• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2018-2019 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3  * Copyright (C) 2019 Collabora, Ltd.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "compiler.h"
26 #include "midgard_ops.h"
27 #include "util/u_math.h"
28 #include "util/u_memory.h"
29 #include "midgard_quirks.h"
30 
31 struct phys_reg {
32         /* Physical register: 0-31 */
33         unsigned reg;
34 
35         /* Byte offset into the physical register: 0-15 */
36         unsigned offset;
37 
38         /* log2(bytes per component) for fast mul/div */
39         unsigned shift;
40 };
41 
42 /* Shift up by reg_offset and horizontally by dst_offset. */
43 
44 static void
offset_swizzle(unsigned * swizzle,unsigned reg_offset,unsigned srcshift,unsigned dstshift,unsigned dst_offset)45 offset_swizzle(unsigned *swizzle, unsigned reg_offset, unsigned srcshift, unsigned dstshift, unsigned dst_offset)
46 {
47         unsigned out[MIR_VEC_COMPONENTS];
48 
49         signed reg_comp = reg_offset >> srcshift;
50         signed dst_comp = dst_offset >> dstshift;
51 
52         unsigned max_component = (16 >> srcshift) - 1;
53 
54         assert(reg_comp << srcshift == reg_offset);
55         assert(dst_comp << dstshift == dst_offset);
56 
57         for (signed c = 0; c < MIR_VEC_COMPONENTS; ++c) {
58                 signed comp = MAX2(c - dst_comp, 0);
59                 out[c] = MIN2(swizzle[comp] + reg_comp, max_component);
60         }
61 
62         memcpy(swizzle, out, sizeof(out));
63 }
64 
65 /* Helper to return the default phys_reg for a given register */
66 
67 static struct phys_reg
default_phys_reg(int reg,unsigned shift)68 default_phys_reg(int reg, unsigned shift)
69 {
70         struct phys_reg r = {
71                 .reg = reg,
72                 .offset = 0,
73                 .shift = shift
74         };
75 
76         return r;
77 }
78 
79 /* Determine which physical register, swizzle, and mask a virtual
80  * register corresponds to */
81 
82 static struct phys_reg
index_to_reg(compiler_context * ctx,struct lcra_state * l,unsigned reg,unsigned shift)83 index_to_reg(compiler_context *ctx, struct lcra_state *l, unsigned reg, unsigned shift)
84 {
85         /* Check for special cases */
86         if (reg == ~0)
87                 return default_phys_reg(REGISTER_UNUSED, shift);
88         else if (reg >= SSA_FIXED_MINIMUM)
89                 return default_phys_reg(SSA_REG_FROM_FIXED(reg), shift);
90         else if (!l)
91                 return default_phys_reg(REGISTER_UNUSED, shift);
92 
93         struct phys_reg r = {
94                 .reg = l->solutions[reg] / 16,
95                 .offset = l->solutions[reg] & 0xF,
96                 .shift = shift
97         };
98 
99         /* Report that we actually use this register, and return it */
100 
101         if (r.reg < 16)
102                 ctx->work_registers = MAX2(ctx->work_registers, r.reg);
103 
104         return r;
105 }
106 
107 static void
set_class(unsigned * classes,unsigned node,unsigned class)108 set_class(unsigned *classes, unsigned node, unsigned class)
109 {
110         if (node < SSA_FIXED_MINIMUM && class != classes[node]) {
111                 assert(classes[node] == REG_CLASS_WORK);
112                 classes[node] = class;
113         }
114 }
115 
116 /* Special register classes impose special constraints on who can read their
117  * values, so check that */
118 
119 static bool ASSERTED
check_read_class(unsigned * classes,unsigned tag,unsigned node)120 check_read_class(unsigned *classes, unsigned tag, unsigned node)
121 {
122         /* Non-nodes are implicitly ok */
123         if (node >= SSA_FIXED_MINIMUM)
124                 return true;
125 
126         switch (classes[node]) {
127         case REG_CLASS_LDST:
128                 return (tag == TAG_LOAD_STORE_4);
129         case REG_CLASS_TEXR:
130                 return (tag == TAG_TEXTURE_4);
131         case REG_CLASS_TEXW:
132                 return (tag != TAG_LOAD_STORE_4);
133         case REG_CLASS_WORK:
134                 return IS_ALU(tag);
135         default:
136                 unreachable("Invalid class");
137         }
138 }
139 
140 static bool ASSERTED
check_write_class(unsigned * classes,unsigned tag,unsigned node)141 check_write_class(unsigned *classes, unsigned tag, unsigned node)
142 {
143         /* Non-nodes are implicitly ok */
144         if (node >= SSA_FIXED_MINIMUM)
145                 return true;
146 
147         switch (classes[node]) {
148         case REG_CLASS_TEXR:
149                 return true;
150         case REG_CLASS_TEXW:
151                 return (tag == TAG_TEXTURE_4);
152         case REG_CLASS_LDST:
153         case REG_CLASS_WORK:
154                 return IS_ALU(tag) || (tag == TAG_LOAD_STORE_4);
155         default:
156                 unreachable("Invalid class");
157         }
158 }
159 
160 /* Prepass before RA to ensure special class restrictions are met. The idea is
161  * to create a bit field of types of instructions that read a particular index.
162  * Later, we'll add moves as appropriate and rewrite to specialize by type. */
163 
164 static void
mark_node_class(unsigned * bitfield,unsigned node)165 mark_node_class (unsigned *bitfield, unsigned node)
166 {
167         if (node < SSA_FIXED_MINIMUM)
168                 BITSET_SET(bitfield, node);
169 }
170 
171 void
mir_lower_special_reads(compiler_context * ctx)172 mir_lower_special_reads(compiler_context *ctx)
173 {
174         size_t sz = BITSET_WORDS(ctx->temp_count) * sizeof(BITSET_WORD);
175 
176         /* Bitfields for the various types of registers we could have. aluw can
177          * be written by either ALU or load/store */
178 
179         unsigned *alur = calloc(sz, 1);
180         unsigned *aluw = calloc(sz, 1);
181         unsigned *brar = calloc(sz, 1);
182         unsigned *ldst = calloc(sz, 1);
183         unsigned *texr = calloc(sz, 1);
184         unsigned *texw = calloc(sz, 1);
185 
186         /* Pass #1 is analysis, a linear scan to fill out the bitfields */
187 
188         mir_foreach_instr_global(ctx, ins) {
189                 switch (ins->type) {
190                 case TAG_ALU_4:
191                         mark_node_class(aluw, ins->dest);
192                         mark_node_class(alur, ins->src[0]);
193                         mark_node_class(alur, ins->src[1]);
194                         mark_node_class(alur, ins->src[2]);
195 
196                         if (ins->compact_branch && ins->writeout)
197                                 mark_node_class(brar, ins->src[0]);
198 
199                         break;
200 
201                 case TAG_LOAD_STORE_4:
202                         mark_node_class(aluw, ins->dest);
203                         mark_node_class(ldst, ins->src[0]);
204                         mark_node_class(ldst, ins->src[1]);
205                         mark_node_class(ldst, ins->src[2]);
206                         mark_node_class(ldst, ins->src[3]);
207                         break;
208 
209                 case TAG_TEXTURE_4:
210                         mark_node_class(texr, ins->src[0]);
211                         mark_node_class(texr, ins->src[1]);
212                         mark_node_class(texr, ins->src[2]);
213                         mark_node_class(texw, ins->dest);
214                         break;
215                 }
216         }
217 
218         /* Pass #2 is lowering now that we've analyzed all the classes.
219          * Conceptually, if an index is only marked for a single type of use,
220          * there is nothing to lower. If it is marked for different uses, we
221          * split up based on the number of types of uses. To do so, we divide
222          * into N distinct classes of use (where N>1 by definition), emit N-1
223          * moves from the index to copies of the index, and finally rewrite N-1
224          * of the types of uses to use the corresponding move */
225 
226         unsigned spill_idx = ctx->temp_count;
227 
228         for (unsigned i = 0; i < ctx->temp_count; ++i) {
229                 bool is_alur = BITSET_TEST(alur, i);
230                 bool is_aluw = BITSET_TEST(aluw, i);
231                 bool is_brar = BITSET_TEST(brar, i);
232                 bool is_ldst = BITSET_TEST(ldst, i);
233                 bool is_texr = BITSET_TEST(texr, i);
234                 bool is_texw = BITSET_TEST(texw, i);
235 
236                 /* Analyse to check how many distinct uses there are. ALU ops
237                  * (alur) can read the results of the texture pipeline (texw)
238                  * but not ldst or texr. Load/store ops (ldst) cannot read
239                  * anything but load/store inputs. Texture pipeline cannot read
240                  * anything but texture inputs. TODO: Simplify.  */
241 
242                 bool collision =
243                         (is_alur && (is_ldst || is_texr)) ||
244                         (is_ldst && (is_alur || is_texr || is_texw)) ||
245                         (is_texr && (is_alur || is_ldst || is_texw)) ||
246                         (is_texw && (is_aluw || is_ldst || is_texr)) ||
247                         (is_brar && is_texw);
248 
249                 if (!collision)
250                         continue;
251 
252                 /* Use the index as-is as the work copy. Emit copies for
253                  * special uses */
254 
255                 unsigned classes[] = { TAG_LOAD_STORE_4, TAG_TEXTURE_4, TAG_TEXTURE_4, TAG_ALU_4};
256                 bool collisions[] = { is_ldst, is_texr, is_texw && is_aluw, is_brar };
257 
258                 for (unsigned j = 0; j < ARRAY_SIZE(collisions); ++j) {
259                         if (!collisions[j]) continue;
260 
261                         /* When the hazard is from reading, we move and rewrite
262                          * sources (typical case). When it's from writing, we
263                          * flip the move and rewrite destinations (obscure,
264                          * only from control flow -- impossible in SSA) */
265 
266                         bool hazard_write = (j == 2);
267 
268                         unsigned idx = spill_idx++;
269 
270                         /* Insert move before each read/write, depending on the
271                          * hazard we're trying to account for */
272 
273                         mir_foreach_instr_global_safe(ctx, pre_use) {
274                                 if (pre_use->type != classes[j])
275                                         continue;
276 
277                                 if (hazard_write) {
278                                         if (pre_use->dest != i)
279                                                 continue;
280 
281                                         midgard_instruction m = v_mov(idx, i);
282                                         m.dest_type = pre_use->dest_type;
283                                         m.src_types[1] = m.dest_type;
284                                         m.mask = pre_use->mask;
285 
286                                         midgard_instruction *use = mir_next_op(pre_use);
287                                         assert(use);
288                                         mir_insert_instruction_before(ctx, use, m);
289                                         mir_rewrite_index_dst_single(pre_use, i, idx);
290                                 } else {
291                                         if (!mir_has_arg(pre_use, i))
292                                                 continue;
293 
294                                         idx = spill_idx++;
295 
296                                         midgard_instruction m = v_mov(i, idx);
297                                         m.mask = mir_from_bytemask(mir_round_bytemask_up(
298                                                                 mir_bytemask_of_read_components(pre_use, i), 32), 32);
299                                         mir_insert_instruction_before(ctx, pre_use, m);
300                                         mir_rewrite_index_src_single(pre_use, i, idx);
301                                 }
302                         }
303                 }
304         }
305 
306         free(alur);
307         free(aluw);
308         free(brar);
309         free(ldst);
310         free(texr);
311         free(texw);
312 }
313 
314 static void
mir_compute_interference(compiler_context * ctx,struct lcra_state * l)315 mir_compute_interference(
316                 compiler_context *ctx,
317                 struct lcra_state *l)
318 {
319         /* First, we need liveness information to be computed per block */
320         mir_compute_liveness(ctx);
321 
322         /* We need to force r1.w live throughout a blend shader */
323 
324         if (ctx->is_blend) {
325                 unsigned r1w = ~0;
326 
327                 mir_foreach_block(ctx, _block) {
328                         midgard_block *block = (midgard_block *) _block;
329                         mir_foreach_instr_in_block_rev(block, ins) {
330                                 if (ins->writeout)
331                                         r1w = ins->dest;
332                         }
333 
334                         if (r1w != ~0)
335                                 break;
336                 }
337 
338                 mir_foreach_instr_global(ctx, ins) {
339                         if (ins->dest < ctx->temp_count)
340                                 lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), r1w, 0xF);
341                 }
342         }
343 
344         /* Now that every block has live_in/live_out computed, we can determine
345          * interference by walking each block linearly. Take live_out at the
346          * end of each block and walk the block backwards. */
347 
348         mir_foreach_block(ctx, _blk) {
349                 midgard_block *blk = (midgard_block *) _blk;
350                 uint16_t *live = mem_dup(_blk->live_out, ctx->temp_count * sizeof(uint16_t));
351 
352                 mir_foreach_instr_in_block_rev(blk, ins) {
353                         /* Mark all registers live after the instruction as
354                          * interfering with the destination */
355 
356                         unsigned dest = ins->dest;
357 
358                         if (dest < ctx->temp_count) {
359                                 for (unsigned i = 0; i < ctx->temp_count; ++i)
360                                         if (live[i]) {
361                                                 unsigned mask = mir_bytemask(ins);
362                                                 lcra_add_node_interference(l, dest, mask, i, live[i]);
363                                         }
364                         }
365 
366                         /* Update live_in */
367                         mir_liveness_ins_update(live, ins, ctx->temp_count);
368                 }
369 
370                 free(live);
371         }
372 }
373 
374 static bool
mir_is_64(midgard_instruction * ins)375 mir_is_64(midgard_instruction *ins)
376 {
377         if (nir_alu_type_get_type_size(ins->dest_type) == 64)
378                 return true;
379 
380         mir_foreach_src(ins, v) {
381                 if (nir_alu_type_get_type_size(ins->src_types[v]) == 64)
382                         return true;
383         }
384 
385         return false;
386 }
387 
388 /* This routine performs the actual register allocation. It should be succeeded
389  * by install_registers */
390 
391 static struct lcra_state *
allocate_registers(compiler_context * ctx,bool * spilled)392 allocate_registers(compiler_context *ctx, bool *spilled)
393 {
394         /* The number of vec4 work registers available depends on when the
395          * uniforms start and the shader stage. By ABI we limit blend shaders
396          * to 8 registers, should be lower XXX */
397         int work_count = ctx->is_blend ? 8 :
398                 16 - MAX2((ctx->uniform_cutoff - 8), 0);
399 
400        /* No register allocation to do with no SSA */
401 
402         if (!ctx->temp_count)
403                 return NULL;
404 
405         /* Initialize LCRA. Allocate an extra node at the end for a precoloured
406          * r1 for interference */
407 
408         struct lcra_state *l = lcra_alloc_equations(ctx->temp_count + 1, 5);
409         unsigned node_r1 = ctx->temp_count;
410 
411         /* Starts of classes, in bytes */
412         l->class_start[REG_CLASS_WORK]  = 16 * 0;
413         l->class_start[REG_CLASS_LDST]  = 16 * 26;
414         l->class_start[REG_CLASS_TEXR]  = 16 * 28;
415         l->class_start[REG_CLASS_TEXW]  = 16 * 28;
416 
417         l->class_size[REG_CLASS_WORK] = 16 * work_count;
418         l->class_size[REG_CLASS_LDST]  = 16 * 2;
419         l->class_size[REG_CLASS_TEXR]  = 16 * 2;
420         l->class_size[REG_CLASS_TEXW]  = 16 * 2;
421 
422         lcra_set_disjoint_class(l, REG_CLASS_TEXR, REG_CLASS_TEXW);
423 
424         /* To save space on T*20, we don't have real texture registers.
425          * Instead, tex inputs reuse the load/store pipeline registers, and
426          * tex outputs use work r0/r1. Note we still use TEXR/TEXW classes,
427          * noting that this handles interferences and sizes correctly. */
428 
429         if (ctx->quirks & MIDGARD_INTERPIPE_REG_ALIASING) {
430                 l->class_start[REG_CLASS_TEXR] = l->class_start[REG_CLASS_LDST];
431                 l->class_start[REG_CLASS_TEXW] = l->class_start[REG_CLASS_WORK];
432         }
433 
434         unsigned *found_class = calloc(sizeof(unsigned), ctx->temp_count);
435         unsigned *min_alignment = calloc(sizeof(unsigned), ctx->temp_count);
436         unsigned *min_bound = calloc(sizeof(unsigned), ctx->temp_count);
437 
438         mir_foreach_instr_global(ctx, ins) {
439                 /* Swizzles of 32-bit sources on 64-bit instructions need to be
440                  * aligned to either bottom (xy) or top (zw). More general
441                  * swizzle lowering should happen prior to scheduling (TODO),
442                  * but once we get RA we shouldn't disrupt this further. Align
443                  * sources of 64-bit instructions. */
444 
445                 if (ins->type == TAG_ALU_4 && mir_is_64(ins)) {
446                         mir_foreach_src(ins, v) {
447                                 unsigned s = ins->src[v];
448 
449                                 if (s < ctx->temp_count)
450                                         min_alignment[s] = 3;
451                         }
452                 }
453 
454                 if (ins->type == TAG_LOAD_STORE_4 && OP_HAS_ADDRESS(ins->op)) {
455                         mir_foreach_src(ins, v) {
456                                 unsigned s = ins->src[v];
457                                 unsigned size = nir_alu_type_get_type_size(ins->src_types[v]);
458 
459                                 if (s < ctx->temp_count)
460                                         min_alignment[s] = (size == 64) ? 3 : 2;
461                         }
462                 }
463 
464                 if (ins->dest >= SSA_FIXED_MINIMUM) continue;
465 
466                 unsigned size = nir_alu_type_get_type_size(ins->dest_type);
467 
468                 if (ins->is_pack)
469                         size = 32;
470 
471                 /* 0 for x, 1 for xy, 2 for xyz, 3 for xyzw */
472                 int comps1 = util_logbase2(ins->mask);
473 
474                 int bytes = (comps1 + 1) * (size / 8);
475 
476                 /* Use the largest class if there's ambiguity, this
477                  * handles partial writes */
478 
479                 int dest = ins->dest;
480                 found_class[dest] = MAX2(found_class[dest], bytes);
481 
482                 min_alignment[dest] =
483                         (size == 16) ? 1 : /* (1 << 1) = 2-byte */
484                         (size == 32) ? 2 : /* (1 << 2) = 4-byte */
485                         (size == 64) ? 3 : /* (1 << 3) = 8-byte */
486                         3; /* 8-bit todo */
487 
488                 /* We can't cross xy/zw boundaries. TODO: vec8 can */
489                 if (size == 16)
490                         min_bound[dest] = 8;
491 
492                 /* We don't have a swizzle for the conditional and we don't
493                  * want to muck with the conditional itself, so just force
494                  * alignment for now */
495 
496                 if (ins->type == TAG_ALU_4 && OP_IS_CSEL_V(ins->op)) {
497                         min_alignment[dest] = 4; /* 1 << 4= 16-byte = vec4 */
498 
499                         /* LCRA assumes bound >= alignment */
500                         min_bound[dest] = 16;
501                 }
502 
503                 /* Since ld/st swizzles and masks are 32-bit only, we need them
504                  * aligned to enable final packing */
505                 if (ins->type == TAG_LOAD_STORE_4)
506                         min_alignment[dest] = MAX2(min_alignment[dest], 2);
507         }
508 
509         for (unsigned i = 0; i < ctx->temp_count; ++i) {
510                 lcra_set_alignment(l, i, min_alignment[i] ? min_alignment[i] : 2,
511                                 min_bound[i] ? min_bound[i] : 16);
512                 lcra_restrict_range(l, i, found_class[i]);
513         }
514 
515         free(found_class);
516         free(min_alignment);
517         free(min_bound);
518 
519         /* Next, we'll determine semantic class. We default to zero (work).
520          * But, if we're used with a special operation, that will force us to a
521          * particular class. Each node must be assigned to exactly one class; a
522          * prepass before RA should have lowered what-would-have-been
523          * multiclass nodes into a series of moves to break it up into multiple
524          * nodes (TODO) */
525 
526         mir_foreach_instr_global(ctx, ins) {
527                 /* Check if this operation imposes any classes */
528 
529                 if (ins->type == TAG_LOAD_STORE_4) {
530                         set_class(l->class, ins->src[0], REG_CLASS_LDST);
531                         set_class(l->class, ins->src[1], REG_CLASS_LDST);
532                         set_class(l->class, ins->src[2], REG_CLASS_LDST);
533                         set_class(l->class, ins->src[3], REG_CLASS_LDST);
534 
535                         if (OP_IS_VEC4_ONLY(ins->op)) {
536                                 lcra_restrict_range(l, ins->dest, 16);
537                                 lcra_restrict_range(l, ins->src[0], 16);
538                                 lcra_restrict_range(l, ins->src[1], 16);
539                                 lcra_restrict_range(l, ins->src[2], 16);
540                                 lcra_restrict_range(l, ins->src[3], 16);
541                         }
542                 } else if (ins->type == TAG_TEXTURE_4) {
543                         set_class(l->class, ins->dest, REG_CLASS_TEXW);
544                         set_class(l->class, ins->src[0], REG_CLASS_TEXR);
545                         set_class(l->class, ins->src[1], REG_CLASS_TEXR);
546                         set_class(l->class, ins->src[2], REG_CLASS_TEXR);
547                         set_class(l->class, ins->src[3], REG_CLASS_TEXR);
548                 }
549         }
550 
551         /* Check that the semantics of the class are respected */
552         mir_foreach_instr_global(ctx, ins) {
553                 assert(check_write_class(l->class, ins->type, ins->dest));
554                 assert(check_read_class(l->class, ins->type, ins->src[0]));
555                 assert(check_read_class(l->class, ins->type, ins->src[1]));
556                 assert(check_read_class(l->class, ins->type, ins->src[2]));
557                 assert(check_read_class(l->class, ins->type, ins->src[3]));
558         }
559 
560         /* Mark writeout to r0, depth to r1.x, stencil to r1.y,
561          * render target to r1.z, unknown to r1.w */
562         mir_foreach_instr_global(ctx, ins) {
563                 if (!(ins->compact_branch && ins->writeout)) continue;
564 
565                 if (ins->src[0] < ctx->temp_count)
566                         l->solutions[ins->src[0]] = 0;
567 
568                 if (ins->src[2] < ctx->temp_count)
569                         l->solutions[ins->src[2]] = (16 * 1) + COMPONENT_X * 4;
570 
571                 if (ins->src[3] < ctx->temp_count)
572                         l->solutions[ins->src[3]] = (16 * 1) + COMPONENT_Y * 4;
573 
574                 if (ins->src[1] < ctx->temp_count)
575                         l->solutions[ins->src[1]] = (16 * 1) + COMPONENT_Z * 4;
576 
577                 if (ins->dest < ctx->temp_count)
578                         l->solutions[ins->dest] = (16 * 1) + COMPONENT_W * 4;
579         }
580 
581         /* Destinations of instructions in a writeout block cannot be assigned
582          * to r1 unless they are actually used as r1 from the writeout itself,
583          * since the writes to r1 are special. A code sequence like:
584          *
585          *      sadd.fmov r1.x, [...]
586          *      vadd.fadd r0, r1, r2
587          *      [writeout branch]
588          *
589          * will misbehave since the r1.x write will be interpreted as a
590          * gl_FragDepth write so it won't show up correctly when r1 is read in
591          * the following segment. We model this as interference.
592          */
593 
594         l->solutions[node_r1] = (16 * 1);
595 
596         mir_foreach_block(ctx, _blk) {
597                 midgard_block *blk = (midgard_block *) _blk;
598 
599                 mir_foreach_bundle_in_block(blk, v) {
600                         /* We need at least a writeout and nonwriteout instruction */
601                         if (v->instruction_count < 2)
602                                 continue;
603 
604                         /* Branches always come at the end */
605                         midgard_instruction *br = v->instructions[v->instruction_count - 1];
606 
607                         if (!br->writeout)
608                                 continue;
609 
610                         for (signed i = v->instruction_count - 2; i >= 0; --i) {
611                                 midgard_instruction *ins = v->instructions[i];
612 
613                                 if (ins->dest >= ctx->temp_count)
614                                         continue;
615 
616                                 bool used_as_r1 = (br->dest == ins->dest);
617 
618                                 mir_foreach_src(br, s)
619                                         used_as_r1 |= (s > 0) && (br->src[s] == ins->dest);
620 
621                                 if (!used_as_r1)
622                                         lcra_add_node_interference(l, ins->dest, mir_bytemask(ins), node_r1, 0xFFFF);
623                         }
624                 }
625         }
626 
627         /* Precolour blend input to r0. Note writeout is necessarily at the end
628          * and blend shaders are single-RT only so there is only a single
629          * writeout block, so this cannot conflict with the writeout r0 (there
630          * is no need to have an intermediate move) */
631 
632         if (ctx->blend_input != ~0) {
633                 assert(ctx->blend_input < ctx->temp_count);
634                 l->solutions[ctx->blend_input] = 0;
635         }
636 
637         /* Same for the dual-source blend input/output, except here we use r2,
638          * which is also set in the fragment shader. */
639 
640         if (ctx->blend_src1 != ~0) {
641                 assert(ctx->blend_src1 < ctx->temp_count);
642                 l->solutions[ctx->blend_src1] = (16 * 2);
643                 ctx->work_registers = MAX2(ctx->work_registers, 2);
644         }
645 
646         mir_compute_interference(ctx, l);
647 
648         *spilled = !lcra_solve(l);
649         return l;
650 }
651 
652 
653 /* Once registers have been decided via register allocation
654  * (allocate_registers), we need to rewrite the MIR to use registers instead of
655  * indices */
656 
657 static void
install_registers_instr(compiler_context * ctx,struct lcra_state * l,midgard_instruction * ins)658 install_registers_instr(
659         compiler_context *ctx,
660         struct lcra_state *l,
661         midgard_instruction *ins)
662 {
663         unsigned src_shift[MIR_SRC_COUNT];
664 
665         for (unsigned i = 0; i < MIR_SRC_COUNT; ++i) {
666                 src_shift[i] =
667                         util_logbase2(nir_alu_type_get_type_size(ins->src_types[i]) / 8);
668         }
669 
670         unsigned dest_shift =
671                 util_logbase2(nir_alu_type_get_type_size(ins->dest_type) / 8);
672 
673         switch (ins->type) {
674         case TAG_ALU_4:
675         case TAG_ALU_8:
676         case TAG_ALU_12:
677         case TAG_ALU_16: {
678                  if (ins->compact_branch)
679                          return;
680 
681                 struct phys_reg src1 = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
682                 struct phys_reg src2 = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
683                 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
684 
685                 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
686 
687                 unsigned dest_offset =
688                         GET_CHANNEL_COUNT(alu_opcode_props[ins->op].props) ? 0 :
689                         dest.offset;
690 
691                 offset_swizzle(ins->swizzle[0], src1.offset, src1.shift, dest.shift, dest_offset);
692                 if (!ins->has_inline_constant)
693                         offset_swizzle(ins->swizzle[1], src2.offset, src2.shift, dest.shift, dest_offset);
694                 if (ins->src[0] != ~0)
695                         ins->src[0] = SSA_FIXED_REGISTER(src1.reg);
696                 if (ins->src[1] != ~0)
697                         ins->src[1] = SSA_FIXED_REGISTER(src2.reg);
698                 if (ins->dest != ~0)
699                         ins->dest = SSA_FIXED_REGISTER(dest.reg);
700                 break;
701         }
702 
703         case TAG_LOAD_STORE_4: {
704                 /* Which physical register we read off depends on
705                  * whether we are loading or storing -- think about the
706                  * logical dataflow */
707 
708                 bool encodes_src = OP_IS_STORE(ins->op);
709 
710                 if (encodes_src) {
711                         struct phys_reg src = index_to_reg(ctx, l, ins->src[0], src_shift[0]);
712                         assert(src.reg == 26 || src.reg == 27);
713 
714                         ins->src[0] = SSA_FIXED_REGISTER(src.reg);
715                         offset_swizzle(ins->swizzle[0], src.offset, src.shift, 0, 0);
716                } else {
717                         struct phys_reg dst = index_to_reg(ctx, l, ins->dest, dest_shift);
718 
719                         ins->dest = SSA_FIXED_REGISTER(dst.reg);
720                         offset_swizzle(ins->swizzle[0], 0, 2, 2, dst.offset);
721                         mir_set_bytemask(ins, mir_bytemask(ins) << dst.offset);
722                 }
723 
724                 /* We also follow up by actual arguments */
725 
726                 for (int i = 1; i <= 3; i++) {
727                         unsigned src_index = ins->src[i];
728                         if (src_index != ~0) {
729                                 struct phys_reg src = index_to_reg(ctx, l, src_index, src_shift[i]);
730                                 unsigned component = src.offset >> src.shift;
731                                 assert(component << src.shift == src.offset);
732                                 ins->src[i] = SSA_FIXED_REGISTER(src.reg);
733                                 ins->swizzle[i][0] += component;
734                         }
735                 }
736 
737                 break;
738         }
739 
740         case TAG_TEXTURE_4: {
741                 if (ins->op == TEXTURE_OP_BARRIER)
742                         break;
743 
744                 /* Grab RA results */
745                 struct phys_reg dest = index_to_reg(ctx, l, ins->dest, dest_shift);
746                 struct phys_reg coord = index_to_reg(ctx, l, ins->src[1], src_shift[1]);
747                 struct phys_reg lod = index_to_reg(ctx, l, ins->src[2], src_shift[2]);
748                 struct phys_reg offset = index_to_reg(ctx, l, ins->src[3], src_shift[3]);
749 
750                 /* First, install the texture coordinate */
751                 if (ins->src[1] != ~0)
752                         ins->src[1] = SSA_FIXED_REGISTER(coord.reg);
753                 offset_swizzle(ins->swizzle[1], coord.offset, coord.shift, dest.shift, 0);
754 
755                 /* Next, install the destination */
756                 if (ins->dest != ~0)
757                         ins->dest = SSA_FIXED_REGISTER(dest.reg);
758                 offset_swizzle(ins->swizzle[0], 0, 2, dest.shift,
759                                 dest_shift == 1 ? dest.offset % 8 :
760                                 dest.offset);
761                 mir_set_bytemask(ins, mir_bytemask(ins) << dest.offset);
762 
763                 /* If there is a register LOD/bias, use it */
764                 if (ins->src[2] != ~0) {
765                         assert(!(lod.offset & 3));
766                         ins->src[2] = SSA_FIXED_REGISTER(lod.reg);
767                         ins->swizzle[2][0] = lod.offset / 4;
768                 }
769 
770                 /* If there is an offset register, install it */
771                 if (ins->src[3] != ~0) {
772                         ins->src[3] = SSA_FIXED_REGISTER(offset.reg);
773                         ins->swizzle[3][0] = offset.offset / 4;
774                 }
775 
776                 break;
777         }
778 
779         default:
780                 break;
781         }
782 }
783 
784 static void
install_registers(compiler_context * ctx,struct lcra_state * l)785 install_registers(compiler_context *ctx, struct lcra_state *l)
786 {
787         mir_foreach_instr_global(ctx, ins)
788                 install_registers_instr(ctx, l, ins);
789 }
790 
791 
792 /* If register allocation fails, find the best spill node */
793 
794 static signed
mir_choose_spill_node(compiler_context * ctx,struct lcra_state * l)795 mir_choose_spill_node(
796                 compiler_context *ctx,
797                 struct lcra_state *l)
798 {
799         /* We can't spill a previously spilled value or an unspill */
800 
801         mir_foreach_instr_global(ctx, ins) {
802                 if (ins->no_spill & (1 << l->spill_class)) {
803                         lcra_set_node_spill_cost(l, ins->dest, -1);
804 
805                         if (l->spill_class != REG_CLASS_WORK) {
806                                 mir_foreach_src(ins, s)
807                                         lcra_set_node_spill_cost(l, ins->src[s], -1);
808                         }
809                 }
810         }
811 
812         return lcra_get_best_spill_node(l);
813 }
814 
815 /* Once we've chosen a spill node, spill it */
816 
817 static void
mir_spill_register(compiler_context * ctx,unsigned spill_node,unsigned spill_class,unsigned * spill_count)818 mir_spill_register(
819                 compiler_context *ctx,
820                 unsigned spill_node,
821                 unsigned spill_class,
822                 unsigned *spill_count)
823 {
824         if (spill_class == REG_CLASS_WORK && ctx->is_blend)
825                 unreachable("Blend shader spilling is currently unimplemented");
826 
827         unsigned spill_index = ctx->temp_count;
828 
829         /* We have a spill node, so check the class. Work registers
830          * legitimately spill to TLS, but special registers just spill to work
831          * registers */
832 
833         bool is_special = spill_class != REG_CLASS_WORK;
834         bool is_special_w = spill_class == REG_CLASS_TEXW;
835 
836         /* Allocate TLS slot (maybe) */
837         unsigned spill_slot = !is_special ? (*spill_count)++ : 0;
838 
839         /* For TLS, replace all stores to the spilled node. For
840          * special reads, just keep as-is; the class will be demoted
841          * implicitly. For special writes, spill to a work register */
842 
843         if (!is_special || is_special_w) {
844                 if (is_special_w)
845                         spill_slot = spill_index++;
846 
847                 mir_foreach_block(ctx, _block) {
848                 midgard_block *block = (midgard_block *) _block;
849                 mir_foreach_instr_in_block_safe(block, ins) {
850                         if (ins->dest != spill_node) continue;
851 
852                         midgard_instruction st;
853 
854                         /* Note: it's important to match the mask of the spill
855                          * with the mask of the instruction whose destination
856                          * we're spilling, or otherwise we'll read invalid
857                          * components and can fail RA in a subsequent iteration
858                          */
859 
860                         if (is_special_w) {
861                                 st = v_mov(spill_node, spill_slot);
862                                 st.no_spill |= (1 << spill_class);
863                                 st.mask = ins->mask;
864                                 st.dest_type = st.src_types[1] = ins->dest_type;
865                         } else {
866                                 ins->dest = spill_index++;
867                                 ins->no_spill |= (1 << spill_class);
868                                 st = v_load_store_scratch(ins->dest, spill_slot, true, ins->mask);
869                         }
870 
871                         /* Hint: don't rewrite this node */
872                         st.hint = true;
873 
874                         mir_insert_instruction_after_scheduled(ctx, block, ins, st);
875 
876                         if (!is_special)
877                                 ctx->spills++;
878                 }
879                 }
880         }
881 
882         /* For special reads, figure out how many bytes we need */
883         unsigned read_bytemask = 0;
884 
885         mir_foreach_instr_global_safe(ctx, ins) {
886                 read_bytemask |= mir_bytemask_of_read_components(ins, spill_node);
887         }
888 
889         /* Insert a load from TLS before the first consecutive
890          * use of the node, rewriting to use spilled indices to
891          * break up the live range. Or, for special, insert a
892          * move. Ironically the latter *increases* register
893          * pressure, but the two uses of the spilling mechanism
894          * are somewhat orthogonal. (special spilling is to use
895          * work registers to back special registers; TLS
896          * spilling is to use memory to back work registers) */
897 
898         mir_foreach_block(ctx, _block) {
899                 midgard_block *block = (midgard_block *) _block;
900                 mir_foreach_instr_in_block(block, ins) {
901                         /* We can't rewrite the moves used to spill in the
902                          * first place. These moves are hinted. */
903                         if (ins->hint) continue;
904 
905                         /* If we don't use the spilled value, nothing to do */
906                         if (!mir_has_arg(ins, spill_node)) continue;
907 
908                         unsigned index = 0;
909 
910                         if (!is_special_w) {
911                                 index = ++spill_index;
912 
913                                 midgard_instruction *before = ins;
914                                 midgard_instruction st;
915 
916                                 if (is_special) {
917                                         /* Move */
918                                         st = v_mov(spill_node, index);
919                                         st.no_spill |= (1 << spill_class);
920                                 } else {
921                                         /* TLS load */
922                                         st = v_load_store_scratch(index, spill_slot, false, 0xF);
923                                 }
924 
925                                 /* Mask the load based on the component count
926                                  * actually needed to prevent RA loops */
927 
928                                 st.mask = mir_from_bytemask(mir_round_bytemask_up(
929                                                         read_bytemask, 32), 32);
930 
931                                 mir_insert_instruction_before_scheduled(ctx, block, before, st);
932                         } else {
933                                 /* Special writes already have their move spilled in */
934                                 index = spill_slot;
935                         }
936 
937 
938                         /* Rewrite to use */
939                         mir_rewrite_index_src_single(ins, spill_node, index);
940 
941                         if (!is_special)
942                                 ctx->fills++;
943                 }
944         }
945 
946         /* Reset hints */
947 
948         mir_foreach_instr_global(ctx, ins) {
949                 ins->hint = false;
950         }
951 }
952 
953 /* Run register allocation in a loop, spilling until we succeed */
954 
955 void
mir_ra(compiler_context * ctx)956 mir_ra(compiler_context *ctx)
957 {
958         struct lcra_state *l = NULL;
959         bool spilled = false;
960         int iter_count = 1000; /* max iterations */
961 
962         /* Number of 128-bit slots in memory we've spilled into */
963         unsigned spill_count = 0;
964 
965 
966         mir_create_pipeline_registers(ctx);
967 
968         do {
969                 if (spilled) {
970                         signed spill_node = mir_choose_spill_node(ctx, l);
971 
972                         if (spill_node == -1) {
973                                 fprintf(stderr, "ERROR: Failed to choose spill node\n");
974                                 lcra_free(l);
975                                 return;
976                         }
977 
978                         mir_spill_register(ctx, spill_node, l->spill_class, &spill_count);
979                 }
980 
981                 mir_squeeze_index(ctx);
982                 mir_invalidate_liveness(ctx);
983 
984                 if (l) {
985                         lcra_free(l);
986                         l = NULL;
987                 }
988 
989                 l = allocate_registers(ctx, &spilled);
990         } while(spilled && ((iter_count--) > 0));
991 
992         if (iter_count <= 0) {
993                 fprintf(stderr, "panfrost: Gave up allocating registers, rendering will be incomplete\n");
994                 assert(0);
995         }
996 
997         /* Report spilling information. spill_count is in 128-bit slots (vec4 x
998          * fp32), but tls_size is in bytes, so multiply by 16 */
999 
1000         ctx->tls_size = spill_count * 16;
1001 
1002         install_registers(ctx, l);
1003 
1004         lcra_free(l);
1005 }
1006