• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2019 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include <unistd.h>
25 
26 #include "common/gen_gem.h"
27 
28 #include "dev/gen_debug.h"
29 #include "dev/gen_device_info.h"
30 
31 #include "perf/gen_perf.h"
32 #include "perf/gen_perf_mdapi.h"
33 #include "perf/gen_perf_private.h"
34 #include "perf/gen_perf_query.h"
35 #include "perf/gen_perf_regs.h"
36 
37 #include "drm-uapi/i915_drm.h"
38 
39 #include "util/u_math.h"
40 
41 #define FILE_DEBUG_FLAG DEBUG_PERFMON
42 #define MI_RPC_BO_SIZE              4096
43 #define MI_FREQ_START_OFFSET_BYTES  (3072)
44 #define MI_RPC_BO_END_OFFSET_BYTES  (MI_RPC_BO_SIZE / 2)
45 #define MI_FREQ_END_OFFSET_BYTES    (3076)
46 
47 #define MAP_READ  (1 << 0)
48 #define MAP_WRITE (1 << 1)
49 
50 /**
51  * Periodic OA samples are read() into these buffer structures via the
52  * i915 perf kernel interface and appended to the
53  * perf_ctx->sample_buffers linked list. When we process the
54  * results of an OA metrics query we need to consider all the periodic
55  * samples between the Begin and End MI_REPORT_PERF_COUNT command
56  * markers.
57  *
58  * 'Periodic' is a simplification as there are other automatic reports
59  * written by the hardware also buffered here.
60  *
61  * Considering three queries, A, B and C:
62  *
63  *  Time ---->
64  *                ________________A_________________
65  *                |                                |
66  *                | ________B_________ _____C___________
67  *                | |                | |           |   |
68  *
69  * And an illustration of sample buffers read over this time frame:
70  * [HEAD ][     ][     ][     ][     ][     ][     ][     ][TAIL ]
71  *
72  * These nodes may hold samples for query A:
73  * [     ][     ][  A  ][  A  ][  A  ][  A  ][  A  ][     ][     ]
74  *
75  * These nodes may hold samples for query B:
76  * [     ][     ][  B  ][  B  ][  B  ][     ][     ][     ][     ]
77  *
78  * These nodes may hold samples for query C:
79  * [     ][     ][     ][     ][     ][  C  ][  C  ][  C  ][     ]
80  *
81  * The illustration assumes we have an even distribution of periodic
82  * samples so all nodes have the same size plotted against time:
83  *
84  * Note, to simplify code, the list is never empty.
85  *
86  * With overlapping queries we can see that periodic OA reports may
87  * relate to multiple queries and care needs to be take to keep
88  * track of sample buffers until there are no queries that might
89  * depend on their contents.
90  *
91  * We use a node ref counting system where a reference ensures that a
92  * node and all following nodes can't be freed/recycled until the
93  * reference drops to zero.
94  *
95  * E.g. with a ref of one here:
96  * [  0  ][  0  ][  1  ][  0  ][  0  ][  0  ][  0  ][  0  ][  0  ]
97  *
98  * These nodes could be freed or recycled ("reaped"):
99  * [  0  ][  0  ]
100  *
101  * These must be preserved until the leading ref drops to zero:
102  *               [  1  ][  0  ][  0  ][  0  ][  0  ][  0  ][  0  ]
103  *
104  * When a query starts we take a reference on the current tail of
105  * the list, knowing that no already-buffered samples can possibly
106  * relate to the newly-started query. A pointer to this node is
107  * also saved in the query object's ->oa.samples_head.
108  *
109  * E.g. starting query A while there are two nodes in .sample_buffers:
110  *                ________________A________
111  *                |
112  *
113  * [  0  ][  1  ]
114  *           ^_______ Add a reference and store pointer to node in
115  *                    A->oa.samples_head
116  *
117  * Moving forward to when the B query starts with no new buffer nodes:
118  * (for reference, i915 perf reads() are only done when queries finish)
119  *                ________________A_______
120  *                | ________B___
121  *                | |
122  *
123  * [  0  ][  2  ]
124  *           ^_______ Add a reference and store pointer to
125  *                    node in B->oa.samples_head
126  *
127  * Once a query is finished, after an OA query has become 'Ready',
128  * once the End OA report has landed and after we we have processed
129  * all the intermediate periodic samples then we drop the
130  * ->oa.samples_head reference we took at the start.
131  *
132  * So when the B query has finished we have:
133  *                ________________A________
134  *                | ______B___________
135  *                | |                |
136  * [  0  ][  1  ][  0  ][  0  ][  0  ]
137  *           ^_______ Drop B->oa.samples_head reference
138  *
139  * We still can't free these due to the A->oa.samples_head ref:
140  *        [  1  ][  0  ][  0  ][  0  ]
141  *
142  * When the A query finishes: (note there's a new ref for C's samples_head)
143  *                ________________A_________________
144  *                |                                |
145  *                |                    _____C_________
146  *                |                    |           |
147  * [  0  ][  0  ][  0  ][  0  ][  1  ][  0  ][  0  ]
148  *           ^_______ Drop A->oa.samples_head reference
149  *
150  * And we can now reap these nodes up to the C->oa.samples_head:
151  * [  X  ][  X  ][  X  ][  X  ]
152  *                  keeping -> [  1  ][  0  ][  0  ]
153  *
154  * We reap old sample buffers each time we finish processing an OA
155  * query by iterating the sample_buffers list from the head until we
156  * find a referenced node and stop.
157  *
158  * Reaped buffers move to a perfquery.free_sample_buffers list and
159  * when we come to read() we first look to recycle a buffer from the
160  * free_sample_buffers list before allocating a new buffer.
161  */
162 struct oa_sample_buf {
163    struct exec_node link;
164    int refcount;
165    int len;
166    uint8_t buf[I915_PERF_OA_SAMPLE_SIZE * 10];
167    uint32_t last_timestamp;
168 };
169 
170 /**
171  * gen representation of a performance query object.
172  *
173  * NB: We want to keep this structure relatively lean considering that
174  * applications may expect to allocate enough objects to be able to
175  * query around all draw calls in a frame.
176  */
177 struct gen_perf_query_object
178 {
179    const struct gen_perf_query_info *queryinfo;
180 
181    /* See query->kind to know which state below is in use... */
182    union {
183       struct {
184 
185          /**
186           * BO containing OA counter snapshots at query Begin/End time.
187           */
188          void *bo;
189 
190          /**
191           * Address of mapped of @bo
192           */
193          void *map;
194 
195          /**
196           * The MI_REPORT_PERF_COUNT command lets us specify a unique
197           * ID that will be reflected in the resulting OA report
198           * that's written by the GPU. This is the ID we're expecting
199           * in the begin report and the the end report should be
200           * @begin_report_id + 1.
201           */
202          int begin_report_id;
203 
204          /**
205           * Reference the head of the brw->perfquery.sample_buffers
206           * list at the time that the query started (so we only need
207           * to look at nodes after this point when looking for samples
208           * related to this query)
209           *
210           * (See struct brw_oa_sample_buf description for more details)
211           */
212          struct exec_node *samples_head;
213 
214          /**
215           * false while in the unaccumulated_elements list, and set to
216           * true when the final, end MI_RPC snapshot has been
217           * accumulated.
218           */
219          bool results_accumulated;
220 
221          /**
222           * Frequency of the GT at begin and end of the query.
223           */
224          uint64_t gt_frequency[2];
225 
226          /**
227           * Accumulated OA results between begin and end of the query.
228           */
229          struct gen_perf_query_result result;
230       } oa;
231 
232       struct {
233          /**
234           * BO containing starting and ending snapshots for the
235           * statistics counters.
236           */
237          void *bo;
238       } pipeline_stats;
239    };
240 };
241 
242 struct gen_perf_context {
243    struct gen_perf_config *perf;
244 
245    void * ctx;  /* driver context (eg, brw_context) */
246    void * bufmgr;
247    const struct gen_device_info *devinfo;
248 
249    uint32_t hw_ctx;
250    int drm_fd;
251 
252    /* The i915 perf stream we open to setup + enable the OA counters */
253    int oa_stream_fd;
254 
255    /* An i915 perf stream fd gives exclusive access to the OA unit that will
256     * report counter snapshots for a specific counter set/profile in a
257     * specific layout/format so we can only start OA queries that are
258     * compatible with the currently open fd...
259     */
260    int current_oa_metrics_set_id;
261    int current_oa_format;
262 
263    /* List of buffers containing OA reports */
264    struct exec_list sample_buffers;
265 
266    /* Cached list of empty sample buffers */
267    struct exec_list free_sample_buffers;
268 
269    int n_active_oa_queries;
270    int n_active_pipeline_stats_queries;
271 
272    /* The number of queries depending on running OA counters which
273     * extends beyond brw_end_perf_query() since we need to wait until
274     * the last MI_RPC command has parsed by the GPU.
275     *
276     * Accurate accounting is important here as emitting an
277     * MI_REPORT_PERF_COUNT command while the OA unit is disabled will
278     * effectively hang the gpu.
279     */
280    int n_oa_users;
281 
282    /* To help catch an spurious problem with the hardware or perf
283     * forwarding samples, we emit each MI_REPORT_PERF_COUNT command
284     * with a unique ID that we can explicitly check for...
285     */
286    int next_query_start_report_id;
287 
288    /**
289     * An array of queries whose results haven't yet been assembled
290     * based on the data in buffer objects.
291     *
292     * These may be active, or have already ended.  However, the
293     * results have not been requested.
294     */
295    struct gen_perf_query_object **unaccumulated;
296    int unaccumulated_elements;
297    int unaccumulated_array_size;
298 
299    /* The total number of query objects so we can relinquish
300     * our exclusive access to perf if the application deletes
301     * all of its objects. (NB: We only disable perf while
302     * there are no active queries)
303     */
304    int n_query_instances;
305 };
306 
307 static bool
inc_n_users(struct gen_perf_context * perf_ctx)308 inc_n_users(struct gen_perf_context *perf_ctx)
309 {
310    if (perf_ctx->n_oa_users == 0 &&
311        gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_ENABLE, 0) < 0)
312    {
313       return false;
314    }
315    ++perf_ctx->n_oa_users;
316 
317    return true;
318 }
319 
320 static void
dec_n_users(struct gen_perf_context * perf_ctx)321 dec_n_users(struct gen_perf_context *perf_ctx)
322 {
323    /* Disabling the i915 perf stream will effectively disable the OA
324     * counters.  Note it's important to be sure there are no outstanding
325     * MI_RPC commands at this point since they could stall the CS
326     * indefinitely once OACONTROL is disabled.
327     */
328    --perf_ctx->n_oa_users;
329    if (perf_ctx->n_oa_users == 0 &&
330        gen_ioctl(perf_ctx->oa_stream_fd, I915_PERF_IOCTL_DISABLE, 0) < 0)
331    {
332       DBG("WARNING: Error disabling gen perf stream: %m\n");
333    }
334 }
335 
336 static void
gen_perf_close(struct gen_perf_context * perfquery,const struct gen_perf_query_info * query)337 gen_perf_close(struct gen_perf_context *perfquery,
338                const struct gen_perf_query_info *query)
339 {
340    if (perfquery->oa_stream_fd != -1) {
341       close(perfquery->oa_stream_fd);
342       perfquery->oa_stream_fd = -1;
343    }
344    if (query->kind == GEN_PERF_QUERY_TYPE_RAW) {
345       struct gen_perf_query_info *raw_query =
346          (struct gen_perf_query_info *) query;
347       raw_query->oa_metrics_set_id = 0;
348    }
349 }
350 
351 #define NUM_PERF_PROPERTIES(array) (ARRAY_SIZE(array) / 2)
352 
353 static bool
gen_perf_open(struct gen_perf_context * perf_ctx,int metrics_set_id,int report_format,int period_exponent,int drm_fd,uint32_t ctx_id)354 gen_perf_open(struct gen_perf_context *perf_ctx,
355               int metrics_set_id,
356               int report_format,
357               int period_exponent,
358               int drm_fd,
359               uint32_t ctx_id)
360 {
361    uint64_t properties[] = {
362       /* Single context sampling */
363       DRM_I915_PERF_PROP_CTX_HANDLE, ctx_id,
364 
365       /* Include OA reports in samples */
366       DRM_I915_PERF_PROP_SAMPLE_OA, true,
367 
368       /* OA unit configuration */
369       DRM_I915_PERF_PROP_OA_METRICS_SET, metrics_set_id,
370       DRM_I915_PERF_PROP_OA_FORMAT, report_format,
371       DRM_I915_PERF_PROP_OA_EXPONENT, period_exponent,
372 
373       /* SSEU configuration */
374       DRM_I915_PERF_PROP_GLOBAL_SSEU, to_user_pointer(&perf_ctx->perf->sseu),
375    };
376    struct drm_i915_perf_open_param param = {
377       .flags = I915_PERF_FLAG_FD_CLOEXEC |
378                I915_PERF_FLAG_FD_NONBLOCK |
379                I915_PERF_FLAG_DISABLED,
380       .num_properties = perf_ctx->perf->i915_perf_version >= 4 ?
381                         NUM_PERF_PROPERTIES(properties) :
382                         NUM_PERF_PROPERTIES(properties) - 1,
383       .properties_ptr = (uintptr_t) properties,
384    };
385    int fd = gen_ioctl(drm_fd, DRM_IOCTL_I915_PERF_OPEN, &param);
386    if (fd == -1) {
387       DBG("Error opening gen perf OA stream: %m\n");
388       return false;
389    }
390 
391    perf_ctx->oa_stream_fd = fd;
392 
393    perf_ctx->current_oa_metrics_set_id = metrics_set_id;
394    perf_ctx->current_oa_format = report_format;
395 
396    return true;
397 }
398 
399 static uint64_t
get_metric_id(struct gen_perf_config * perf,const struct gen_perf_query_info * query)400 get_metric_id(struct gen_perf_config *perf,
401               const struct gen_perf_query_info *query)
402 {
403    /* These queries are know not to ever change, their config ID has been
404     * loaded upon the first query creation. No need to look them up again.
405     */
406    if (query->kind == GEN_PERF_QUERY_TYPE_OA)
407       return query->oa_metrics_set_id;
408 
409    assert(query->kind == GEN_PERF_QUERY_TYPE_RAW);
410 
411    /* Raw queries can be reprogrammed up by an external application/library.
412     * When a raw query is used for the first time it's id is set to a value !=
413     * 0. When it stops being used the id returns to 0. No need to reload the
414     * ID when it's already loaded.
415     */
416    if (query->oa_metrics_set_id != 0) {
417       DBG("Raw query '%s' guid=%s using cached ID: %"PRIu64"\n",
418           query->name, query->guid, query->oa_metrics_set_id);
419       return query->oa_metrics_set_id;
420    }
421 
422    struct gen_perf_query_info *raw_query = (struct gen_perf_query_info *)query;
423    if (!gen_perf_load_metric_id(perf, query->guid,
424                                 &raw_query->oa_metrics_set_id)) {
425       DBG("Unable to read query guid=%s ID, falling back to test config\n", query->guid);
426       raw_query->oa_metrics_set_id = perf->fallback_raw_oa_metric;
427    } else {
428       DBG("Raw query '%s'guid=%s loaded ID: %"PRIu64"\n",
429           query->name, query->guid, query->oa_metrics_set_id);
430    }
431    return query->oa_metrics_set_id;
432 }
433 
434 static struct oa_sample_buf *
get_free_sample_buf(struct gen_perf_context * perf_ctx)435 get_free_sample_buf(struct gen_perf_context *perf_ctx)
436 {
437    struct exec_node *node = exec_list_pop_head(&perf_ctx->free_sample_buffers);
438    struct oa_sample_buf *buf;
439 
440    if (node)
441       buf = exec_node_data(struct oa_sample_buf, node, link);
442    else {
443       buf = ralloc_size(perf_ctx->perf, sizeof(*buf));
444 
445       exec_node_init(&buf->link);
446       buf->refcount = 0;
447    }
448    buf->len = 0;
449 
450    return buf;
451 }
452 
453 static void
reap_old_sample_buffers(struct gen_perf_context * perf_ctx)454 reap_old_sample_buffers(struct gen_perf_context *perf_ctx)
455 {
456    struct exec_node *tail_node =
457       exec_list_get_tail(&perf_ctx->sample_buffers);
458    struct oa_sample_buf *tail_buf =
459       exec_node_data(struct oa_sample_buf, tail_node, link);
460 
461    /* Remove all old, unreferenced sample buffers walking forward from
462     * the head of the list, except always leave at least one node in
463     * the list so we always have a node to reference when we Begin
464     * a new query.
465     */
466    foreach_list_typed_safe(struct oa_sample_buf, buf, link,
467                            &perf_ctx->sample_buffers)
468    {
469       if (buf->refcount == 0 && buf != tail_buf) {
470          exec_node_remove(&buf->link);
471          exec_list_push_head(&perf_ctx->free_sample_buffers, &buf->link);
472       } else
473          return;
474    }
475 }
476 
477 static void
free_sample_bufs(struct gen_perf_context * perf_ctx)478 free_sample_bufs(struct gen_perf_context *perf_ctx)
479 {
480    foreach_list_typed_safe(struct oa_sample_buf, buf, link,
481                            &perf_ctx->free_sample_buffers)
482       ralloc_free(buf);
483 
484    exec_list_make_empty(&perf_ctx->free_sample_buffers);
485 }
486 
487 
488 struct gen_perf_query_object *
gen_perf_new_query(struct gen_perf_context * perf_ctx,unsigned query_index)489 gen_perf_new_query(struct gen_perf_context *perf_ctx, unsigned query_index)
490 {
491    const struct gen_perf_query_info *query =
492       &perf_ctx->perf->queries[query_index];
493    struct gen_perf_query_object *obj =
494       calloc(1, sizeof(struct gen_perf_query_object));
495 
496    if (!obj)
497       return NULL;
498 
499    obj->queryinfo = query;
500 
501    perf_ctx->n_query_instances++;
502    return obj;
503 }
504 
505 int
gen_perf_active_queries(struct gen_perf_context * perf_ctx,const struct gen_perf_query_info * query)506 gen_perf_active_queries(struct gen_perf_context *perf_ctx,
507                         const struct gen_perf_query_info *query)
508 {
509    assert(perf_ctx->n_active_oa_queries == 0 || perf_ctx->n_active_pipeline_stats_queries == 0);
510 
511    switch (query->kind) {
512    case GEN_PERF_QUERY_TYPE_OA:
513    case GEN_PERF_QUERY_TYPE_RAW:
514       return perf_ctx->n_active_oa_queries;
515       break;
516 
517    case GEN_PERF_QUERY_TYPE_PIPELINE:
518       return perf_ctx->n_active_pipeline_stats_queries;
519       break;
520 
521    default:
522       unreachable("Unknown query type");
523       break;
524    }
525 }
526 
527 const struct gen_perf_query_info*
gen_perf_query_info(const struct gen_perf_query_object * query)528 gen_perf_query_info(const struct gen_perf_query_object *query)
529 {
530    return query->queryinfo;
531 }
532 
533 struct gen_perf_context *
gen_perf_new_context(void * parent)534 gen_perf_new_context(void *parent)
535 {
536    struct gen_perf_context *ctx = rzalloc(parent, struct gen_perf_context);
537    if (! ctx)
538       fprintf(stderr, "%s: failed to alloc context\n", __func__);
539    return ctx;
540 }
541 
542 struct gen_perf_config *
gen_perf_config(struct gen_perf_context * ctx)543 gen_perf_config(struct gen_perf_context *ctx)
544 {
545    return ctx->perf;
546 }
547 
548 void
gen_perf_init_context(struct gen_perf_context * perf_ctx,struct gen_perf_config * perf_cfg,void * ctx,void * bufmgr,const struct gen_device_info * devinfo,uint32_t hw_ctx,int drm_fd)549 gen_perf_init_context(struct gen_perf_context *perf_ctx,
550                       struct gen_perf_config *perf_cfg,
551                       void * ctx,  /* driver context (eg, brw_context) */
552                       void * bufmgr,  /* eg brw_bufmgr */
553                       const struct gen_device_info *devinfo,
554                       uint32_t hw_ctx,
555                       int drm_fd)
556 {
557    perf_ctx->perf = perf_cfg;
558    perf_ctx->ctx = ctx;
559    perf_ctx->bufmgr = bufmgr;
560    perf_ctx->drm_fd = drm_fd;
561    perf_ctx->hw_ctx = hw_ctx;
562    perf_ctx->devinfo = devinfo;
563 
564    perf_ctx->unaccumulated =
565       ralloc_array(ctx, struct gen_perf_query_object *, 2);
566    perf_ctx->unaccumulated_elements = 0;
567    perf_ctx->unaccumulated_array_size = 2;
568 
569    exec_list_make_empty(&perf_ctx->sample_buffers);
570    exec_list_make_empty(&perf_ctx->free_sample_buffers);
571 
572    /* It's convenient to guarantee that this linked list of sample
573     * buffers is never empty so we add an empty head so when we
574     * Begin an OA query we can always take a reference on a buffer
575     * in this list.
576     */
577    struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
578    exec_list_push_head(&perf_ctx->sample_buffers, &buf->link);
579 
580    perf_ctx->oa_stream_fd = -1;
581    perf_ctx->next_query_start_report_id = 1000;
582 }
583 
584 /**
585  * Add a query to the global list of "unaccumulated queries."
586  *
587  * Queries are tracked here until all the associated OA reports have
588  * been accumulated via accumulate_oa_reports() after the end
589  * MI_REPORT_PERF_COUNT has landed in query->oa.bo.
590  */
591 static void
add_to_unaccumulated_query_list(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * obj)592 add_to_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
593                                 struct gen_perf_query_object *obj)
594 {
595    if (perf_ctx->unaccumulated_elements >=
596        perf_ctx->unaccumulated_array_size)
597    {
598       perf_ctx->unaccumulated_array_size *= 1.5;
599       perf_ctx->unaccumulated =
600          reralloc(perf_ctx->ctx, perf_ctx->unaccumulated,
601                   struct gen_perf_query_object *,
602                   perf_ctx->unaccumulated_array_size);
603    }
604 
605    perf_ctx->unaccumulated[perf_ctx->unaccumulated_elements++] = obj;
606 }
607 
608 /**
609  * Emit MI_STORE_REGISTER_MEM commands to capture all of the
610  * pipeline statistics for the performance query object.
611  */
612 static void
snapshot_statistics_registers(struct gen_perf_context * ctx,struct gen_perf_query_object * obj,uint32_t offset_in_bytes)613 snapshot_statistics_registers(struct gen_perf_context *ctx,
614                               struct gen_perf_query_object *obj,
615                               uint32_t offset_in_bytes)
616 {
617    struct gen_perf_config *perf = ctx->perf;
618    const struct gen_perf_query_info *query = obj->queryinfo;
619    const int n_counters = query->n_counters;
620 
621    for (int i = 0; i < n_counters; i++) {
622       const struct gen_perf_query_counter *counter = &query->counters[i];
623 
624       assert(counter->data_type == GEN_PERF_COUNTER_DATA_TYPE_UINT64);
625 
626       perf->vtbl.store_register_mem(ctx->ctx, obj->pipeline_stats.bo,
627                                     counter->pipeline_stat.reg, 8,
628                                     offset_in_bytes + counter->offset);
629    }
630 }
631 
632 static void
snapshot_freq_register(struct gen_perf_context * ctx,struct gen_perf_query_object * query,uint32_t bo_offset)633 snapshot_freq_register(struct gen_perf_context *ctx,
634                        struct gen_perf_query_object *query,
635                        uint32_t bo_offset)
636 {
637    struct gen_perf_config *perf = ctx->perf;
638    const struct gen_device_info *devinfo = ctx->devinfo;
639 
640    if (devinfo->gen == 8 && !devinfo->is_cherryview)
641       perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN7_RPSTAT1, 4, bo_offset);
642    else if (devinfo->gen >= 9)
643       perf->vtbl.store_register_mem(ctx->ctx, query->oa.bo, GEN9_RPSTAT0, 4, bo_offset);
644 }
645 
646 bool
gen_perf_begin_query(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query)647 gen_perf_begin_query(struct gen_perf_context *perf_ctx,
648                      struct gen_perf_query_object *query)
649 {
650    struct gen_perf_config *perf_cfg = perf_ctx->perf;
651    const struct gen_perf_query_info *queryinfo = query->queryinfo;
652 
653    /* XXX: We have to consider that the command parser unit that parses batch
654     * buffer commands and is used to capture begin/end counter snapshots isn't
655     * implicitly synchronized with what's currently running across other GPU
656     * units (such as the EUs running shaders) that the performance counters are
657     * associated with.
658     *
659     * The intention of performance queries is to measure the work associated
660     * with commands between the begin/end delimiters and so for that to be the
661     * case we need to explicitly synchronize the parsing of commands to capture
662     * Begin/End counter snapshots with what's running across other parts of the
663     * GPU.
664     *
665     * When the command parser reaches a Begin marker it effectively needs to
666     * drain everything currently running on the GPU until the hardware is idle
667     * before capturing the first snapshot of counters - otherwise the results
668     * would also be measuring the effects of earlier commands.
669     *
670     * When the command parser reaches an End marker it needs to stall until
671     * everything currently running on the GPU has finished before capturing the
672     * end snapshot - otherwise the results won't be a complete representation
673     * of the work.
674     *
675     * To achieve this, we stall the pipeline at pixel scoreboard (prevent any
676     * additional work to be processed by the pipeline until all pixels of the
677     * previous draw has be completed).
678     *
679     * N.B. The final results are based on deltas of counters between (inside)
680     * Begin/End markers so even though the total wall clock time of the
681     * workload is stretched by larger pipeline bubbles the bubbles themselves
682     * are generally invisible to the query results. Whether that's a good or a
683     * bad thing depends on the use case. For a lower real-time impact while
684     * capturing metrics then periodic sampling may be a better choice than
685     * INTEL_performance_query.
686     *
687     *
688     * This is our Begin synchronization point to drain current work on the
689     * GPU before we capture our first counter snapshot...
690     */
691    perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
692 
693    switch (queryinfo->kind) {
694    case GEN_PERF_QUERY_TYPE_OA:
695    case GEN_PERF_QUERY_TYPE_RAW: {
696 
697       /* Opening an i915 perf stream implies exclusive access to the OA unit
698        * which will generate counter reports for a specific counter set with a
699        * specific layout/format so we can't begin any OA based queries that
700        * require a different counter set or format unless we get an opportunity
701        * to close the stream and open a new one...
702        */
703       uint64_t metric_id = get_metric_id(perf_ctx->perf, queryinfo);
704 
705       if (perf_ctx->oa_stream_fd != -1 &&
706           perf_ctx->current_oa_metrics_set_id != metric_id) {
707 
708          if (perf_ctx->n_oa_users != 0) {
709             DBG("WARNING: Begin failed already using perf config=%i/%"PRIu64"\n",
710                 perf_ctx->current_oa_metrics_set_id, metric_id);
711             return false;
712          } else
713             gen_perf_close(perf_ctx, queryinfo);
714       }
715 
716       /* If the OA counters aren't already on, enable them. */
717       if (perf_ctx->oa_stream_fd == -1) {
718          const struct gen_device_info *devinfo = perf_ctx->devinfo;
719 
720          /* The period_exponent gives a sampling period as follows:
721           *   sample_period = timestamp_period * 2^(period_exponent + 1)
722           *
723           * The timestamps increments every 80ns (HSW), ~52ns (GEN9LP) or
724           * ~83ns (GEN8/9).
725           *
726           * The counter overflow period is derived from the EuActive counter
727           * which reads a counter that increments by the number of clock
728           * cycles multiplied by the number of EUs. It can be calculated as:
729           *
730           * 2^(number of bits in A counter) / (n_eus * max_gen_freq * 2)
731           *
732           * (E.g. 40 EUs @ 1GHz = ~53ms)
733           *
734           * We select a sampling period inferior to that overflow period to
735           * ensure we cannot see more than 1 counter overflow, otherwise we
736           * could loose information.
737           */
738 
739          int a_counter_in_bits = 32;
740          if (devinfo->gen >= 8)
741             a_counter_in_bits = 40;
742 
743          uint64_t overflow_period = pow(2, a_counter_in_bits) / (perf_cfg->sys_vars.n_eus *
744              /* drop 1GHz freq to have units in nanoseconds */
745              2);
746 
747          DBG("A counter overflow period: %"PRIu64"ns, %"PRIu64"ms (n_eus=%"PRIu64")\n",
748              overflow_period, overflow_period / 1000000ul, perf_cfg->sys_vars.n_eus);
749 
750          int period_exponent = 0;
751          uint64_t prev_sample_period, next_sample_period;
752          for (int e = 0; e < 30; e++) {
753             prev_sample_period = 1000000000ull * pow(2, e + 1) / devinfo->timestamp_frequency;
754             next_sample_period = 1000000000ull * pow(2, e + 2) / devinfo->timestamp_frequency;
755 
756             /* Take the previous sampling period, lower than the overflow
757              * period.
758              */
759             if (prev_sample_period < overflow_period &&
760                 next_sample_period > overflow_period)
761                period_exponent = e + 1;
762          }
763 
764          if (period_exponent == 0) {
765             DBG("WARNING: enable to find a sampling exponent\n");
766             return false;
767          }
768 
769          DBG("OA sampling exponent: %i ~= %"PRIu64"ms\n", period_exponent,
770              prev_sample_period / 1000000ul);
771 
772          if (!gen_perf_open(perf_ctx, metric_id, queryinfo->oa_format,
773                             period_exponent, perf_ctx->drm_fd,
774                             perf_ctx->hw_ctx))
775             return false;
776       } else {
777          assert(perf_ctx->current_oa_metrics_set_id == metric_id &&
778                 perf_ctx->current_oa_format == queryinfo->oa_format);
779       }
780 
781       if (!inc_n_users(perf_ctx)) {
782          DBG("WARNING: Error enabling i915 perf stream: %m\n");
783          return false;
784       }
785 
786       if (query->oa.bo) {
787          perf_cfg->vtbl.bo_unreference(query->oa.bo);
788          query->oa.bo = NULL;
789       }
790 
791       query->oa.bo = perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
792                                              "perf. query OA MI_RPC bo",
793                                              MI_RPC_BO_SIZE);
794 #ifdef DEBUG
795       /* Pre-filling the BO helps debug whether writes landed. */
796       void *map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_WRITE);
797       memset(map, 0x80, MI_RPC_BO_SIZE);
798       perf_cfg->vtbl.bo_unmap(query->oa.bo);
799 #endif
800 
801       query->oa.begin_report_id = perf_ctx->next_query_start_report_id;
802       perf_ctx->next_query_start_report_id += 2;
803 
804       /* Take a starting OA counter snapshot. */
805       perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo, 0,
806                                                query->oa.begin_report_id);
807       snapshot_freq_register(perf_ctx, query, MI_FREQ_START_OFFSET_BYTES);
808 
809       ++perf_ctx->n_active_oa_queries;
810 
811       /* No already-buffered samples can possibly be associated with this query
812        * so create a marker within the list of sample buffers enabling us to
813        * easily ignore earlier samples when processing this query after
814        * completion.
815        */
816       assert(!exec_list_is_empty(&perf_ctx->sample_buffers));
817       query->oa.samples_head = exec_list_get_tail(&perf_ctx->sample_buffers);
818 
819       struct oa_sample_buf *buf =
820          exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
821 
822       /* This reference will ensure that future/following sample
823        * buffers (that may relate to this query) can't be freed until
824        * this drops to zero.
825        */
826       buf->refcount++;
827 
828       gen_perf_query_result_clear(&query->oa.result);
829       query->oa.results_accumulated = false;
830 
831       add_to_unaccumulated_query_list(perf_ctx, query);
832       break;
833    }
834 
835    case GEN_PERF_QUERY_TYPE_PIPELINE:
836       if (query->pipeline_stats.bo) {
837          perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
838          query->pipeline_stats.bo = NULL;
839       }
840 
841       query->pipeline_stats.bo =
842          perf_cfg->vtbl.bo_alloc(perf_ctx->bufmgr,
843                                  "perf. query pipeline stats bo",
844                                  STATS_BO_SIZE);
845 
846       /* Take starting snapshots. */
847       snapshot_statistics_registers(perf_ctx, query, 0);
848 
849       ++perf_ctx->n_active_pipeline_stats_queries;
850       break;
851 
852    default:
853       unreachable("Unknown query type");
854       break;
855    }
856 
857    return true;
858 }
859 
860 void
gen_perf_end_query(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query)861 gen_perf_end_query(struct gen_perf_context *perf_ctx,
862                    struct gen_perf_query_object *query)
863 {
864    struct gen_perf_config *perf_cfg = perf_ctx->perf;
865 
866    /* Ensure that the work associated with the queried commands will have
867     * finished before taking our query end counter readings.
868     *
869     * For more details see comment in brw_begin_perf_query for
870     * corresponding flush.
871     */
872    perf_cfg->vtbl.emit_stall_at_pixel_scoreboard(perf_ctx->ctx);
873 
874    switch (query->queryinfo->kind) {
875    case GEN_PERF_QUERY_TYPE_OA:
876    case GEN_PERF_QUERY_TYPE_RAW:
877 
878       /* NB: It's possible that the query will have already been marked
879        * as 'accumulated' if an error was seen while reading samples
880        * from perf. In this case we mustn't try and emit a closing
881        * MI_RPC command in case the OA unit has already been disabled
882        */
883       if (!query->oa.results_accumulated) {
884          /* Take an ending OA counter snapshot. */
885          snapshot_freq_register(perf_ctx, query, MI_FREQ_END_OFFSET_BYTES);
886          perf_cfg->vtbl.emit_mi_report_perf_count(perf_ctx->ctx, query->oa.bo,
887                                              MI_RPC_BO_END_OFFSET_BYTES,
888                                              query->oa.begin_report_id + 1);
889       }
890 
891       --perf_ctx->n_active_oa_queries;
892 
893       /* NB: even though the query has now ended, it can't be accumulated
894        * until the end MI_REPORT_PERF_COUNT snapshot has been written
895        * to query->oa.bo
896        */
897       break;
898 
899    case GEN_PERF_QUERY_TYPE_PIPELINE:
900       snapshot_statistics_registers(perf_ctx, query,
901                                     STATS_BO_END_OFFSET_BYTES);
902       --perf_ctx->n_active_pipeline_stats_queries;
903       break;
904 
905    default:
906       unreachable("Unknown query type");
907       break;
908    }
909 }
910 
911 enum OaReadStatus {
912    OA_READ_STATUS_ERROR,
913    OA_READ_STATUS_UNFINISHED,
914    OA_READ_STATUS_FINISHED,
915 };
916 
917 static enum OaReadStatus
read_oa_samples_until(struct gen_perf_context * perf_ctx,uint32_t start_timestamp,uint32_t end_timestamp)918 read_oa_samples_until(struct gen_perf_context *perf_ctx,
919                       uint32_t start_timestamp,
920                       uint32_t end_timestamp)
921 {
922    struct exec_node *tail_node =
923       exec_list_get_tail(&perf_ctx->sample_buffers);
924    struct oa_sample_buf *tail_buf =
925       exec_node_data(struct oa_sample_buf, tail_node, link);
926    uint32_t last_timestamp =
927       tail_buf->len == 0 ? start_timestamp : tail_buf->last_timestamp;
928 
929    while (1) {
930       struct oa_sample_buf *buf = get_free_sample_buf(perf_ctx);
931       uint32_t offset;
932       int len;
933 
934       while ((len = read(perf_ctx->oa_stream_fd, buf->buf,
935                          sizeof(buf->buf))) < 0 && errno == EINTR)
936          ;
937 
938       if (len <= 0) {
939          exec_list_push_tail(&perf_ctx->free_sample_buffers, &buf->link);
940 
941          if (len == 0) {
942             DBG("Spurious EOF reading i915 perf samples\n");
943             return OA_READ_STATUS_ERROR;
944          }
945 
946          if (errno != EAGAIN) {
947             DBG("Error reading i915 perf samples: %m\n");
948             return OA_READ_STATUS_ERROR;
949          }
950 
951          if ((last_timestamp - start_timestamp) >= INT32_MAX)
952             return OA_READ_STATUS_UNFINISHED;
953 
954          if ((last_timestamp - start_timestamp) <
955               (end_timestamp - start_timestamp))
956             return OA_READ_STATUS_UNFINISHED;
957 
958          return OA_READ_STATUS_FINISHED;
959       }
960 
961       buf->len = len;
962       exec_list_push_tail(&perf_ctx->sample_buffers, &buf->link);
963 
964       /* Go through the reports and update the last timestamp. */
965       offset = 0;
966       while (offset < buf->len) {
967          const struct drm_i915_perf_record_header *header =
968             (const struct drm_i915_perf_record_header *) &buf->buf[offset];
969          uint32_t *report = (uint32_t *) (header + 1);
970 
971          if (header->type == DRM_I915_PERF_RECORD_SAMPLE)
972             last_timestamp = report[1];
973 
974          offset += header->size;
975       }
976 
977       buf->last_timestamp = last_timestamp;
978    }
979 
980    unreachable("not reached");
981    return OA_READ_STATUS_ERROR;
982 }
983 
984 /**
985  * Try to read all the reports until either the delimiting timestamp
986  * or an error arises.
987  */
988 static bool
read_oa_samples_for_query(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,void * current_batch)989 read_oa_samples_for_query(struct gen_perf_context *perf_ctx,
990                           struct gen_perf_query_object *query,
991                           void *current_batch)
992 {
993    uint32_t *start;
994    uint32_t *last;
995    uint32_t *end;
996    struct gen_perf_config *perf_cfg = perf_ctx->perf;
997 
998    /* We need the MI_REPORT_PERF_COUNT to land before we can start
999     * accumulate. */
1000    assert(!perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1001           !perf_cfg->vtbl.bo_busy(query->oa.bo));
1002 
1003    /* Map the BO once here and let accumulate_oa_reports() unmap
1004     * it. */
1005    if (query->oa.map == NULL)
1006       query->oa.map = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->oa.bo, MAP_READ);
1007 
1008    start = last = query->oa.map;
1009    end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
1010 
1011    if (start[0] != query->oa.begin_report_id) {
1012       DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1013       return true;
1014    }
1015    if (end[0] != (query->oa.begin_report_id + 1)) {
1016       DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1017       return true;
1018    }
1019 
1020    /* Read the reports until the end timestamp. */
1021    switch (read_oa_samples_until(perf_ctx, start[1], end[1])) {
1022    case OA_READ_STATUS_ERROR:
1023       /* Fallthrough and let accumulate_oa_reports() deal with the
1024        * error. */
1025    case OA_READ_STATUS_FINISHED:
1026       return true;
1027    case OA_READ_STATUS_UNFINISHED:
1028       return false;
1029    }
1030 
1031    unreachable("invalid read status");
1032    return false;
1033 }
1034 
1035 void
gen_perf_wait_query(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,void * current_batch)1036 gen_perf_wait_query(struct gen_perf_context *perf_ctx,
1037                     struct gen_perf_query_object *query,
1038                     void *current_batch)
1039 {
1040    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1041    struct brw_bo *bo = NULL;
1042 
1043    switch (query->queryinfo->kind) {
1044    case GEN_PERF_QUERY_TYPE_OA:
1045    case GEN_PERF_QUERY_TYPE_RAW:
1046       bo = query->oa.bo;
1047       break;
1048 
1049    case GEN_PERF_QUERY_TYPE_PIPELINE:
1050       bo = query->pipeline_stats.bo;
1051       break;
1052 
1053    default:
1054       unreachable("Unknown query type");
1055       break;
1056    }
1057 
1058    if (bo == NULL)
1059       return;
1060 
1061    /* If the current batch references our results bo then we need to
1062     * flush first...
1063     */
1064    if (perf_cfg->vtbl.batch_references(current_batch, bo))
1065       perf_cfg->vtbl.batchbuffer_flush(perf_ctx->ctx, __FILE__, __LINE__);
1066 
1067    perf_cfg->vtbl.bo_wait_rendering(bo);
1068 }
1069 
1070 bool
gen_perf_is_query_ready(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,void * current_batch)1071 gen_perf_is_query_ready(struct gen_perf_context *perf_ctx,
1072                         struct gen_perf_query_object *query,
1073                         void *current_batch)
1074 {
1075    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1076 
1077    switch (query->queryinfo->kind) {
1078    case GEN_PERF_QUERY_TYPE_OA:
1079    case GEN_PERF_QUERY_TYPE_RAW:
1080       return (query->oa.results_accumulated ||
1081               (query->oa.bo &&
1082                !perf_cfg->vtbl.batch_references(current_batch, query->oa.bo) &&
1083                !perf_cfg->vtbl.bo_busy(query->oa.bo)));
1084 
1085    case GEN_PERF_QUERY_TYPE_PIPELINE:
1086       return (query->pipeline_stats.bo &&
1087               !perf_cfg->vtbl.batch_references(current_batch, query->pipeline_stats.bo) &&
1088               !perf_cfg->vtbl.bo_busy(query->pipeline_stats.bo));
1089 
1090    default:
1091       unreachable("Unknown query type");
1092       break;
1093    }
1094 
1095    return false;
1096 }
1097 
1098 /**
1099  * Remove a query from the global list of unaccumulated queries once
1100  * after successfully accumulating the OA reports associated with the
1101  * query in accumulate_oa_reports() or when discarding unwanted query
1102  * results.
1103  */
1104 static void
drop_from_unaccumulated_query_list(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query)1105 drop_from_unaccumulated_query_list(struct gen_perf_context *perf_ctx,
1106                                    struct gen_perf_query_object *query)
1107 {
1108    for (int i = 0; i < perf_ctx->unaccumulated_elements; i++) {
1109       if (perf_ctx->unaccumulated[i] == query) {
1110          int last_elt = --perf_ctx->unaccumulated_elements;
1111 
1112          if (i == last_elt)
1113             perf_ctx->unaccumulated[i] = NULL;
1114          else {
1115             perf_ctx->unaccumulated[i] =
1116                perf_ctx->unaccumulated[last_elt];
1117          }
1118 
1119          break;
1120       }
1121    }
1122 
1123    /* Drop our samples_head reference so that associated periodic
1124     * sample data buffers can potentially be reaped if they aren't
1125     * referenced by any other queries...
1126     */
1127 
1128    struct oa_sample_buf *buf =
1129       exec_node_data(struct oa_sample_buf, query->oa.samples_head, link);
1130 
1131    assert(buf->refcount > 0);
1132    buf->refcount--;
1133 
1134    query->oa.samples_head = NULL;
1135 
1136    reap_old_sample_buffers(perf_ctx);
1137 }
1138 
1139 /* In general if we see anything spurious while accumulating results,
1140  * we don't try and continue accumulating the current query, hoping
1141  * for the best, we scrap anything outstanding, and then hope for the
1142  * best with new queries.
1143  */
1144 static void
discard_all_queries(struct gen_perf_context * perf_ctx)1145 discard_all_queries(struct gen_perf_context *perf_ctx)
1146 {
1147    while (perf_ctx->unaccumulated_elements) {
1148       struct gen_perf_query_object *query = perf_ctx->unaccumulated[0];
1149 
1150       query->oa.results_accumulated = true;
1151       drop_from_unaccumulated_query_list(perf_ctx, query);
1152 
1153       dec_n_users(perf_ctx);
1154    }
1155 }
1156 
1157 /* Looks for the validity bit of context ID (dword 2) of an OA report. */
1158 static bool
oa_report_ctx_id_valid(const struct gen_device_info * devinfo,const uint32_t * report)1159 oa_report_ctx_id_valid(const struct gen_device_info *devinfo,
1160                        const uint32_t *report)
1161 {
1162    assert(devinfo->gen >= 8);
1163    if (devinfo->gen == 8)
1164       return (report[0] & (1 << 25)) != 0;
1165    return (report[0] & (1 << 16)) != 0;
1166 }
1167 
1168 /**
1169  * Accumulate raw OA counter values based on deltas between pairs of
1170  * OA reports.
1171  *
1172  * Accumulation starts from the first report captured via
1173  * MI_REPORT_PERF_COUNT (MI_RPC) by brw_begin_perf_query() until the
1174  * last MI_RPC report requested by brw_end_perf_query(). Between these
1175  * two reports there may also some number of periodically sampled OA
1176  * reports collected via the i915 perf interface - depending on the
1177  * duration of the query.
1178  *
1179  * These periodic snapshots help to ensure we handle counter overflow
1180  * correctly by being frequent enough to ensure we don't miss multiple
1181  * overflows of a counter between snapshots. For Gen8+ the i915 perf
1182  * snapshots provide the extra context-switch reports that let us
1183  * subtract out the progress of counters associated with other
1184  * contexts running on the system.
1185  */
1186 static void
accumulate_oa_reports(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query)1187 accumulate_oa_reports(struct gen_perf_context *perf_ctx,
1188                       struct gen_perf_query_object *query)
1189 {
1190    const struct gen_device_info *devinfo = perf_ctx->devinfo;
1191    uint32_t *start;
1192    uint32_t *last;
1193    uint32_t *end;
1194    struct exec_node *first_samples_node;
1195    bool last_report_ctx_match = true;
1196    int out_duration = 0;
1197 
1198    assert(query->oa.map != NULL);
1199 
1200    start = last = query->oa.map;
1201    end = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
1202 
1203    if (start[0] != query->oa.begin_report_id) {
1204       DBG("Spurious start report id=%"PRIu32"\n", start[0]);
1205       goto error;
1206    }
1207    if (end[0] != (query->oa.begin_report_id + 1)) {
1208       DBG("Spurious end report id=%"PRIu32"\n", end[0]);
1209       goto error;
1210    }
1211 
1212    /* On Gen12+ OA reports are sourced from per context counters, so we don't
1213     * ever have to look at the global OA buffer. Yey \o/
1214     */
1215    if (perf_ctx->devinfo->gen >= 12) {
1216       last = start;
1217       goto end;
1218    }
1219 
1220    /* See if we have any periodic reports to accumulate too... */
1221 
1222    /* N.B. The oa.samples_head was set when the query began and
1223     * pointed to the tail of the perf_ctx->sample_buffers list at
1224     * the time the query started. Since the buffer existed before the
1225     * first MI_REPORT_PERF_COUNT command was emitted we therefore know
1226     * that no data in this particular node's buffer can possibly be
1227     * associated with the query - so skip ahead one...
1228     */
1229    first_samples_node = query->oa.samples_head->next;
1230 
1231    foreach_list_typed_from(struct oa_sample_buf, buf, link,
1232                            &perf_ctx->sample_buffers,
1233                            first_samples_node)
1234    {
1235       int offset = 0;
1236 
1237       while (offset < buf->len) {
1238          const struct drm_i915_perf_record_header *header =
1239             (const struct drm_i915_perf_record_header *)(buf->buf + offset);
1240 
1241          assert(header->size != 0);
1242          assert(header->size <= buf->len);
1243 
1244          offset += header->size;
1245 
1246          switch (header->type) {
1247          case DRM_I915_PERF_RECORD_SAMPLE: {
1248             uint32_t *report = (uint32_t *)(header + 1);
1249             bool report_ctx_match = true;
1250             bool add = true;
1251 
1252             /* Ignore reports that come before the start marker.
1253              * (Note: takes care to allow overflow of 32bit timestamps)
1254              */
1255             if (gen_device_info_timebase_scale(devinfo,
1256                                                report[1] - start[1]) > 5000000000) {
1257                continue;
1258             }
1259 
1260             /* Ignore reports that come after the end marker.
1261              * (Note: takes care to allow overflow of 32bit timestamps)
1262              */
1263             if (gen_device_info_timebase_scale(devinfo,
1264                                                report[1] - end[1]) <= 5000000000) {
1265                goto end;
1266             }
1267 
1268             /* For Gen8+ since the counters continue while other
1269              * contexts are running we need to discount any unrelated
1270              * deltas. The hardware automatically generates a report
1271              * on context switch which gives us a new reference point
1272              * to continuing adding deltas from.
1273              *
1274              * For Haswell we can rely on the HW to stop the progress
1275              * of OA counters while any other context is acctive.
1276              */
1277             if (devinfo->gen >= 8) {
1278                /* Consider that the current report matches our context only if
1279                 * the report says the report ID is valid.
1280                 */
1281                report_ctx_match = oa_report_ctx_id_valid(devinfo, report) &&
1282                   report[2] == start[2];
1283                if (report_ctx_match)
1284                   out_duration = 0;
1285                else
1286                   out_duration++;
1287 
1288                /* Only add the delta between <last, report> if the last report
1289                 * was clearly identified as our context, or if we have at most
1290                 * 1 report without a matching ID.
1291                 *
1292                 * The OA unit will sometimes label reports with an invalid
1293                 * context ID when i915 rewrites the execlist submit register
1294                 * with the same context as the one currently running. This
1295                 * happens when i915 wants to notify the HW of ringbuffer tail
1296                 * register update. We have to consider this report as part of
1297                 * our context as the 3d pipeline behind the OACS unit is still
1298                 * processing the operations started at the previous execlist
1299                 * submission.
1300                 */
1301                add = last_report_ctx_match && out_duration < 2;
1302             }
1303 
1304             if (add) {
1305                gen_perf_query_result_accumulate(&query->oa.result,
1306                                                 query->queryinfo,
1307                                                 last, report);
1308             } else {
1309                /* We're not adding the delta because we've identified it's not
1310                 * for the context we filter for. We can consider that the
1311                 * query was split.
1312                 */
1313                query->oa.result.query_disjoint = true;
1314             }
1315 
1316             last = report;
1317             last_report_ctx_match = report_ctx_match;
1318 
1319             break;
1320          }
1321 
1322          case DRM_I915_PERF_RECORD_OA_BUFFER_LOST:
1323              DBG("i915 perf: OA error: all reports lost\n");
1324              goto error;
1325          case DRM_I915_PERF_RECORD_OA_REPORT_LOST:
1326              DBG("i915 perf: OA report lost\n");
1327              break;
1328          }
1329       }
1330    }
1331 
1332 end:
1333 
1334    gen_perf_query_result_accumulate(&query->oa.result, query->queryinfo,
1335                                     last, end);
1336 
1337    query->oa.results_accumulated = true;
1338    drop_from_unaccumulated_query_list(perf_ctx, query);
1339    dec_n_users(perf_ctx);
1340 
1341    return;
1342 
1343 error:
1344 
1345    discard_all_queries(perf_ctx);
1346 }
1347 
1348 void
gen_perf_delete_query(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query)1349 gen_perf_delete_query(struct gen_perf_context *perf_ctx,
1350                       struct gen_perf_query_object *query)
1351 {
1352    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1353 
1354    /* We can assume that the frontend waits for a query to complete
1355     * before ever calling into here, so we don't have to worry about
1356     * deleting an in-flight query object.
1357     */
1358    switch (query->queryinfo->kind) {
1359    case GEN_PERF_QUERY_TYPE_OA:
1360    case GEN_PERF_QUERY_TYPE_RAW:
1361       if (query->oa.bo) {
1362          if (!query->oa.results_accumulated) {
1363             drop_from_unaccumulated_query_list(perf_ctx, query);
1364             dec_n_users(perf_ctx);
1365          }
1366 
1367          perf_cfg->vtbl.bo_unreference(query->oa.bo);
1368          query->oa.bo = NULL;
1369       }
1370 
1371       query->oa.results_accumulated = false;
1372       break;
1373 
1374    case GEN_PERF_QUERY_TYPE_PIPELINE:
1375       if (query->pipeline_stats.bo) {
1376          perf_cfg->vtbl.bo_unreference(query->pipeline_stats.bo);
1377          query->pipeline_stats.bo = NULL;
1378       }
1379       break;
1380 
1381    default:
1382       unreachable("Unknown query type");
1383       break;
1384    }
1385 
1386    /* As an indication that the INTEL_performance_query extension is no
1387     * longer in use, it's a good time to free our cache of sample
1388     * buffers and close any current i915-perf stream.
1389     */
1390    if (--perf_ctx->n_query_instances == 0) {
1391       free_sample_bufs(perf_ctx);
1392       gen_perf_close(perf_ctx, query->queryinfo);
1393    }
1394 
1395    free(query);
1396 }
1397 
1398 #define GET_FIELD(word, field) (((word)  & field ## _MASK) >> field ## _SHIFT)
1399 
1400 static void
read_gt_frequency(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * obj)1401 read_gt_frequency(struct gen_perf_context *perf_ctx,
1402                   struct gen_perf_query_object *obj)
1403 {
1404    const struct gen_device_info *devinfo = perf_ctx->devinfo;
1405    uint32_t start = *((uint32_t *)(obj->oa.map + MI_FREQ_START_OFFSET_BYTES)),
1406       end = *((uint32_t *)(obj->oa.map + MI_FREQ_END_OFFSET_BYTES));
1407 
1408    switch (devinfo->gen) {
1409    case 7:
1410    case 8:
1411       obj->oa.gt_frequency[0] = GET_FIELD(start, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
1412       obj->oa.gt_frequency[1] = GET_FIELD(end, GEN7_RPSTAT1_CURR_GT_FREQ) * 50ULL;
1413       break;
1414    case 9:
1415    case 11:
1416    case 12:
1417       obj->oa.gt_frequency[0] = GET_FIELD(start, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
1418       obj->oa.gt_frequency[1] = GET_FIELD(end, GEN9_RPSTAT0_CURR_GT_FREQ) * 50ULL / 3ULL;
1419       break;
1420    default:
1421       unreachable("unexpected gen");
1422    }
1423 
1424    /* Put the numbers into Hz. */
1425    obj->oa.gt_frequency[0] *= 1000000ULL;
1426    obj->oa.gt_frequency[1] *= 1000000ULL;
1427 }
1428 
1429 static int
get_oa_counter_data(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,size_t data_size,uint8_t * data)1430 get_oa_counter_data(struct gen_perf_context *perf_ctx,
1431                     struct gen_perf_query_object *query,
1432                     size_t data_size,
1433                     uint8_t *data)
1434 {
1435    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1436    const struct gen_perf_query_info *queryinfo = query->queryinfo;
1437    int n_counters = queryinfo->n_counters;
1438    int written = 0;
1439 
1440    for (int i = 0; i < n_counters; i++) {
1441       const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
1442       uint64_t *out_uint64;
1443       float *out_float;
1444       size_t counter_size = gen_perf_query_counter_get_size(counter);
1445 
1446       if (counter_size) {
1447          switch (counter->data_type) {
1448          case GEN_PERF_COUNTER_DATA_TYPE_UINT64:
1449             out_uint64 = (uint64_t *)(data + counter->offset);
1450             *out_uint64 =
1451                counter->oa_counter_read_uint64(perf_cfg, queryinfo,
1452                                                query->oa.result.accumulator);
1453             break;
1454          case GEN_PERF_COUNTER_DATA_TYPE_FLOAT:
1455             out_float = (float *)(data + counter->offset);
1456             *out_float =
1457                counter->oa_counter_read_float(perf_cfg, queryinfo,
1458                                               query->oa.result.accumulator);
1459             break;
1460          default:
1461             /* So far we aren't using uint32, double or bool32... */
1462             unreachable("unexpected counter data type");
1463          }
1464 
1465          if (counter->offset + counter_size > written)
1466             written = counter->offset + counter_size;
1467       }
1468    }
1469 
1470    return written;
1471 }
1472 
1473 static int
get_pipeline_stats_data(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,size_t data_size,uint8_t * data)1474 get_pipeline_stats_data(struct gen_perf_context *perf_ctx,
1475                         struct gen_perf_query_object *query,
1476                         size_t data_size,
1477                         uint8_t *data)
1478 
1479 {
1480    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1481    const struct gen_perf_query_info *queryinfo = query->queryinfo;
1482    int n_counters = queryinfo->n_counters;
1483    uint8_t *p = data;
1484 
1485    uint64_t *start = perf_cfg->vtbl.bo_map(perf_ctx->ctx, query->pipeline_stats.bo, MAP_READ);
1486    uint64_t *end = start + (STATS_BO_END_OFFSET_BYTES / sizeof(uint64_t));
1487 
1488    for (int i = 0; i < n_counters; i++) {
1489       const struct gen_perf_query_counter *counter = &queryinfo->counters[i];
1490       uint64_t value = end[i] - start[i];
1491 
1492       if (counter->pipeline_stat.numerator !=
1493           counter->pipeline_stat.denominator) {
1494          value *= counter->pipeline_stat.numerator;
1495          value /= counter->pipeline_stat.denominator;
1496       }
1497 
1498       *((uint64_t *)p) = value;
1499       p += 8;
1500    }
1501 
1502    perf_cfg->vtbl.bo_unmap(query->pipeline_stats.bo);
1503 
1504    return p - data;
1505 }
1506 
1507 void
gen_perf_get_query_data(struct gen_perf_context * perf_ctx,struct gen_perf_query_object * query,void * current_batch,int data_size,unsigned * data,unsigned * bytes_written)1508 gen_perf_get_query_data(struct gen_perf_context *perf_ctx,
1509                         struct gen_perf_query_object *query,
1510                         void *current_batch,
1511                         int data_size,
1512                         unsigned *data,
1513                         unsigned *bytes_written)
1514 {
1515    struct gen_perf_config *perf_cfg = perf_ctx->perf;
1516    int written = 0;
1517 
1518    switch (query->queryinfo->kind) {
1519    case GEN_PERF_QUERY_TYPE_OA:
1520    case GEN_PERF_QUERY_TYPE_RAW:
1521       if (!query->oa.results_accumulated) {
1522          /* Due to the sampling frequency of the OA buffer by the i915-perf
1523           * driver, there can be a 5ms delay between the Mesa seeing the query
1524           * complete and i915 making all the OA buffer reports available to us.
1525           * We need to wait for all the reports to come in before we can do
1526           * the post processing removing unrelated deltas.
1527           * There is a i915-perf series to address this issue, but it's
1528           * not been merged upstream yet.
1529           */
1530          while (!read_oa_samples_for_query(perf_ctx, query, current_batch))
1531             ;
1532 
1533          read_gt_frequency(perf_ctx, query);
1534          uint32_t *begin_report = query->oa.map;
1535          uint32_t *end_report = query->oa.map + MI_RPC_BO_END_OFFSET_BYTES;
1536          gen_perf_query_result_read_frequencies(&query->oa.result,
1537                                                 perf_ctx->devinfo,
1538                                                 begin_report,
1539                                                 end_report);
1540          accumulate_oa_reports(perf_ctx, query);
1541          assert(query->oa.results_accumulated);
1542 
1543          perf_cfg->vtbl.bo_unmap(query->oa.bo);
1544          query->oa.map = NULL;
1545       }
1546       if (query->queryinfo->kind == GEN_PERF_QUERY_TYPE_OA) {
1547          written = get_oa_counter_data(perf_ctx, query, data_size, (uint8_t *)data);
1548       } else {
1549          const struct gen_device_info *devinfo = perf_ctx->devinfo;
1550 
1551          written = gen_perf_query_result_write_mdapi((uint8_t *)data, data_size,
1552                                                      devinfo, &query->oa.result,
1553                                                      query->oa.gt_frequency[0],
1554                                                      query->oa.gt_frequency[1]);
1555       }
1556       break;
1557 
1558    case GEN_PERF_QUERY_TYPE_PIPELINE:
1559       written = get_pipeline_stats_data(perf_ctx, query, data_size, (uint8_t *)data);
1560       break;
1561 
1562    default:
1563       unreachable("Unknown query type");
1564       break;
1565    }
1566 
1567    if (bytes_written)
1568       *bytes_written = written;
1569 }
1570 
1571 void
gen_perf_dump_query_count(struct gen_perf_context * perf_ctx)1572 gen_perf_dump_query_count(struct gen_perf_context *perf_ctx)
1573 {
1574    DBG("Queries: (Open queries = %d, OA users = %d)\n",
1575        perf_ctx->n_active_oa_queries, perf_ctx->n_oa_users);
1576 }
1577 
1578 void
gen_perf_dump_query(struct gen_perf_context * ctx,struct gen_perf_query_object * obj,void * current_batch)1579 gen_perf_dump_query(struct gen_perf_context *ctx,
1580                     struct gen_perf_query_object *obj,
1581                     void *current_batch)
1582 {
1583    switch (obj->queryinfo->kind) {
1584    case GEN_PERF_QUERY_TYPE_OA:
1585    case GEN_PERF_QUERY_TYPE_RAW:
1586       DBG("BO: %-4s OA data: %-10s %-15s\n",
1587           obj->oa.bo ? "yes," : "no,",
1588           gen_perf_is_query_ready(ctx, obj, current_batch) ? "ready," : "not ready,",
1589           obj->oa.results_accumulated ? "accumulated" : "not accumulated");
1590       break;
1591    case GEN_PERF_QUERY_TYPE_PIPELINE:
1592       DBG("BO: %-4s\n",
1593           obj->pipeline_stats.bo ? "yes" : "no");
1594       break;
1595    default:
1596       unreachable("Unknown query type");
1597       break;
1598    }
1599 }
1600