1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/numeric/int128.h"
16
17 #include <stddef.h>
18
19 #include <cassert>
20 #include <iomanip>
21 #include <ostream> // NOLINT(readability/streams)
22 #include <sstream>
23 #include <string>
24 #include <type_traits>
25
26 #include "absl/base/internal/bits.h"
27 #include "absl/base/optimization.h"
28
29 namespace absl {
30 ABSL_NAMESPACE_BEGIN
31
32 ABSL_DLL const uint128 kuint128max = MakeUint128(
33 std::numeric_limits<uint64_t>::max(), std::numeric_limits<uint64_t>::max());
34
35 namespace {
36
37 // Returns the 0-based position of the last set bit (i.e., most significant bit)
38 // in the given uint128. The argument is not 0.
39 //
40 // For example:
41 // Given: 5 (decimal) == 101 (binary)
42 // Returns: 2
Fls128(uint128 n)43 inline ABSL_ATTRIBUTE_ALWAYS_INLINE int Fls128(uint128 n) {
44 if (uint64_t hi = Uint128High64(n)) {
45 ABSL_INTERNAL_ASSUME(hi != 0);
46 return 127 - base_internal::CountLeadingZeros64(hi);
47 }
48 const uint64_t low = Uint128Low64(n);
49 ABSL_INTERNAL_ASSUME(low != 0);
50 return 63 - base_internal::CountLeadingZeros64(low);
51 }
52
53 // Long division/modulo for uint128 implemented using the shift-subtract
54 // division algorithm adapted from:
55 // https://stackoverflow.com/questions/5386377/division-without-using
DivModImpl(uint128 dividend,uint128 divisor,uint128 * quotient_ret,uint128 * remainder_ret)56 inline void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret,
57 uint128* remainder_ret) {
58 assert(divisor != 0);
59
60 if (divisor > dividend) {
61 *quotient_ret = 0;
62 *remainder_ret = dividend;
63 return;
64 }
65
66 if (divisor == dividend) {
67 *quotient_ret = 1;
68 *remainder_ret = 0;
69 return;
70 }
71
72 uint128 denominator = divisor;
73 uint128 quotient = 0;
74
75 // Left aligns the MSB of the denominator and the dividend.
76 const int shift = Fls128(dividend) - Fls128(denominator);
77 denominator <<= shift;
78
79 // Uses shift-subtract algorithm to divide dividend by denominator. The
80 // remainder will be left in dividend.
81 for (int i = 0; i <= shift; ++i) {
82 quotient <<= 1;
83 if (dividend >= denominator) {
84 dividend -= denominator;
85 quotient |= 1;
86 }
87 denominator >>= 1;
88 }
89
90 *quotient_ret = quotient;
91 *remainder_ret = dividend;
92 }
93
94 template <typename T>
MakeUint128FromFloat(T v)95 uint128 MakeUint128FromFloat(T v) {
96 static_assert(std::is_floating_point<T>::value, "");
97
98 // Rounding behavior is towards zero, same as for built-in types.
99
100 // Undefined behavior if v is NaN or cannot fit into uint128.
101 assert(std::isfinite(v) && v > -1 &&
102 (std::numeric_limits<T>::max_exponent <= 128 ||
103 v < std::ldexp(static_cast<T>(1), 128)));
104
105 if (v >= std::ldexp(static_cast<T>(1), 64)) {
106 uint64_t hi = static_cast<uint64_t>(std::ldexp(v, -64));
107 uint64_t lo = static_cast<uint64_t>(v - std::ldexp(static_cast<T>(hi), 64));
108 return MakeUint128(hi, lo);
109 }
110
111 return MakeUint128(0, static_cast<uint64_t>(v));
112 }
113
114 #if defined(__clang__) && !defined(__SSE3__)
115 // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
116 // Casting from long double to uint64_t is miscompiled and drops bits.
117 // It is more work, so only use when we need the workaround.
MakeUint128FromFloat(long double v)118 uint128 MakeUint128FromFloat(long double v) {
119 // Go 50 bits at a time, that fits in a double
120 static_assert(std::numeric_limits<double>::digits >= 50, "");
121 static_assert(std::numeric_limits<long double>::digits <= 150, "");
122 // Undefined behavior if v is not finite or cannot fit into uint128.
123 assert(std::isfinite(v) && v > -1 && v < std::ldexp(1.0L, 128));
124
125 v = std::ldexp(v, -100);
126 uint64_t w0 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
127 v = std::ldexp(v - static_cast<double>(w0), 50);
128 uint64_t w1 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
129 v = std::ldexp(v - static_cast<double>(w1), 50);
130 uint64_t w2 = static_cast<uint64_t>(static_cast<double>(std::trunc(v)));
131 return (static_cast<uint128>(w0) << 100) | (static_cast<uint128>(w1) << 50) |
132 static_cast<uint128>(w2);
133 }
134 #endif // __clang__ && !__SSE3__
135 } // namespace
136
uint128(float v)137 uint128::uint128(float v) : uint128(MakeUint128FromFloat(v)) {}
uint128(double v)138 uint128::uint128(double v) : uint128(MakeUint128FromFloat(v)) {}
uint128(long double v)139 uint128::uint128(long double v) : uint128(MakeUint128FromFloat(v)) {}
140
operator /(uint128 lhs,uint128 rhs)141 uint128 operator/(uint128 lhs, uint128 rhs) {
142 #if defined(ABSL_HAVE_INTRINSIC_INT128)
143 return static_cast<unsigned __int128>(lhs) /
144 static_cast<unsigned __int128>(rhs);
145 #else // ABSL_HAVE_INTRINSIC_INT128
146 uint128 quotient = 0;
147 uint128 remainder = 0;
148 DivModImpl(lhs, rhs, "ient, &remainder);
149 return quotient;
150 #endif // ABSL_HAVE_INTRINSIC_INT128
151 }
operator %(uint128 lhs,uint128 rhs)152 uint128 operator%(uint128 lhs, uint128 rhs) {
153 #if defined(ABSL_HAVE_INTRINSIC_INT128)
154 return static_cast<unsigned __int128>(lhs) %
155 static_cast<unsigned __int128>(rhs);
156 #else // ABSL_HAVE_INTRINSIC_INT128
157 uint128 quotient = 0;
158 uint128 remainder = 0;
159 DivModImpl(lhs, rhs, "ient, &remainder);
160 return remainder;
161 #endif // ABSL_HAVE_INTRINSIC_INT128
162 }
163
164 namespace {
165
Uint128ToFormattedString(uint128 v,std::ios_base::fmtflags flags)166 std::string Uint128ToFormattedString(uint128 v, std::ios_base::fmtflags flags) {
167 // Select a divisor which is the largest power of the base < 2^64.
168 uint128 div;
169 int div_base_log;
170 switch (flags & std::ios::basefield) {
171 case std::ios::hex:
172 div = 0x1000000000000000; // 16^15
173 div_base_log = 15;
174 break;
175 case std::ios::oct:
176 div = 01000000000000000000000; // 8^21
177 div_base_log = 21;
178 break;
179 default: // std::ios::dec
180 div = 10000000000000000000u; // 10^19
181 div_base_log = 19;
182 break;
183 }
184
185 // Now piece together the uint128 representation from three chunks of the
186 // original value, each less than "div" and therefore representable as a
187 // uint64_t.
188 std::ostringstream os;
189 std::ios_base::fmtflags copy_mask =
190 std::ios::basefield | std::ios::showbase | std::ios::uppercase;
191 os.setf(flags & copy_mask, copy_mask);
192 uint128 high = v;
193 uint128 low;
194 DivModImpl(high, div, &high, &low);
195 uint128 mid;
196 DivModImpl(high, div, &high, &mid);
197 if (Uint128Low64(high) != 0) {
198 os << Uint128Low64(high);
199 os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
200 os << Uint128Low64(mid);
201 os << std::setw(div_base_log);
202 } else if (Uint128Low64(mid) != 0) {
203 os << Uint128Low64(mid);
204 os << std::noshowbase << std::setfill('0') << std::setw(div_base_log);
205 }
206 os << Uint128Low64(low);
207 return os.str();
208 }
209
210 } // namespace
211
operator <<(std::ostream & os,uint128 v)212 std::ostream& operator<<(std::ostream& os, uint128 v) {
213 std::ios_base::fmtflags flags = os.flags();
214 std::string rep = Uint128ToFormattedString(v, flags);
215
216 // Add the requisite padding.
217 std::streamsize width = os.width(0);
218 if (static_cast<size_t>(width) > rep.size()) {
219 std::ios::fmtflags adjustfield = flags & std::ios::adjustfield;
220 if (adjustfield == std::ios::left) {
221 rep.append(width - rep.size(), os.fill());
222 } else if (adjustfield == std::ios::internal &&
223 (flags & std::ios::showbase) &&
224 (flags & std::ios::basefield) == std::ios::hex && v != 0) {
225 rep.insert(2, width - rep.size(), os.fill());
226 } else {
227 rep.insert(0, width - rep.size(), os.fill());
228 }
229 }
230
231 return os << rep;
232 }
233
234 namespace {
235
UnsignedAbsoluteValue(int128 v)236 uint128 UnsignedAbsoluteValue(int128 v) {
237 // Cast to uint128 before possibly negating because -Int128Min() is undefined.
238 return Int128High64(v) < 0 ? -uint128(v) : uint128(v);
239 }
240
241 } // namespace
242
243 #if !defined(ABSL_HAVE_INTRINSIC_INT128)
244 namespace {
245
246 template <typename T>
MakeInt128FromFloat(T v)247 int128 MakeInt128FromFloat(T v) {
248 // Conversion when v is NaN or cannot fit into int128 would be undefined
249 // behavior if using an intrinsic 128-bit integer.
250 assert(std::isfinite(v) && (std::numeric_limits<T>::max_exponent <= 127 ||
251 (v >= -std::ldexp(static_cast<T>(1), 127) &&
252 v < std::ldexp(static_cast<T>(1), 127))));
253
254 // We must convert the absolute value and then negate as needed, because
255 // floating point types are typically sign-magnitude. Otherwise, the
256 // difference between the high and low 64 bits when interpreted as two's
257 // complement overwhelms the precision of the mantissa.
258 uint128 result = v < 0 ? -MakeUint128FromFloat(-v) : MakeUint128FromFloat(v);
259 return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(result)),
260 Uint128Low64(result));
261 }
262
263 } // namespace
264
int128(float v)265 int128::int128(float v) : int128(MakeInt128FromFloat(v)) {}
int128(double v)266 int128::int128(double v) : int128(MakeInt128FromFloat(v)) {}
int128(long double v)267 int128::int128(long double v) : int128(MakeInt128FromFloat(v)) {}
268
operator /(int128 lhs,int128 rhs)269 int128 operator/(int128 lhs, int128 rhs) {
270 assert(lhs != Int128Min() || rhs != -1); // UB on two's complement.
271
272 uint128 quotient = 0;
273 uint128 remainder = 0;
274 DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
275 "ient, &remainder);
276 if ((Int128High64(lhs) < 0) != (Int128High64(rhs) < 0)) quotient = -quotient;
277 return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(quotient)),
278 Uint128Low64(quotient));
279 }
280
operator %(int128 lhs,int128 rhs)281 int128 operator%(int128 lhs, int128 rhs) {
282 assert(lhs != Int128Min() || rhs != -1); // UB on two's complement.
283
284 uint128 quotient = 0;
285 uint128 remainder = 0;
286 DivModImpl(UnsignedAbsoluteValue(lhs), UnsignedAbsoluteValue(rhs),
287 "ient, &remainder);
288 if (Int128High64(lhs) < 0) remainder = -remainder;
289 return MakeInt128(int128_internal::BitCastToSigned(Uint128High64(remainder)),
290 Uint128Low64(remainder));
291 }
292 #endif // ABSL_HAVE_INTRINSIC_INT128
293
operator <<(std::ostream & os,int128 v)294 std::ostream& operator<<(std::ostream& os, int128 v) {
295 std::ios_base::fmtflags flags = os.flags();
296 std::string rep;
297
298 // Add the sign if needed.
299 bool print_as_decimal =
300 (flags & std::ios::basefield) == std::ios::dec ||
301 (flags & std::ios::basefield) == std::ios_base::fmtflags();
302 if (print_as_decimal) {
303 if (Int128High64(v) < 0) {
304 rep = "-";
305 } else if (flags & std::ios::showpos) {
306 rep = "+";
307 }
308 }
309
310 rep.append(Uint128ToFormattedString(
311 print_as_decimal ? UnsignedAbsoluteValue(v) : uint128(v), os.flags()));
312
313 // Add the requisite padding.
314 std::streamsize width = os.width(0);
315 if (static_cast<size_t>(width) > rep.size()) {
316 switch (flags & std::ios::adjustfield) {
317 case std::ios::left:
318 rep.append(width - rep.size(), os.fill());
319 break;
320 case std::ios::internal:
321 if (print_as_decimal && (rep[0] == '+' || rep[0] == '-')) {
322 rep.insert(1, width - rep.size(), os.fill());
323 } else if ((flags & std::ios::basefield) == std::ios::hex &&
324 (flags & std::ios::showbase) && v != 0) {
325 rep.insert(2, width - rep.size(), os.fill());
326 } else {
327 rep.insert(0, width - rep.size(), os.fill());
328 }
329 break;
330 default: // std::ios::right
331 rep.insert(0, width - rep.size(), os.fill());
332 break;
333 }
334 }
335
336 return os << rep;
337 }
338
339 ABSL_NAMESPACE_END
340 } // namespace absl
341
342 namespace std {
343 constexpr bool numeric_limits<absl::uint128>::is_specialized;
344 constexpr bool numeric_limits<absl::uint128>::is_signed;
345 constexpr bool numeric_limits<absl::uint128>::is_integer;
346 constexpr bool numeric_limits<absl::uint128>::is_exact;
347 constexpr bool numeric_limits<absl::uint128>::has_infinity;
348 constexpr bool numeric_limits<absl::uint128>::has_quiet_NaN;
349 constexpr bool numeric_limits<absl::uint128>::has_signaling_NaN;
350 constexpr float_denorm_style numeric_limits<absl::uint128>::has_denorm;
351 constexpr bool numeric_limits<absl::uint128>::has_denorm_loss;
352 constexpr float_round_style numeric_limits<absl::uint128>::round_style;
353 constexpr bool numeric_limits<absl::uint128>::is_iec559;
354 constexpr bool numeric_limits<absl::uint128>::is_bounded;
355 constexpr bool numeric_limits<absl::uint128>::is_modulo;
356 constexpr int numeric_limits<absl::uint128>::digits;
357 constexpr int numeric_limits<absl::uint128>::digits10;
358 constexpr int numeric_limits<absl::uint128>::max_digits10;
359 constexpr int numeric_limits<absl::uint128>::radix;
360 constexpr int numeric_limits<absl::uint128>::min_exponent;
361 constexpr int numeric_limits<absl::uint128>::min_exponent10;
362 constexpr int numeric_limits<absl::uint128>::max_exponent;
363 constexpr int numeric_limits<absl::uint128>::max_exponent10;
364 constexpr bool numeric_limits<absl::uint128>::traps;
365 constexpr bool numeric_limits<absl::uint128>::tinyness_before;
366
367 constexpr bool numeric_limits<absl::int128>::is_specialized;
368 constexpr bool numeric_limits<absl::int128>::is_signed;
369 constexpr bool numeric_limits<absl::int128>::is_integer;
370 constexpr bool numeric_limits<absl::int128>::is_exact;
371 constexpr bool numeric_limits<absl::int128>::has_infinity;
372 constexpr bool numeric_limits<absl::int128>::has_quiet_NaN;
373 constexpr bool numeric_limits<absl::int128>::has_signaling_NaN;
374 constexpr float_denorm_style numeric_limits<absl::int128>::has_denorm;
375 constexpr bool numeric_limits<absl::int128>::has_denorm_loss;
376 constexpr float_round_style numeric_limits<absl::int128>::round_style;
377 constexpr bool numeric_limits<absl::int128>::is_iec559;
378 constexpr bool numeric_limits<absl::int128>::is_bounded;
379 constexpr bool numeric_limits<absl::int128>::is_modulo;
380 constexpr int numeric_limits<absl::int128>::digits;
381 constexpr int numeric_limits<absl::int128>::digits10;
382 constexpr int numeric_limits<absl::int128>::max_digits10;
383 constexpr int numeric_limits<absl::int128>::radix;
384 constexpr int numeric_limits<absl::int128>::min_exponent;
385 constexpr int numeric_limits<absl::int128>::min_exponent10;
386 constexpr int numeric_limits<absl::int128>::max_exponent;
387 constexpr int numeric_limits<absl::int128>::max_exponent10;
388 constexpr bool numeric_limits<absl::int128>::traps;
389 constexpr bool numeric_limits<absl::int128>::tinyness_before;
390 } // namespace std
391