• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/numeric/int128.h"
16 
17 #include <stddef.h>
18 
19 #include <cassert>
20 #include <iomanip>
21 #include <ostream>  // NOLINT(readability/streams)
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25 
26 #include "absl/base/internal/bits.h"
27 #include "absl/base/optimization.h"
28 
29 namespace absl {
30 ABSL_NAMESPACE_BEGIN
31 
32 ABSL_DLL const uint128 kuint128max = MakeUint128(
33     std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max());
34 
35 namespace {
36 
37 // Returns the 0-based position of the last set bit (i.e., most significant bit)
38 // in the given uint128. The argument is not 0.
39 //
40 // For example:
41 //   Given: 5 (decimal) == 101 (binary)
42 //   Returns: 2
Fls128(uint128 n)43 inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) {
44   if (uint64_t hi = Uint128High64(n)) {
45     ABSL_INTERNAL_ASSUME(hi != 0);
46     return 127 - base_internal::CountLeadingZeros64(hi);
47   }
48   const uint64_t low = Uint128Low64(n);
49   ABSL_INTERNAL_ASSUME(low != 0);
50   return 63 - base_internal::CountLeadingZeros64(low);
51 }
52 
53 // Long division/modulo for uint128 implemented using the shift-subtract
54 // division algorithm adapted from:
55 // https://stackoverflow.com/questions/5386377/division-without-using
DivModImpl(uint128 dividend,uint128 divisor,uint128 * quotient_ret,uint128 * remainder_ret)56 inline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,
57                        uint128* remainder_ret) {
58   assert(divisor != 0);
59 
60   if (divisor > dividend) {
61     *quotient_ret = 0;
62     *remainder_ret = dividend;
63     return;
64   }
65 
66   if (divisor == dividend) {
67     *quotient_ret = 1;
68     *remainder_ret = 0;
69     return;
70   }
71 
72   uint128 denominator = divisor;
73   uint128 quotient = 0;
74 
75   // Left aligns the MSB of the denominator and the dividend.
76   const int shift = Fls128(dividend) - Fls128(denominator);
77   denominator <<= shift;
78 
79   // Uses shift-subtract algorithm to divide dividend by denominator. The
80   // remainder will be left in dividend.
81   for (int i = 0; i <= shift; ++i) {
82     quotient <<= 1;
83     if (dividend >= denominator) {
84       dividend -= denominator;
85       quotient |= 1;
86     }
87     denominator >>= 1;
88   }
89 
90   *quotient_ret = quotient;
91   *remainder_ret = dividend;
92 }
93 
94 template <typename T>
MakeUint128FromFloat(T v)95 uint128 MakeUint128FromFloat(T v) {
96   static_assert(std::is_floating_point<T>::value, "");
97 
98   // Rounding behavior is towards zero, same as for built-in types.
99 
100   // Undefined behavior if v is NaN or cannot fit into uint128.
101   assert(std::isfinite(v) && v > -1 &&
102          (std::numeric_limits<T>::max_exponent <= 128 ||
103           v < std::ldexp(static_cast<T>(1), 128)));
104 
105   if (v >= std::ldexp(static_cast<T>(1), 64)) {
106     uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
107     uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
108     return MakeUint128(hi, lo);
109   }
110 
111   return MakeUint128(0, static_cast<uint64_t>(v));
112 }
113 
114 #if defined(__clang__) && !defined(__SSE3__)
115 // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
116 // Casting from long double to uint64_t is miscompiled and drops bits.
117 // It is more work, so only use when we need the workaround.
MakeUint128FromFloat(long double v)118 uint128 MakeUint128FromFloat(long double v) {
119   // Go 50 bits at a time, that fits in a double
120   static_assert(std::numeric_limits<double>::digits >= 50, "");
121   static_assert(std::numeric_limits<long double>::digits <= 150, "");
122   // Undefined behavior if v is not finite or cannot fit into uint128.
123   assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128));
124 
125   v = std::ldexp(v, -100);
126   uint64_t w0 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
127   v = std::ldexp(v - static_cast<double>(w0), 50);
128   uint64_t w1 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
129   v = std::ldexp(v - static_cast<double>(w1), 50);
130   uint64_t w2 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
131   return (static_cast<uint128>(w0) << 100) | (static_cast<uint128>(w1) << 50) |
132          static_cast<uint128>(w2);
133 }
134 #endif  // __clang__ && !__SSE3__
135 }  // namespace
136 
uint128(float v)137 uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}
uint128(double v)138 uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}
uint128(long double v)139 uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}
140 
operator /(uint128 lhs,uint128 rhs)141 uint128 operator/(uint128 lhs, uint128 rhs) {
142 #if defined(ABSL_HAVE_INTRINSIC_INT128)
143   return static_cast<unsigned __int128>(lhs) /
144          static_cast<unsigned __int128>(rhs);
145 #else  // ABSL_HAVE_INTRINSIC_INT128
146   uint128 quotient = 0;
147   uint128 remainder = 0;
148   DivModImpl(lhs, rhs, &quotient, &remainder);
149   return quotient;
150 #endif  // ABSL_HAVE_INTRINSIC_INT128
151 }
operator %(uint128 lhs,uint128 rhs)152 uint128 operator%(uint128 lhs, uint128 rhs) {
153 #if defined(ABSL_HAVE_INTRINSIC_INT128)
154   return static_cast<unsigned __int128>(lhs) %
155          static_cast<unsigned __int128>(rhs);
156 #else  // ABSL_HAVE_INTRINSIC_INT128
157   uint128 quotient = 0;
158   uint128 remainder = 0;
159   DivModImpl(lhs, rhs, &quotient, &remainder);
160   return remainder;
161 #endif  // ABSL_HAVE_INTRINSIC_INT128
162 }
163 
164 namespace {
165 
Uint128ToFormattedString(uint128 v,std::ios_base::fmtflags flags)166 std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) {
167   // Select a divisor which is the largest power of the base < 2^64.
168   uint128 div;
169   int div_base_log;
170   switch (flags & std::ios::basefield) {
171     case std::ios::hex:
172       div = 0x1000000000000000;  // 16^15
173       div_base_log = 15;
174       break;
175     case std::ios::oct:
176       div = 01000000000000000000000;  // 8^21
177       div_base_log = 21;
178       break;
179     default:  // std::ios::dec
180       div = 10000000000000000000u;  // 10^19
181       div_base_log = 19;
182       break;
183   }
184 
185   // Now piece together the uint128 representation from three chunks of the
186   // original value, each less than "div" and therefore representable as a
187   // uint64_t.
188   std::ostringstream os;
189   std::ios_base::fmtflags copy_mask =
190       std::ios::basefield | std::ios::showbase | std::ios::uppercase;
191   os.setf(flags & copy_mask, copy_mask);
192   uint128 high = v;
193   uint128 low;
194   DivModImpl(high, div, &high, &low);
195   uint128 mid;
196   DivModImpl(high, div, &high, &mid);
197   if (Uint128Low64(high) != 0) {
198     os << Uint128Low64(high);
199     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
200     os << Uint128Low64(mid);
201     os << std::setw(div_base_log);
202   } else if (Uint128Low64(mid) != 0) {
203     os << Uint128Low64(mid);
204     os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
205   }
206   os << Uint128Low64(low);
207   return os.str();
208 }
209 
210 }  // namespace
211 
operator <<(std::ostream & os,uint128 v)212 std::ostream& operator<<(std::ostream& os, uint128 v) {
213   std::ios_base::fmtflags flags = os.flags();
214   std::string rep = Uint128ToFormattedString(v, flags);
215 
216   // Add the requisite padding.
217   std::streamsize width = os.width(0);
218   if (static_cast<size_t>(width) > rep.size()) {
219     std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;
220     if (adjustfield == std::ios::left) {
221       rep.append(width - rep.size(), os.fill());
222     } else if (adjustfield == std::ios::internal &&
223                (flags & std::ios::showbase) &&
224                (flags & std::ios::basefield) == std::ios::hex && v != 0) {
225       rep.insert(2, width - rep.size(), os.fill());
226     } else {
227       rep.insert(0, width - rep.size(), os.fill());
228     }
229   }
230 
231   return os << rep;
232 }
233 
234 namespace {
235 
UnsignedAbsoluteValue(int128 v)236 uint128 UnsignedAbsoluteValue(int128 v) {
237   // Cast to uint128 before possibly negating because -Int128Min() is undefined.
238   return Int128High64(v) < 0 ? -uint128(v) : uint128(v);
239 }
240 
241 }  // namespace
242 
243 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
244 namespace {
245 
246 template <typename T>
MakeInt128FromFloat(T v)247 int128 MakeInt128FromFloat(T v) {
248   // Conversion when v is NaN or cannot fit into int128 would be undefined
249   // behavior if using an intrinsic 128-bit integer.
250   assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||
251                               (v >= -std::ldexp(static_cast<T>(1), 127) &&
252                                v < std::ldexp(static_cast<T>(1), 127))));
253 
254   // We must convert the absolute value and then negate as needed, because
255   // floating point types are typically sign-magnitude. Otherwise, the
256   // difference between the high and low 64 bits when interpreted as two's
257   // complement overwhelms the precision of the mantissa.
258   uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v);
259   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)),
260                     Uint128Low64(result));
261 }
262 
263 }  // namespace
264 
int128(float v)265 int128::int128(float v) : int128(MakeInt128FromFloat(v)) {}
int128(double v)266 int128::int128(double v) : int128(MakeInt128FromFloat(v)) {}
int128(long double v)267 int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {}
268 
operator /(int128 lhs,int128 rhs)269 int128 operator/(int128 lhs, int128 rhs) {
270   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
271 
272   uint128 quotient = 0;
273   uint128 remainder = 0;
274   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
275              &quotient, &remainder);
276   if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;
277   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)),
278                     Uint128Low64(quotient));
279 }
280 
operator %(int128 lhs,int128 rhs)281 int128 operator%(int128 lhs, int128 rhs) {
282   assert(lhs != Int128Min() || rhs != -1);  // UB on two's complement.
283 
284   uint128 quotient = 0;
285   uint128 remainder = 0;
286   DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
287              &quotient, &remainder);
288   if (Int128High64(lhs) < 0) remainder = -remainder;
289   return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)),
290                     Uint128Low64(remainder));
291 }
292 #endif  // ABSL_HAVE_INTRINSIC_INT128
293 
operator <<(std::ostream & os,int128 v)294 std::ostream& operator<<(std::ostream& os, int128 v) {
295   std::ios_base::fmtflags flags = os.flags();
296   std::string rep;
297 
298   // Add the sign if needed.
299   bool print_as_decimal =
300       (flags & std::ios::basefield) == std::ios::dec ||
301       (flags & std::ios::basefield) == std::ios_base::fmtflags();
302   if (print_as_decimal) {
303     if (Int128High64(v) < 0) {
304       rep = "-";
305     } else if (flags & std::ios::showpos) {
306       rep = "+";
307     }
308   }
309 
310   rep.append(Uint128ToFormattedString(
311       print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags()));
312 
313   // Add the requisite padding.
314   std::streamsize width = os.width(0);
315   if (static_cast<size_t>(width) > rep.size()) {
316     switch (flags & std::ios::adjustfield) {
317       case std::ios::left:
318         rep.append(width - rep.size(), os.fill());
319         break;
320       case std::ios::internal:
321         if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {
322           rep.insert(1, width - rep.size(), os.fill());
323         } else if ((flags & std::ios::basefield) == std::ios::hex &&
324                    (flags & std::ios::showbase) && v != 0) {
325           rep.insert(2, width - rep.size(), os.fill());
326         } else {
327           rep.insert(0, width - rep.size(), os.fill());
328         }
329         break;
330       default:  // std::ios::right
331         rep.insert(0, width - rep.size(), os.fill());
332         break;
333     }
334   }
335 
336   return os << rep;
337 }
338 
339 ABSL_NAMESPACE_END
340 }  // namespace absl
341 
342 namespace std {
343 constexpr bool numeric_limits<absl::uint128>::is_specialized;
344 constexpr bool numeric_limits<absl::uint128>::is_signed;
345 constexpr bool numeric_limits<absl::uint128>::is_integer;
346 constexpr bool numeric_limits<absl::uint128>::is_exact;
347 constexpr bool numeric_limits<absl::uint128>::has_infinity;
348 constexpr bool numeric_limits<absl::uint128>::has_quiet_NaN;
349 constexpr bool numeric_limits<absl::uint128>::has_signaling_NaN;
350 constexpr float_denorm_style numeric_limits<absl::uint128>::has_denorm;
351 constexpr bool numeric_limits<absl::uint128>::has_denorm_loss;
352 constexpr float_round_style numeric_limits<absl::uint128>::round_style;
353 constexpr bool numeric_limits<absl::uint128>::is_iec559;
354 constexpr bool numeric_limits<absl::uint128>::is_bounded;
355 constexpr bool numeric_limits<absl::uint128>::is_modulo;
356 constexpr int numeric_limits<absl::uint128>::digits;
357 constexpr int numeric_limits<absl::uint128>::digits10;
358 constexpr int numeric_limits<absl::uint128>::max_digits10;
359 constexpr int numeric_limits<absl::uint128>::radix;
360 constexpr int numeric_limits<absl::uint128>::min_exponent;
361 constexpr int numeric_limits<absl::uint128>::min_exponent10;
362 constexpr int numeric_limits<absl::uint128>::max_exponent;
363 constexpr int numeric_limits<absl::uint128>::max_exponent10;
364 constexpr bool numeric_limits<absl::uint128>::traps;
365 constexpr bool numeric_limits<absl::uint128>::tinyness_before;
366 
367 constexpr bool numeric_limits<absl::int128>::is_specialized;
368 constexpr bool numeric_limits<absl::int128>::is_signed;
369 constexpr bool numeric_limits<absl::int128>::is_integer;
370 constexpr bool numeric_limits<absl::int128>::is_exact;
371 constexpr bool numeric_limits<absl::int128>::has_infinity;
372 constexpr bool numeric_limits<absl::int128>::has_quiet_NaN;
373 constexpr bool numeric_limits<absl::int128>::has_signaling_NaN;
374 constexpr float_denorm_style numeric_limits<absl::int128>::has_denorm;
375 constexpr bool numeric_limits<absl::int128>::has_denorm_loss;
376 constexpr float_round_style numeric_limits<absl::int128>::round_style;
377 constexpr bool numeric_limits<absl::int128>::is_iec559;
378 constexpr bool numeric_limits<absl::int128>::is_bounded;
379 constexpr bool numeric_limits<absl::int128>::is_modulo;
380 constexpr int numeric_limits<absl::int128>::digits;
381 constexpr int numeric_limits<absl::int128>::digits10;
382 constexpr int numeric_limits<absl::int128>::max_digits10;
383 constexpr int numeric_limits<absl::int128>::radix;
384 constexpr int numeric_limits<absl::int128>::min_exponent;
385 constexpr int numeric_limits<absl::int128>::min_exponent10;
386 constexpr int numeric_limits<absl::int128>::max_exponent;
387 constexpr int numeric_limits<absl::int128>::max_exponent10;
388 constexpr bool numeric_limits<absl::int128>::traps;
389 constexpr bool numeric_limits<absl::int128>::tinyness_before;
390 }  // namespace std
391