
659 c.control_data_bits_per_vertex =
660 nir->info.gs.uses_end_primitive ? 1 : 0;
661 }
662 } else {
663 /* There are no control data bits in gen6. */
664 c.control_data_bits_per_vertex = 0;
665 }
666 c.control_data_header_size_bits =
667 nir->info.gs.vertices_out * c.control_data_bits_per_vertex;
668
669 /* 1 HWORD = 32 bytes = 256 bits */
670 prog_data->control_data_header_size_hwords =
671 ALIGN(c.control_data_header_size_bits, 256) / 256;
672
673 /* Compute the output vertex size.
674 *
675 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
676 * Size (p168):
677 *
678 * [0,62] indicating [1,63] 16B units
679 *
680 * Specifies the size of each vertex stored in the GS output entry
681 * (following any Control Header data) as a number of 128-bit units
682 * (minus one).
683 *
684 * Programming Restrictions: The vertex size must be programmed as a
685 * multiple of 32B units with the following exception: Rendering is
686 * disabled (as per SOL stage state) and the vertex size output by the
687 * GS thread is 16B.
688 *
689 * If rendering is enabled (as per SOL state) the vertex size must be
690 * programmed as a multiple of 32B units. In other words, the only time
691 * software can program a vertex size with an odd number of 16B units
692 * is when rendering is disabled.
693 *
694 * Note: B=bytes in the above text.
695 *
696 * It doesn't seem worth the extra trouble to optimize the case where the
697 * vertex size is 16B (especially since this would require special-casing
698 * the GEN assembly that writes to the URB). So we just set the vertex
699 * size to a multiple of 32B (2 vec4's) in all cases.
700 *
701 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
702 * budget that as follows:
703 *
704 * 512 bytes for varyings (a varying component is 4 bytes and
705 * gl_MaxGeometryOutputComponents = 128)
706 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
707 * bytes)
708 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
709 * even if it's not used)
710 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
711 * whenever clip planes are enabled, even if the shader doesn't
712 * write to gl_ClipDistance)
713 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
714 * (see below)--this causes up to 1 VUE slot to be wasted
715 * 400 bytes available for varying packing overhead
716 *
717 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
718 * per interpolation type, so this is plenty.
719 *
720 */
721 unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
722 assert(compiler->devinfo->gen == 6 ||
723 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
724 prog_data->output_vertex_size_hwords =
725 ALIGN(output_vertex_size_bytes, 32) / 32;
726
727 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
728 * That divides up as follows:
729 *
730 * 64 bytes for the control data header (cut indices or StreamID bits)
731 * 4096 bytes for varyings (a varying component is 4 bytes and
732 * gl_MaxGeometryTotalOutputComponents = 1024)
733 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
734 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
735 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
736 * even if it's not used)
737 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
738 * whenever clip planes are enabled, even if the shader doesn't
739 * write to gl_ClipDistance)
740 * 4096 bytes overhead since the VUE size must be a multiple of 32
741 * bytes (see above)--this causes up to 1 VUE slot to be wasted
742 * 8128 bytes available for varying packing overhead
743 *
744 * Worst-case varying packing overhead is 3/4 of a varying slot per
745 * interpolation type, which works out to 3072 bytes, so this would allow
746 * us to accommodate 2 interpolation types without any danger of running
747 * out of URB space.
748 *
749 * In practice, the risk of running out of URB space is very small, since
750 * the above figures are all worst-case, and most of them scale with the
751 * number of output vertices. So we'll just calculate the amount of space
752 * we need, and if it's too large, fail to compile.
753 *
754 * The above is for gen7+ where we have a single URB entry that will hold
755 * all the output. In gen6, we will have to allocate URB entries for every
756 * vertex we emit, so our URB entries only need to be large enough to hold
757 * a single vertex. Also, gen6 does not have a control data header.
758 */
759 unsigned output_size_bytes;
760 if (compiler->devinfo->gen >= 7) {
761 output_size_bytes =
762 prog_data->output_vertex_size_hwords * 32 * nir->info.gs.vertices_out;
763 output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
764 } else {
765 output_size_bytes = prog_data->output_vertex_size_hwords * 32;
766 }
767
768 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
769 * which comes before the control header.
770 */
771 if (compiler->devinfo->gen >= 8)
772 output_size_bytes += 32;
773
774 /* Shaders can technically set max_vertices = 0, at which point we
775 * may have a URB size of 0 bytes. Nothing good can come from that,
776 * so enforce a minimum size.
777 */
778 if (output_size_bytes == 0)
779 output_size_bytes = 1;
780
781 unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
782 if (compiler->devinfo->gen == 6)
783 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
784 if (output_size_bytes > max_output_size_bytes)
785 return NULL;
786
787
788 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
789 * a multiple of 128 bytes in gen6.
790 */
791 if (compiler->devinfo->gen >= 7) {
792 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
793 } else {
794 prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
795 }
796
797 assert(nir->info.gs.output_primitive < ARRAY_SIZE(brw::gl_prim_to_hw_prim));
798 prog_data->output_topology =
799 brw::gl_prim_to_hw_prim[nir->info.gs.output_primitive];
800
801 prog_data->vertices_in = nir->info.gs.vertices_in;
802
803 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
804 * need to program a URB read length of ceiling(num_slots / 2).
805 */
806 prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
807
808 /* Now that prog_data setup is done, we are ready to actually compile the
809 * program.
810 */
811 if (INTEL_DEBUG & DEBUG_GS) {
812 fprintf(stderr, "GS Input ");
813 brw_print_vue_map(stderr, &c.input_vue_map);
814 fprintf(stderr, "GS Output ");
815 brw_print_vue_map(stderr, &prog_data->base.vue_map);
816 }
817
818 if (is_scalar) {
819 fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, nir,
820 shader_time_index);
821 if (v.run_gs()) {
822 prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
823 prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
824
825 fs_generator g(compiler, log_data, mem_ctx,
826 &prog_data->base.base, false, MESA_SHADER_GEOMETRY);
827 if (INTEL_DEBUG & DEBUG_GS) {
828 const char *label =
829 nir->info.label ? nir->info.label : "unnamed";
830 char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
831 label, nir->info.name);
832 g.enable_debug(name);
833 }
834 g.generate_code(v.cfg, 8, v.shader_stats,
835 v.performance_analysis.require(), stats);
836 g.add_const_data(nir->constant_data, nir->constant_data_size);
837 return g.get_assembly();
838 }
839
840 if (error_str)
841 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
842
843 return NULL;
844 }
845
846 if (compiler->devinfo->gen >= 7) {
847 /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
848 * so without spilling. If the GS invocations count > 1, then we can't use
849 * dual object mode.
850 */
851 if (prog_data->invocations <= 1 &&
852 !(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS)) {
853 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
854
855 brw::vec4_gs_visitor v(compiler, log_data, &c, prog_data, nir,
856 mem_ctx, true /* no_spills */, shader_time_index);
857
858 /* Backup 'nr_params' and 'param' as they can be modified by the
859 * the DUAL_OBJECT visitor. If it fails, we will run the fallback
860 * (DUAL_INSTANCED or SINGLE mode) and we need to restore original
861 * values.
862 */
863 const unsigned param_count = prog_data->base.base.nr_params;
864 uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
865 memcpy(param, prog_data->base.base.param,
866 sizeof(uint32_t) * param_count);
867
868 if (v.run()) {
869 /* Success! Backup is not needed */
870 ralloc_free(param);
871 return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
872 nir, &prog_data->base,
873 v.cfg,
874 v.performance_analysis.require(),
875 stats);
876 } else {
877 /* These variables could be modified by the execution of the GS
878 * visitor if it packed the uniforms in the push constant buffer.
879 * As it failed, we need restore them so we can start again with
880 * DUAL_INSTANCED or SINGLE mode.
881 *
882 * FIXME: Could more variables be modified by this execution?
883 */
884 memcpy(prog_data->base.base.param, param,
885 sizeof(uint32_t) * param_count);
886 prog_data->base.base.nr_params = param_count;
887 prog_data->base.base.nr_pull_params = 0;
888 ralloc_free(param);
889 }
890 }
891 }
892
893 /* Either we failed to compile in DUAL_OBJECT mode (probably because it
894 * would have required spilling) or DUAL_OBJECT mode is disabled. So fall
895 * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
896 *
897 * FIXME: Single dispatch mode requires that the driver can handle
898 * interleaving of input registers, but this is already supported (dual
899 * instance mode has the same requirement). However, to take full advantage
900 * of single dispatch mode to reduce register pressure we would also need to
901 * do interleaved outputs, but currently, the vec4 visitor and generator
902 * classes do not support this, so at the moment register pressure in
903 * single and dual instance modes is the same.
904 *
905 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
906 * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
907 * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
908 * is also supported. When InstanceCount=1 (one instance per object) software
909 * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
910 * the best choice for performance, followed by SINGLE mode."
911 *
912 * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
913 * mode is more performant when invocations > 1. Gen6 only supports
914 * SINGLE mode.
915 */
916 if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
917 prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
918 else
919 prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
920
921 brw::vec4_gs_visitor *gs = NULL;
922 const unsigned *ret = NULL;
923
924 if (compiler->devinfo->gen >= 7)
925 gs = new brw::vec4_gs_visitor(compiler, log_data, &c, prog_data,
926 nir, mem_ctx, false /* no_spills */,
927 shader_time_index);
928 else
929 gs = new brw::gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
930 nir, mem_ctx, false /* no_spills */,
931 shader_time_index);
932
933 if (!gs->run()) {
934 if (error_str)
935 *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
936 } else {
937 ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
938 &prog_data->base, gs->cfg,
939 gs->performance_analysis.require(),
940 stats);
941 }
942
943 delete gs;
944 return ret;
945 }
946