• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2013 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file brw_vec4_gs_visitor.cpp
26  *
27  * Geometry-shader-specific code derived from the vec4_visitor class.
28  */
29 
30 #include "brw_vec4_gs_visitor.h"
31 #include "gen6_gs_visitor.h"
32 #include "brw_cfg.h"
33 #include "brw_fs.h"
34 #include "brw_nir.h"
35 #include "dev/gen_debug.h"
36 
37 namespace brw {
38 
vec4_gs_visitor(const struct brw_compiler * compiler,void * log_data,struct brw_gs_compile * c,struct brw_gs_prog_data * prog_data,const nir_shader * shader,void * mem_ctx,bool no_spills,int shader_time_index)39 vec4_gs_visitor::vec4_gs_visitor(const struct brw_compiler *compiler,
40                                  void *log_data,
41                                  struct brw_gs_compile *c,
42                                  struct brw_gs_prog_data *prog_data,
43                                  const nir_shader *shader,
44                                  void *mem_ctx,
45                                  bool no_spills,
46                                  int shader_time_index)
47    : vec4_visitor(compiler, log_data, &c->key.base.tex,
48                   &prog_data->base, shader,  mem_ctx,
49                   no_spills, shader_time_index),
50      c(c),
51      gs_prog_data(prog_data)
52 {
53 }
54 
55 
56 static inline struct brw_reg
attribute_to_hw_reg(int attr,brw_reg_type type,bool interleaved)57 attribute_to_hw_reg(int attr, brw_reg_type type, bool interleaved)
58 {
59    struct brw_reg reg;
60 
61    unsigned width = REG_SIZE / 2 / MAX2(4, type_sz(type));
62    if (interleaved) {
63       reg = stride(brw_vecn_grf(width, attr / 2, (attr % 2) * 4), 0, width, 1);
64    } else {
65       reg = brw_vecn_grf(width, attr, 0);
66    }
67 
68    reg.type = type;
69    return reg;
70 }
71 
72 /**
73  * Replace each register of type ATTR in this->instructions with a reference
74  * to a fixed HW register.
75  *
76  * If interleaved is true, then each attribute takes up half a register, with
77  * register N containing attribute 2*N in its first half and attribute 2*N+1
78  * in its second half (this corresponds to the payload setup used by geometry
79  * shaders in "single" or "dual instanced" dispatch mode).  If interleaved is
80  * false, then each attribute takes up a whole register, with register N
81  * containing attribute N (this corresponds to the payload setup used by
82  * vertex shaders, and by geometry shaders in "dual object" dispatch mode).
83  */
84 int
setup_varying_inputs(int payload_reg,int attributes_per_reg)85 vec4_gs_visitor::setup_varying_inputs(int payload_reg,
86                                       int attributes_per_reg)
87 {
88    /* For geometry shaders there are N copies of the input attributes, where N
89     * is the number of input vertices.  attribute_map[BRW_VARYING_SLOT_COUNT *
90     * i + j] represents attribute j for vertex i.
91     *
92     * Note that GS inputs are read from the VUE 256 bits (2 vec4's) at a time,
93     * so the total number of input slots that will be delivered to the GS (and
94     * thus the stride of the input arrays) is urb_read_length * 2.
95     */
96    const unsigned num_input_vertices = nir->info.gs.vertices_in;
97    assert(num_input_vertices <= MAX_GS_INPUT_VERTICES);
98    unsigned input_array_stride = prog_data->urb_read_length * 2;
99 
100    foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
101       for (int i = 0; i < 3; i++) {
102          if (inst->src[i].file != ATTR)
103             continue;
104 
105          assert(inst->src[i].offset % REG_SIZE == 0);
106          int grf = payload_reg * attributes_per_reg +
107                    inst->src[i].nr + inst->src[i].offset / REG_SIZE;
108 
109          struct brw_reg reg =
110             attribute_to_hw_reg(grf, inst->src[i].type, attributes_per_reg > 1);
111          reg.swizzle = inst->src[i].swizzle;
112          if (inst->src[i].abs)
113             reg = brw_abs(reg);
114          if (inst->src[i].negate)
115             reg = negate(reg);
116 
117          inst->src[i] = reg;
118       }
119    }
120 
121    int regs_used = ALIGN(input_array_stride * num_input_vertices,
122                          attributes_per_reg) / attributes_per_reg;
123    return payload_reg + regs_used;
124 }
125 
126 void
setup_payload()127 vec4_gs_visitor::setup_payload()
128 {
129    /* If we are in dual instanced or single mode, then attributes are going
130     * to be interleaved, so one register contains two attribute slots.
131     */
132    int attributes_per_reg =
133       prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT ? 1 : 2;
134 
135    int reg = 0;
136 
137    /* The payload always contains important data in r0, which contains
138     * the URB handles that are passed on to the URB write at the end
139     * of the thread.
140     */
141    reg++;
142 
143    /* If the shader uses gl_PrimitiveIDIn, that goes in r1. */
144    if (gs_prog_data->include_primitive_id)
145       reg++;
146 
147    reg = setup_uniforms(reg);
148 
149    reg = setup_varying_inputs(reg, attributes_per_reg);
150 
151    this->first_non_payload_grf = reg;
152 }
153 
154 
155 void
emit_prolog()156 vec4_gs_visitor::emit_prolog()
157 {
158    /* In vertex shaders, r0.2 is guaranteed to be initialized to zero.  In
159     * geometry shaders, it isn't (it contains a bunch of information we don't
160     * need, like the input primitive type).  We need r0.2 to be zero in order
161     * to build scratch read/write messages correctly (otherwise this value
162     * will be interpreted as a global offset, causing us to do our scratch
163     * reads/writes to garbage memory).  So just set it to zero at the top of
164     * the shader.
165     */
166    this->current_annotation = "clear r0.2";
167    dst_reg r0(retype(brw_vec4_grf(0, 0), BRW_REGISTER_TYPE_UD));
168    vec4_instruction *inst = emit(GS_OPCODE_SET_DWORD_2, r0, brw_imm_ud(0u));
169    inst->force_writemask_all = true;
170 
171    /* Create a virtual register to hold the vertex count */
172    this->vertex_count = src_reg(this, glsl_type::uint_type);
173 
174    /* Initialize the vertex_count register to 0 */
175    this->current_annotation = "initialize vertex_count";
176    inst = emit(MOV(dst_reg(this->vertex_count), brw_imm_ud(0u)));
177    inst->force_writemask_all = true;
178 
179    if (c->control_data_header_size_bits > 0) {
180       /* Create a virtual register to hold the current set of control data
181        * bits.
182        */
183       this->control_data_bits = src_reg(this, glsl_type::uint_type);
184 
185       /* If we're outputting more than 32 control data bits, then EmitVertex()
186        * will set control_data_bits to 0 after emitting the first vertex.
187        * Otherwise, we need to initialize it to 0 here.
188        */
189       if (c->control_data_header_size_bits <= 32) {
190          this->current_annotation = "initialize control data bits";
191          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
192          inst->force_writemask_all = true;
193       }
194    }
195 
196    this->current_annotation = NULL;
197 }
198 
199 void
emit_thread_end()200 vec4_gs_visitor::emit_thread_end()
201 {
202    if (c->control_data_header_size_bits > 0) {
203       /* During shader execution, we only ever call emit_control_data_bits()
204        * just prior to outputting a vertex.  Therefore, the control data bits
205        * corresponding to the most recently output vertex still need to be
206        * emitted.
207        */
208       current_annotation = "thread end: emit control data bits";
209       emit_control_data_bits();
210    }
211 
212    /* MRF 0 is reserved for the debugger, so start with message header
213     * in MRF 1.
214     */
215    int base_mrf = 1;
216 
217    current_annotation = "thread end";
218    dst_reg mrf_reg(MRF, base_mrf);
219    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
220    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
221    inst->force_writemask_all = true;
222    emit(GS_OPCODE_SET_VERTEX_COUNT, mrf_reg, this->vertex_count);
223    if (INTEL_DEBUG & DEBUG_SHADER_TIME)
224       emit_shader_time_end();
225    inst = emit(GS_OPCODE_THREAD_END);
226    inst->base_mrf = base_mrf;
227    inst->mlen = 1;
228 }
229 
230 
231 void
emit_urb_write_header(int mrf)232 vec4_gs_visitor::emit_urb_write_header(int mrf)
233 {
234    /* The SEND instruction that writes the vertex data to the VUE will use
235     * per_slot_offset=true, which means that DWORDs 3 and 4 of the message
236     * header specify an offset (in multiples of 256 bits) into the URB entry
237     * at which the write should take place.
238     *
239     * So we have to prepare a message header with the appropriate offset
240     * values.
241     */
242    dst_reg mrf_reg(MRF, mrf);
243    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
244    this->current_annotation = "URB write header";
245    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
246    inst->force_writemask_all = true;
247    emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, this->vertex_count,
248         brw_imm_ud(gs_prog_data->output_vertex_size_hwords));
249 }
250 
251 
252 vec4_instruction *
emit_urb_write_opcode(bool complete)253 vec4_gs_visitor::emit_urb_write_opcode(bool complete)
254 {
255    /* We don't care whether the vertex is complete, because in general
256     * geometry shaders output multiple vertices, and we don't terminate the
257     * thread until all vertices are complete.
258     */
259    (void) complete;
260 
261    vec4_instruction *inst = emit(GS_OPCODE_URB_WRITE);
262    inst->offset = gs_prog_data->control_data_header_size_hwords;
263 
264    inst->urb_write_flags = BRW_URB_WRITE_PER_SLOT_OFFSET;
265    return inst;
266 }
267 
268 
269 /**
270  * Write out a batch of 32 control data bits from the control_data_bits
271  * register to the URB.
272  *
273  * The current value of the vertex_count register determines which DWORD in
274  * the URB receives the control data bits.  The control_data_bits register is
275  * assumed to contain the correct data for the vertex that was most recently
276  * output, and all previous vertices that share the same DWORD.
277  *
278  * This function takes care of ensuring that if no vertices have been output
279  * yet, no control bits are emitted.
280  */
281 void
emit_control_data_bits()282 vec4_gs_visitor::emit_control_data_bits()
283 {
284    assert(c->control_data_bits_per_vertex != 0);
285 
286    /* Since the URB_WRITE_OWORD message operates with 128-bit (vec4 sized)
287     * granularity, we need to use two tricks to ensure that the batch of 32
288     * control data bits is written to the appropriate DWORD in the URB.  To
289     * select which vec4 we are writing to, we use the "slot {0,1} offset"
290     * fields of the message header.  To select which DWORD in the vec4 we are
291     * writing to, we use the channel mask fields of the message header.  To
292     * avoid penalizing geometry shaders that emit a small number of vertices
293     * with extra bookkeeping, we only do each of these tricks when
294     * c->prog_data.control_data_header_size_bits is large enough to make it
295     * necessary.
296     *
297     * Note: this means that if we're outputting just a single DWORD of control
298     * data bits, we'll actually replicate it four times since we won't do any
299     * channel masking.  But that's not a problem since in this case the
300     * hardware only pays attention to the first DWORD.
301     */
302    enum brw_urb_write_flags urb_write_flags = BRW_URB_WRITE_OWORD;
303    if (c->control_data_header_size_bits > 32)
304       urb_write_flags = urb_write_flags | BRW_URB_WRITE_USE_CHANNEL_MASKS;
305    if (c->control_data_header_size_bits > 128)
306       urb_write_flags = urb_write_flags | BRW_URB_WRITE_PER_SLOT_OFFSET;
307 
308    /* If we are using either channel masks or a per-slot offset, then we
309     * need to figure out which DWORD we are trying to write to, using the
310     * formula:
311     *
312     *     dword_index = (vertex_count - 1) * bits_per_vertex / 32
313     *
314     * Since bits_per_vertex is a power of two, and is known at compile
315     * time, this can be optimized to:
316     *
317     *     dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
318     */
319    src_reg dword_index(this, glsl_type::uint_type);
320    if (urb_write_flags) {
321       src_reg prev_count(this, glsl_type::uint_type);
322       emit(ADD(dst_reg(prev_count), this->vertex_count,
323                brw_imm_ud(0xffffffffu)));
324       unsigned log2_bits_per_vertex =
325          util_last_bit(c->control_data_bits_per_vertex);
326       emit(SHR(dst_reg(dword_index), prev_count,
327                brw_imm_ud(6 - log2_bits_per_vertex)));
328    }
329 
330    /* Start building the URB write message.  The first MRF gets a copy of
331     * R0.
332     */
333    int base_mrf = 1;
334    dst_reg mrf_reg(MRF, base_mrf);
335    src_reg r0(retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
336    vec4_instruction *inst = emit(MOV(mrf_reg, r0));
337    inst->force_writemask_all = true;
338 
339    if (urb_write_flags & BRW_URB_WRITE_PER_SLOT_OFFSET) {
340       /* Set the per-slot offset to dword_index / 4, to that we'll write to
341        * the appropriate OWORD within the control data header.
342        */
343       src_reg per_slot_offset(this, glsl_type::uint_type);
344       emit(SHR(dst_reg(per_slot_offset), dword_index, brw_imm_ud(2u)));
345       emit(GS_OPCODE_SET_WRITE_OFFSET, mrf_reg, per_slot_offset,
346            brw_imm_ud(1u));
347    }
348 
349    if (urb_write_flags & BRW_URB_WRITE_USE_CHANNEL_MASKS) {
350       /* Set the channel masks to 1 << (dword_index % 4), so that we'll
351        * write to the appropriate DWORD within the OWORD.  We need to do
352        * this computation with force_writemask_all, otherwise garbage data
353        * from invocation 0 might clobber the mask for invocation 1 when
354        * GS_OPCODE_PREPARE_CHANNEL_MASKS tries to OR the two masks
355        * together.
356        */
357       src_reg channel(this, glsl_type::uint_type);
358       inst = emit(AND(dst_reg(channel), dword_index, brw_imm_ud(3u)));
359       inst->force_writemask_all = true;
360       src_reg one(this, glsl_type::uint_type);
361       inst = emit(MOV(dst_reg(one), brw_imm_ud(1u)));
362       inst->force_writemask_all = true;
363       src_reg channel_mask(this, glsl_type::uint_type);
364       inst = emit(SHL(dst_reg(channel_mask), one, channel));
365       inst->force_writemask_all = true;
366       emit(GS_OPCODE_PREPARE_CHANNEL_MASKS, dst_reg(channel_mask),
367                                             channel_mask);
368       emit(GS_OPCODE_SET_CHANNEL_MASKS, mrf_reg, channel_mask);
369    }
370 
371    /* Store the control data bits in the message payload and send it. */
372    dst_reg mrf_reg2(MRF, base_mrf + 1);
373    inst = emit(MOV(mrf_reg2, this->control_data_bits));
374    inst->force_writemask_all = true;
375    inst = emit(GS_OPCODE_URB_WRITE);
376    inst->urb_write_flags = urb_write_flags;
377    inst->base_mrf = base_mrf;
378    inst->mlen = 2;
379 }
380 
381 void
set_stream_control_data_bits(unsigned stream_id)382 vec4_gs_visitor::set_stream_control_data_bits(unsigned stream_id)
383 {
384    /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
385 
386    /* Note: we are calling this *before* increasing vertex_count, so
387     * this->vertex_count == vertex_count - 1 in the formula above.
388     */
389 
390    /* Stream mode uses 2 bits per vertex */
391    assert(c->control_data_bits_per_vertex == 2);
392 
393    /* Must be a valid stream */
394    assert(stream_id < MAX_VERTEX_STREAMS);
395 
396    /* Control data bits are initialized to 0 so we don't have to set any
397     * bits when sending vertices to stream 0.
398     */
399    if (stream_id == 0)
400       return;
401 
402    /* reg::sid = stream_id */
403    src_reg sid(this, glsl_type::uint_type);
404    emit(MOV(dst_reg(sid), brw_imm_ud(stream_id)));
405 
406    /* reg:shift_count = 2 * (vertex_count - 1) */
407    src_reg shift_count(this, glsl_type::uint_type);
408    emit(SHL(dst_reg(shift_count), this->vertex_count, brw_imm_ud(1u)));
409 
410    /* Note: we're relying on the fact that the GEN SHL instruction only pays
411     * attention to the lower 5 bits of its second source argument, so on this
412     * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
413     * stream_id << ((2 * (vertex_count - 1)) % 32).
414     */
415    src_reg mask(this, glsl_type::uint_type);
416    emit(SHL(dst_reg(mask), sid, shift_count));
417    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
418 }
419 
420 void
gs_emit_vertex(int stream_id)421 vec4_gs_visitor::gs_emit_vertex(int stream_id)
422 {
423    this->current_annotation = "emit vertex: safety check";
424 
425    /* Haswell and later hardware ignores the "Render Stream Select" bits
426     * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
427     * and instead sends all primitives down the pipeline for rasterization.
428     * If the SOL stage is enabled, "Render Stream Select" is honored and
429     * primitives bound to non-zero streams are discarded after stream output.
430     *
431     * Since the only purpose of primives sent to non-zero streams is to
432     * be recorded by transform feedback, we can simply discard all geometry
433     * bound to these streams when transform feedback is disabled.
434     */
435    if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
436       return;
437 
438    /* If we're outputting 32 control data bits or less, then we can wait
439     * until the shader is over to output them all.  Otherwise we need to
440     * output them as we go.  Now is the time to do it, since we're about to
441     * output the vertex_count'th vertex, so it's guaranteed that the
442     * control data bits associated with the (vertex_count - 1)th vertex are
443     * correct.
444     */
445    if (c->control_data_header_size_bits > 32) {
446       this->current_annotation = "emit vertex: emit control data bits";
447       /* Only emit control data bits if we've finished accumulating a batch
448        * of 32 bits.  This is the case when:
449        *
450        *     (vertex_count * bits_per_vertex) % 32 == 0
451        *
452        * (in other words, when the last 5 bits of vertex_count *
453        * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
454        * integer n (which is always the case, since bits_per_vertex is
455        * always 1 or 2), this is equivalent to requiring that the last 5-n
456        * bits of vertex_count are 0:
457        *
458        *     vertex_count & (2^(5-n) - 1) == 0
459        *
460        * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
461        * equivalent to:
462        *
463        *     vertex_count & (32 / bits_per_vertex - 1) == 0
464        */
465       vec4_instruction *inst =
466          emit(AND(dst_null_ud(), this->vertex_count,
467                   brw_imm_ud(32 / c->control_data_bits_per_vertex - 1)));
468       inst->conditional_mod = BRW_CONDITIONAL_Z;
469 
470       emit(IF(BRW_PREDICATE_NORMAL));
471       {
472          /* If vertex_count is 0, then no control data bits have been
473           * accumulated yet, so we skip emitting them.
474           */
475          emit(CMP(dst_null_ud(), this->vertex_count, brw_imm_ud(0u),
476                   BRW_CONDITIONAL_NEQ));
477          emit(IF(BRW_PREDICATE_NORMAL));
478          emit_control_data_bits();
479          emit(BRW_OPCODE_ENDIF);
480 
481          /* Reset control_data_bits to 0 so we can start accumulating a new
482           * batch.
483           *
484           * Note: in the case where vertex_count == 0, this neutralizes the
485           * effect of any call to EndPrimitive() that the shader may have
486           * made before outputting its first vertex.
487           */
488          inst = emit(MOV(dst_reg(this->control_data_bits), brw_imm_ud(0u)));
489          inst->force_writemask_all = true;
490       }
491       emit(BRW_OPCODE_ENDIF);
492    }
493 
494    this->current_annotation = "emit vertex: vertex data";
495    emit_vertex();
496 
497    /* In stream mode we have to set control data bits for all vertices
498     * unless we have disabled control data bits completely (which we do
499     * do for GL_POINTS outputs that don't use streams).
500     */
501    if (c->control_data_header_size_bits > 0 &&
502        gs_prog_data->control_data_format ==
503           GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
504        this->current_annotation = "emit vertex: Stream control data bits";
505        set_stream_control_data_bits(stream_id);
506    }
507 
508    this->current_annotation = NULL;
509 }
510 
511 void
gs_end_primitive()512 vec4_gs_visitor::gs_end_primitive()
513 {
514    /* We can only do EndPrimitive() functionality when the control data
515     * consists of cut bits.  Fortunately, the only time it isn't is when the
516     * output type is points, in which case EndPrimitive() is a no-op.
517     */
518    if (gs_prog_data->control_data_format !=
519        GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
520       return;
521    }
522 
523    if (c->control_data_header_size_bits == 0)
524       return;
525 
526    /* Cut bits use one bit per vertex. */
527    assert(c->control_data_bits_per_vertex == 1);
528 
529    /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
530     * vertex n, 0 otherwise.  So all we need to do here is mark bit
531     * (vertex_count - 1) % 32 in the cut_bits register to indicate that
532     * EndPrimitive() was called after emitting vertex (vertex_count - 1);
533     * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
534     *
535     * Note that if EndPrimitve() is called before emitting any vertices, this
536     * will cause us to set bit 31 of the control_data_bits register to 1.
537     * That's fine because:
538     *
539     * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
540     *   output, so the hardware will ignore cut bit 31.
541     *
542     * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
543     *   last vertex, so setting cut bit 31 has no effect (since the primitive
544     *   is automatically ended when the GS terminates).
545     *
546     * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
547     *   control_data_bits register to 0 when the first vertex is emitted.
548     */
549 
550    /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
551    src_reg one(this, glsl_type::uint_type);
552    emit(MOV(dst_reg(one), brw_imm_ud(1u)));
553    src_reg prev_count(this, glsl_type::uint_type);
554    emit(ADD(dst_reg(prev_count), this->vertex_count, brw_imm_ud(0xffffffffu)));
555    src_reg mask(this, glsl_type::uint_type);
556    /* Note: we're relying on the fact that the GEN SHL instruction only pays
557     * attention to the lower 5 bits of its second source argument, so on this
558     * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
559     * ((vertex_count - 1) % 32).
560     */
561    emit(SHL(dst_reg(mask), one, prev_count));
562    emit(OR(dst_reg(this->control_data_bits), this->control_data_bits, mask));
563 }
564 
565 static const GLuint gl_prim_to_hw_prim[GL_TRIANGLE_STRIP_ADJACENCY+1] = {
566    [GL_POINTS] =_3DPRIM_POINTLIST,
567    [GL_LINES] = _3DPRIM_LINELIST,
568    [GL_LINE_LOOP] = _3DPRIM_LINELOOP,
569    [GL_LINE_STRIP] = _3DPRIM_LINESTRIP,
570    [GL_TRIANGLES] = _3DPRIM_TRILIST,
571    [GL_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
572    [GL_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
573    [GL_QUADS] = _3DPRIM_QUADLIST,
574    [GL_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
575    [GL_POLYGON] = _3DPRIM_POLYGON,
576    [GL_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
577    [GL_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
578    [GL_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
579    [GL_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
580 };
581 
582 } /* namespace brw */
583 
584 extern "C" const unsigned *
brw_compile_gs(const struct brw_compiler * compiler,void * log_data,void * mem_ctx,const struct brw_gs_prog_key * key,struct brw_gs_prog_data * prog_data,nir_shader * nir,struct gl_program * prog,int shader_time_index,struct brw_compile_stats * stats,char ** error_str)585 brw_compile_gs(const struct brw_compiler *compiler, void *log_data,
586                void *mem_ctx,
587                const struct brw_gs_prog_key *key,
588                struct brw_gs_prog_data *prog_data,
589                nir_shader *nir,
590                struct gl_program *prog,
591                int shader_time_index,
592                struct brw_compile_stats *stats,
593                char **error_str)
594 {
595    struct brw_gs_compile c;
596    memset(&c, 0, sizeof(c));
597    c.key = *key;
598 
599    const bool is_scalar = compiler->scalar_stage[MESA_SHADER_GEOMETRY];
600 
601    /* The GLSL linker will have already matched up GS inputs and the outputs
602     * of prior stages.  The driver does extend VS outputs in some cases, but
603     * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
604     * geometry shader support.  So we can safely ignore that.
605     *
606     * For SSO pipelines, we use a fixed VUE map layout based on variable
607     * locations, so we can rely on rendezvous-by-location making this work.
608     */
609    GLbitfield64 inputs_read = nir->info.inputs_read;
610    brw_compute_vue_map(compiler->devinfo,
611                        &c.input_vue_map, inputs_read,
612                        nir->info.separate_shader, 1);
613 
614    brw_nir_apply_key(nir, compiler, &key->base, 8, is_scalar);
615    brw_nir_lower_vue_inputs(nir, &c.input_vue_map);
616    brw_nir_lower_vue_outputs(nir);
617    brw_postprocess_nir(nir, compiler, is_scalar);
618 
619    prog_data->base.clip_distance_mask =
620       ((1 << nir->info.clip_distance_array_size) - 1);
621    prog_data->base.cull_distance_mask =
622       ((1 << nir->info.cull_distance_array_size) - 1) <<
623       nir->info.clip_distance_array_size;
624 
625    prog_data->include_primitive_id =
626       BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
627 
628    prog_data->invocations = nir->info.gs.invocations;
629 
630    if (compiler->devinfo->gen >= 8)
631       nir_gs_count_vertices_and_primitives(
632          nir, &prog_data->static_vertex_count, nullptr, 1u);
633 
634    if (compiler->devinfo->gen >= 7) {
635       if (nir->info.gs.output_primitive == GL_POINTS) {
636          /* When the output type is points, the geometry shader may output data
637           * to multiple streams, and EndPrimitive() has no effect.  So we
638           * configure the hardware to interpret the control data as stream ID.
639           */
640          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
641 
642          /* We only have to emit control bits if we are using non-zero streams */
643          if (nir->info.gs.active_stream_mask != (1 << 0))
644             c.control_data_bits_per_vertex = 2;
645          else
646             c.control_data_bits_per_vertex = 0;
647       } else {
648          /* When the output type is triangle_strip or line_strip, EndPrimitive()
649           * may be used to terminate the current strip and start a new one
650           * (similar to primitive restart), and outputting data to multiple
651           * streams is not supported.  So we configure the hardware to interpret
652           * the control data as EndPrimitive information (a.k.a. "cut bits").
653           */
654          prog_data->control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
655 
656          /* We only need to output control data if the shader actually calls
657           * EndPrimitive().
658           */
659          c.control_data_bits_per_vertex =
660             nir->info.gs.uses_end_primitive ? 1 : 0;
661       }
662    } else {
663       /* There are no control data bits in gen6. */
664       c.control_data_bits_per_vertex = 0;
665    }
666    c.control_data_header_size_bits =
667       nir->info.gs.vertices_out * c.control_data_bits_per_vertex;
668 
669    /* 1 HWORD = 32 bytes = 256 bits */
670    prog_data->control_data_header_size_hwords =
671       ALIGN(c.control_data_header_size_bits, 256) / 256;
672 
673    /* Compute the output vertex size.
674     *
675     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
676     * Size (p168):
677     *
678     *     [0,62] indicating [1,63] 16B units
679     *
680     *     Specifies the size of each vertex stored in the GS output entry
681     *     (following any Control Header data) as a number of 128-bit units
682     *     (minus one).
683     *
684     *     Programming Restrictions: The vertex size must be programmed as a
685     *     multiple of 32B units with the following exception: Rendering is
686     *     disabled (as per SOL stage state) and the vertex size output by the
687     *     GS thread is 16B.
688     *
689     *     If rendering is enabled (as per SOL state) the vertex size must be
690     *     programmed as a multiple of 32B units. In other words, the only time
691     *     software can program a vertex size with an odd number of 16B units
692     *     is when rendering is disabled.
693     *
694     * Note: B=bytes in the above text.
695     *
696     * It doesn't seem worth the extra trouble to optimize the case where the
697     * vertex size is 16B (especially since this would require special-casing
698     * the GEN assembly that writes to the URB).  So we just set the vertex
699     * size to a multiple of 32B (2 vec4's) in all cases.
700     *
701     * The maximum output vertex size is 62*16 = 992 bytes (31 hwords).  We
702     * budget that as follows:
703     *
704     *   512 bytes for varyings (a varying component is 4 bytes and
705     *             gl_MaxGeometryOutputComponents = 128)
706     *    16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
707     *             bytes)
708     *    16 bytes overhead for gl_Position (we allocate it a slot in the VUE
709     *             even if it's not used)
710     *    32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
711     *             whenever clip planes are enabled, even if the shader doesn't
712     *             write to gl_ClipDistance)
713     *    16 bytes overhead since the VUE size must be a multiple of 32 bytes
714     *             (see below)--this causes up to 1 VUE slot to be wasted
715     *   400 bytes available for varying packing overhead
716     *
717     * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
718     * per interpolation type, so this is plenty.
719     *
720     */
721    unsigned output_vertex_size_bytes = prog_data->base.vue_map.num_slots * 16;
722    assert(compiler->devinfo->gen == 6 ||
723           output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
724    prog_data->output_vertex_size_hwords =
725       ALIGN(output_vertex_size_bytes, 32) / 32;
726 
727    /* Compute URB entry size.  The maximum allowed URB entry size is 32k.
728     * That divides up as follows:
729     *
730     *     64 bytes for the control data header (cut indices or StreamID bits)
731     *   4096 bytes for varyings (a varying component is 4 bytes and
732     *              gl_MaxGeometryTotalOutputComponents = 1024)
733     *   4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
734     *              bytes/vertex and gl_MaxGeometryOutputVertices is 256)
735     *   4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
736     *              even if it's not used)
737     *   8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
738     *              whenever clip planes are enabled, even if the shader doesn't
739     *              write to gl_ClipDistance)
740     *   4096 bytes overhead since the VUE size must be a multiple of 32
741     *              bytes (see above)--this causes up to 1 VUE slot to be wasted
742     *   8128 bytes available for varying packing overhead
743     *
744     * Worst-case varying packing overhead is 3/4 of a varying slot per
745     * interpolation type, which works out to 3072 bytes, so this would allow
746     * us to accommodate 2 interpolation types without any danger of running
747     * out of URB space.
748     *
749     * In practice, the risk of running out of URB space is very small, since
750     * the above figures are all worst-case, and most of them scale with the
751     * number of output vertices.  So we'll just calculate the amount of space
752     * we need, and if it's too large, fail to compile.
753     *
754     * The above is for gen7+ where we have a single URB entry that will hold
755     * all the output. In gen6, we will have to allocate URB entries for every
756     * vertex we emit, so our URB entries only need to be large enough to hold
757     * a single vertex. Also, gen6 does not have a control data header.
758     */
759    unsigned output_size_bytes;
760    if (compiler->devinfo->gen >= 7) {
761       output_size_bytes =
762          prog_data->output_vertex_size_hwords * 32 * nir->info.gs.vertices_out;
763       output_size_bytes += 32 * prog_data->control_data_header_size_hwords;
764    } else {
765       output_size_bytes = prog_data->output_vertex_size_hwords * 32;
766    }
767 
768    /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
769     * which comes before the control header.
770     */
771    if (compiler->devinfo->gen >= 8)
772       output_size_bytes += 32;
773 
774    /* Shaders can technically set max_vertices = 0, at which point we
775     * may have a URB size of 0 bytes.  Nothing good can come from that,
776     * so enforce a minimum size.
777     */
778    if (output_size_bytes == 0)
779       output_size_bytes = 1;
780 
781    unsigned max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
782    if (compiler->devinfo->gen == 6)
783       max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
784    if (output_size_bytes > max_output_size_bytes)
785       return NULL;
786 
787 
788    /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
789     * a multiple of 128 bytes in gen6.
790     */
791    if (compiler->devinfo->gen >= 7) {
792       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
793    } else {
794       prog_data->base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
795    }
796 
797    assert(nir->info.gs.output_primitive < ARRAY_SIZE(brw::gl_prim_to_hw_prim));
798    prog_data->output_topology =
799       brw::gl_prim_to_hw_prim[nir->info.gs.output_primitive];
800 
801    prog_data->vertices_in = nir->info.gs.vertices_in;
802 
803    /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
804     * need to program a URB read length of ceiling(num_slots / 2).
805     */
806    prog_data->base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
807 
808    /* Now that prog_data setup is done, we are ready to actually compile the
809     * program.
810     */
811    if (INTEL_DEBUG & DEBUG_GS) {
812       fprintf(stderr, "GS Input ");
813       brw_print_vue_map(stderr, &c.input_vue_map);
814       fprintf(stderr, "GS Output ");
815       brw_print_vue_map(stderr, &prog_data->base.vue_map);
816    }
817 
818    if (is_scalar) {
819       fs_visitor v(compiler, log_data, mem_ctx, &c, prog_data, nir,
820                    shader_time_index);
821       if (v.run_gs()) {
822          prog_data->base.dispatch_mode = DISPATCH_MODE_SIMD8;
823          prog_data->base.base.dispatch_grf_start_reg = v.payload.num_regs;
824 
825          fs_generator g(compiler, log_data, mem_ctx,
826                         &prog_data->base.base, false, MESA_SHADER_GEOMETRY);
827          if (INTEL_DEBUG & DEBUG_GS) {
828             const char *label =
829                nir->info.label ? nir->info.label : "unnamed";
830             char *name = ralloc_asprintf(mem_ctx, "%s geometry shader %s",
831                                          label, nir->info.name);
832             g.enable_debug(name);
833          }
834          g.generate_code(v.cfg, 8, v.shader_stats,
835                          v.performance_analysis.require(), stats);
836          g.add_const_data(nir->constant_data, nir->constant_data_size);
837          return g.get_assembly();
838       }
839 
840       if (error_str)
841          *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
842 
843       return NULL;
844    }
845 
846    if (compiler->devinfo->gen >= 7) {
847       /* Compile the geometry shader in DUAL_OBJECT dispatch mode, if we can do
848        * so without spilling. If the GS invocations count > 1, then we can't use
849        * dual object mode.
850        */
851       if (prog_data->invocations <= 1 &&
852           !(INTEL_DEBUG & DEBUG_NO_DUAL_OBJECT_GS)) {
853          prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_OBJECT;
854 
855          brw::vec4_gs_visitor v(compiler, log_data, &c, prog_data, nir,
856                            mem_ctx, true /* no_spills */, shader_time_index);
857 
858          /* Backup 'nr_params' and 'param' as they can be modified by the
859           * the DUAL_OBJECT visitor. If it fails, we will run the fallback
860           * (DUAL_INSTANCED or SINGLE mode) and we need to restore original
861           * values.
862           */
863          const unsigned param_count = prog_data->base.base.nr_params;
864          uint32_t *param = ralloc_array(NULL, uint32_t, param_count);
865          memcpy(param, prog_data->base.base.param,
866                 sizeof(uint32_t) * param_count);
867 
868          if (v.run()) {
869             /* Success! Backup is not needed */
870             ralloc_free(param);
871             return brw_vec4_generate_assembly(compiler, log_data, mem_ctx,
872                                               nir, &prog_data->base,
873                                               v.cfg,
874                                               v.performance_analysis.require(),
875                                               stats);
876          } else {
877             /* These variables could be modified by the execution of the GS
878              * visitor if it packed the uniforms in the push constant buffer.
879              * As it failed, we need restore them so we can start again with
880              * DUAL_INSTANCED or SINGLE mode.
881              *
882              * FIXME: Could more variables be modified by this execution?
883              */
884             memcpy(prog_data->base.base.param, param,
885                    sizeof(uint32_t) * param_count);
886             prog_data->base.base.nr_params = param_count;
887             prog_data->base.base.nr_pull_params = 0;
888             ralloc_free(param);
889          }
890       }
891    }
892 
893    /* Either we failed to compile in DUAL_OBJECT mode (probably because it
894     * would have required spilling) or DUAL_OBJECT mode is disabled.  So fall
895     * back to DUAL_INSTANCED or SINGLE mode, which consumes fewer registers.
896     *
897     * FIXME: Single dispatch mode requires that the driver can handle
898     * interleaving of input registers, but this is already supported (dual
899     * instance mode has the same requirement). However, to take full advantage
900     * of single dispatch mode to reduce register pressure we would also need to
901     * do interleaved outputs, but currently, the vec4 visitor and generator
902     * classes do not support this, so at the moment register pressure in
903     * single and dual instance modes is the same.
904     *
905     * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 "3DSTATE_GS"
906     * "If InstanceCount>1, DUAL_OBJECT mode is invalid. Software will likely
907     * want to use DUAL_INSTANCE mode for higher performance, but SINGLE mode
908     * is also supported. When InstanceCount=1 (one instance per object) software
909     * can decide which dispatch mode to use. DUAL_OBJECT mode would likely be
910     * the best choice for performance, followed by SINGLE mode."
911     *
912     * So SINGLE mode is more performant when invocations == 1 and DUAL_INSTANCE
913     * mode is more performant when invocations > 1. Gen6 only supports
914     * SINGLE mode.
915     */
916    if (prog_data->invocations <= 1 || compiler->devinfo->gen < 7)
917       prog_data->base.dispatch_mode = DISPATCH_MODE_4X1_SINGLE;
918    else
919       prog_data->base.dispatch_mode = DISPATCH_MODE_4X2_DUAL_INSTANCE;
920 
921    brw::vec4_gs_visitor *gs = NULL;
922    const unsigned *ret = NULL;
923 
924    if (compiler->devinfo->gen >= 7)
925       gs = new brw::vec4_gs_visitor(compiler, log_data, &c, prog_data,
926                                nir, mem_ctx, false /* no_spills */,
927                                shader_time_index);
928    else
929       gs = new brw::gen6_gs_visitor(compiler, log_data, &c, prog_data, prog,
930                                nir, mem_ctx, false /* no_spills */,
931                                shader_time_index);
932 
933    if (!gs->run()) {
934       if (error_str)
935          *error_str = ralloc_strdup(mem_ctx, gs->fail_msg);
936    } else {
937       ret = brw_vec4_generate_assembly(compiler, log_data, mem_ctx, nir,
938                                        &prog_data->base, gs->cfg,
939                                        gs->performance_analysis.require(),
940                                        stats);
941    }
942 
943    delete gs;
944    return ret;
945 }
946