• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Complex math module */
2 
3 /* much code borrowed from mathmodule.c */
4 
5 #include "Python.h"
6 #include "_math.h"
7 /* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
8    float.h.  We assume that FLT_RADIX is either 2 or 16. */
9 #include <float.h>
10 
11 #if (FLT_RADIX != 2 && FLT_RADIX != 16)
12 #error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
13 #endif
14 
15 #ifndef M_LN2
16 #define M_LN2 (0.6931471805599453094) /* natural log of 2 */
17 #endif
18 
19 #ifndef M_LN10
20 #define M_LN10 (2.302585092994045684) /* natural log of 10 */
21 #endif
22 
23 /*
24    CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
25    inverse trig and inverse hyperbolic trig functions.  Its log is used in the
26    evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
27    overflow.
28  */
29 
30 #define CM_LARGE_DOUBLE (DBL_MAX/4.)
31 #define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
32 #define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
33 #define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
34 
35 /*
36    CM_SCALE_UP is an odd integer chosen such that multiplication by
37    2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
38    CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2).  These scalings are used to compute
39    square roots accurately when the real and imaginary parts of the argument
40    are subnormal.
41 */
42 
43 #if FLT_RADIX==2
44 #define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
45 #elif FLT_RADIX==16
46 #define CM_SCALE_UP (4*DBL_MANT_DIG+1)
47 #endif
48 #define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
49 
50 /* forward declarations */
51 static Py_complex c_asinh(Py_complex);
52 static Py_complex c_atanh(Py_complex);
53 static Py_complex c_cosh(Py_complex);
54 static Py_complex c_sinh(Py_complex);
55 static Py_complex c_sqrt(Py_complex);
56 static Py_complex c_tanh(Py_complex);
57 static PyObject * math_error(void);
58 
59 /* Code to deal with special values (infinities, NaNs, etc.). */
60 
61 /* special_type takes a double and returns an integer code indicating
62    the type of the double as follows:
63 */
64 
65 enum special_types {
66     ST_NINF,            /* 0, negative infinity */
67     ST_NEG,             /* 1, negative finite number (nonzero) */
68     ST_NZERO,           /* 2, -0. */
69     ST_PZERO,           /* 3, +0. */
70     ST_POS,             /* 4, positive finite number (nonzero) */
71     ST_PINF,            /* 5, positive infinity */
72     ST_NAN              /* 6, Not a Number */
73 };
74 
75 static enum special_types
special_type(double d)76 special_type(double d)
77 {
78     if (Py_IS_FINITE(d)) {
79         if (d != 0) {
80             if (copysign(1., d) == 1.)
81                 return ST_POS;
82             else
83                 return ST_NEG;
84         }
85         else {
86             if (copysign(1., d) == 1.)
87                 return ST_PZERO;
88             else
89                 return ST_NZERO;
90         }
91     }
92     if (Py_IS_NAN(d))
93         return ST_NAN;
94     if (copysign(1., d) == 1.)
95         return ST_PINF;
96     else
97         return ST_NINF;
98 }
99 
100 #define SPECIAL_VALUE(z, table)                                         \
101     if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) {           \
102         errno = 0;                                              \
103         return table[special_type((z).real)]                            \
104                     [special_type((z).imag)];                           \
105     }
106 
107 #define P Py_MATH_PI
108 #define P14 0.25*Py_MATH_PI
109 #define P12 0.5*Py_MATH_PI
110 #define P34 0.75*Py_MATH_PI
111 #define INF Py_HUGE_VAL
112 #define N Py_NAN
113 #define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
114 
115 /* First, the C functions that do the real work.  Each of the c_*
116    functions computes and returns the C99 Annex G recommended result
117    and also sets errno as follows: errno = 0 if no floating-point
118    exception is associated with the result; errno = EDOM if C99 Annex
119    G recommends raising divide-by-zero or invalid for this result; and
120    errno = ERANGE where the overflow floating-point signal should be
121    raised.
122 */
123 
124 static Py_complex acos_special_values[7][7];
125 
126 static Py_complex
c_acos(Py_complex z)127 c_acos(Py_complex z)
128 {
129     Py_complex s1, s2, r;
130 
131     SPECIAL_VALUE(z, acos_special_values);
132 
133     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
134         /* avoid unnecessary overflow for large arguments */
135         r.real = atan2(fabs(z.imag), z.real);
136         /* split into cases to make sure that the branch cut has the
137            correct continuity on systems with unsigned zeros */
138         if (z.real < 0.) {
139             r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
140                                M_LN2*2., z.imag);
141         } else {
142             r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
143                               M_LN2*2., -z.imag);
144         }
145     } else {
146         s1.real = 1.-z.real;
147         s1.imag = -z.imag;
148         s1 = c_sqrt(s1);
149         s2.real = 1.+z.real;
150         s2.imag = z.imag;
151         s2 = c_sqrt(s2);
152         r.real = 2.*atan2(s1.real, s2.real);
153         r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
154     }
155     errno = 0;
156     return r;
157 }
158 
159 PyDoc_STRVAR(c_acos_doc,
160 "acos(x)\n"
161 "\n"
162 "Return the arc cosine of x.");
163 
164 
165 static Py_complex acosh_special_values[7][7];
166 
167 static Py_complex
c_acosh(Py_complex z)168 c_acosh(Py_complex z)
169 {
170     Py_complex s1, s2, r;
171 
172     SPECIAL_VALUE(z, acosh_special_values);
173 
174     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
175         /* avoid unnecessary overflow for large arguments */
176         r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
177         r.imag = atan2(z.imag, z.real);
178     } else {
179         s1.real = z.real - 1.;
180         s1.imag = z.imag;
181         s1 = c_sqrt(s1);
182         s2.real = z.real + 1.;
183         s2.imag = z.imag;
184         s2 = c_sqrt(s2);
185         r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
186         r.imag = 2.*atan2(s1.imag, s2.real);
187     }
188     errno = 0;
189     return r;
190 }
191 
192 PyDoc_STRVAR(c_acosh_doc,
193 "acosh(x)\n"
194 "\n"
195 "Return the inverse hyperbolic cosine of x.");
196 
197 
198 static Py_complex
c_asin(Py_complex z)199 c_asin(Py_complex z)
200 {
201     /* asin(z) = -i asinh(iz) */
202     Py_complex s, r;
203     s.real = -z.imag;
204     s.imag = z.real;
205     s = c_asinh(s);
206     r.real = s.imag;
207     r.imag = -s.real;
208     return r;
209 }
210 
211 PyDoc_STRVAR(c_asin_doc,
212 "asin(x)\n"
213 "\n"
214 "Return the arc sine of x.");
215 
216 
217 static Py_complex asinh_special_values[7][7];
218 
219 static Py_complex
c_asinh(Py_complex z)220 c_asinh(Py_complex z)
221 {
222     Py_complex s1, s2, r;
223 
224     SPECIAL_VALUE(z, asinh_special_values);
225 
226     if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
227         if (z.imag >= 0.) {
228             r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
229                               M_LN2*2., z.real);
230         } else {
231             r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
232                                M_LN2*2., -z.real);
233         }
234         r.imag = atan2(z.imag, fabs(z.real));
235     } else {
236         s1.real = 1.+z.imag;
237         s1.imag = -z.real;
238         s1 = c_sqrt(s1);
239         s2.real = 1.-z.imag;
240         s2.imag = z.real;
241         s2 = c_sqrt(s2);
242         r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
243         r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
244     }
245     errno = 0;
246     return r;
247 }
248 
249 PyDoc_STRVAR(c_asinh_doc,
250 "asinh(x)\n"
251 "\n"
252 "Return the inverse hyperbolic sine of x.");
253 
254 
255 static Py_complex
c_atan(Py_complex z)256 c_atan(Py_complex z)
257 {
258     /* atan(z) = -i atanh(iz) */
259     Py_complex s, r;
260     s.real = -z.imag;
261     s.imag = z.real;
262     s = c_atanh(s);
263     r.real = s.imag;
264     r.imag = -s.real;
265     return r;
266 }
267 
268 /* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
269    C99 for atan2(0., 0.). */
270 static double
c_atan2(Py_complex z)271 c_atan2(Py_complex z)
272 {
273     if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
274         return Py_NAN;
275     if (Py_IS_INFINITY(z.imag)) {
276         if (Py_IS_INFINITY(z.real)) {
277             if (copysign(1., z.real) == 1.)
278                 /* atan2(+-inf, +inf) == +-pi/4 */
279                 return copysign(0.25*Py_MATH_PI, z.imag);
280             else
281                 /* atan2(+-inf, -inf) == +-pi*3/4 */
282                 return copysign(0.75*Py_MATH_PI, z.imag);
283         }
284         /* atan2(+-inf, x) == +-pi/2 for finite x */
285         return copysign(0.5*Py_MATH_PI, z.imag);
286     }
287     if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
288         if (copysign(1., z.real) == 1.)
289             /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
290             return copysign(0., z.imag);
291         else
292             /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
293             return copysign(Py_MATH_PI, z.imag);
294     }
295     return atan2(z.imag, z.real);
296 }
297 
298 PyDoc_STRVAR(c_atan_doc,
299 "atan(x)\n"
300 "\n"
301 "Return the arc tangent of x.");
302 
303 
304 static Py_complex atanh_special_values[7][7];
305 
306 static Py_complex
c_atanh(Py_complex z)307 c_atanh(Py_complex z)
308 {
309     Py_complex r;
310     double ay, h;
311 
312     SPECIAL_VALUE(z, atanh_special_values);
313 
314     /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
315     if (z.real < 0.) {
316         return c_neg(c_atanh(c_neg(z)));
317     }
318 
319     ay = fabs(z.imag);
320     if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
321         /*
322            if abs(z) is large then we use the approximation
323            atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
324            of z.imag)
325         */
326         h = hypot(z.real/2., z.imag/2.);  /* safe from overflow */
327         r.real = z.real/4./h/h;
328         /* the two negations in the next line cancel each other out
329            except when working with unsigned zeros: they're there to
330            ensure that the branch cut has the correct continuity on
331            systems that don't support signed zeros */
332         r.imag = -copysign(Py_MATH_PI/2., -z.imag);
333         errno = 0;
334     } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
335         /* C99 standard says:  atanh(1+/-0.) should be inf +/- 0i */
336         if (ay == 0.) {
337             r.real = INF;
338             r.imag = z.imag;
339             errno = EDOM;
340         } else {
341             r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
342             r.imag = copysign(atan2(2., -ay)/2, z.imag);
343             errno = 0;
344         }
345     } else {
346         r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
347         r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
348         errno = 0;
349     }
350     return r;
351 }
352 
353 PyDoc_STRVAR(c_atanh_doc,
354 "atanh(x)\n"
355 "\n"
356 "Return the inverse hyperbolic tangent of x.");
357 
358 
359 static Py_complex
c_cos(Py_complex z)360 c_cos(Py_complex z)
361 {
362     /* cos(z) = cosh(iz) */
363     Py_complex r;
364     r.real = -z.imag;
365     r.imag = z.real;
366     r = c_cosh(r);
367     return r;
368 }
369 
370 PyDoc_STRVAR(c_cos_doc,
371 "cos(x)\n"
372 "\n"
373 "Return the cosine of x.");
374 
375 
376 /* cosh(infinity + i*y) needs to be dealt with specially */
377 static Py_complex cosh_special_values[7][7];
378 
379 static Py_complex
c_cosh(Py_complex z)380 c_cosh(Py_complex z)
381 {
382     Py_complex r;
383     double x_minus_one;
384 
385     /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
386     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
387         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
388             (z.imag != 0.)) {
389             if (z.real > 0) {
390                 r.real = copysign(INF, cos(z.imag));
391                 r.imag = copysign(INF, sin(z.imag));
392             }
393             else {
394                 r.real = copysign(INF, cos(z.imag));
395                 r.imag = -copysign(INF, sin(z.imag));
396             }
397         }
398         else {
399             r = cosh_special_values[special_type(z.real)]
400                                    [special_type(z.imag)];
401         }
402         /* need to set errno = EDOM if y is +/- infinity and x is not
403            a NaN */
404         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
405             errno = EDOM;
406         else
407             errno = 0;
408         return r;
409     }
410 
411     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
412         /* deal correctly with cases where cosh(z.real) overflows but
413            cosh(z) does not. */
414         x_minus_one = z.real - copysign(1., z.real);
415         r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
416         r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
417     } else {
418         r.real = cos(z.imag) * cosh(z.real);
419         r.imag = sin(z.imag) * sinh(z.real);
420     }
421     /* detect overflow, and set errno accordingly */
422     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
423         errno = ERANGE;
424     else
425         errno = 0;
426     return r;
427 }
428 
429 PyDoc_STRVAR(c_cosh_doc,
430 "cosh(x)\n"
431 "\n"
432 "Return the hyperbolic cosine of x.");
433 
434 
435 /* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
436    finite y */
437 static Py_complex exp_special_values[7][7];
438 
439 static Py_complex
c_exp(Py_complex z)440 c_exp(Py_complex z)
441 {
442     Py_complex r;
443     double l;
444 
445     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
446         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
447             && (z.imag != 0.)) {
448             if (z.real > 0) {
449                 r.real = copysign(INF, cos(z.imag));
450                 r.imag = copysign(INF, sin(z.imag));
451             }
452             else {
453                 r.real = copysign(0., cos(z.imag));
454                 r.imag = copysign(0., sin(z.imag));
455             }
456         }
457         else {
458             r = exp_special_values[special_type(z.real)]
459                                   [special_type(z.imag)];
460         }
461         /* need to set errno = EDOM if y is +/- infinity and x is not
462            a NaN and not -infinity */
463         if (Py_IS_INFINITY(z.imag) &&
464             (Py_IS_FINITE(z.real) ||
465              (Py_IS_INFINITY(z.real) && z.real > 0)))
466             errno = EDOM;
467         else
468             errno = 0;
469         return r;
470     }
471 
472     if (z.real > CM_LOG_LARGE_DOUBLE) {
473         l = exp(z.real-1.);
474         r.real = l*cos(z.imag)*Py_MATH_E;
475         r.imag = l*sin(z.imag)*Py_MATH_E;
476     } else {
477         l = exp(z.real);
478         r.real = l*cos(z.imag);
479         r.imag = l*sin(z.imag);
480     }
481     /* detect overflow, and set errno accordingly */
482     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
483         errno = ERANGE;
484     else
485         errno = 0;
486     return r;
487 }
488 
489 PyDoc_STRVAR(c_exp_doc,
490 "exp(x)\n"
491 "\n"
492 "Return the exponential value e**x.");
493 
494 
495 static Py_complex log_special_values[7][7];
496 
497 static Py_complex
c_log(Py_complex z)498 c_log(Py_complex z)
499 {
500     /*
501        The usual formula for the real part is log(hypot(z.real, z.imag)).
502        There are four situations where this formula is potentially
503        problematic:
504 
505        (1) the absolute value of z is subnormal.  Then hypot is subnormal,
506        so has fewer than the usual number of bits of accuracy, hence may
507        have large relative error.  This then gives a large absolute error
508        in the log.  This can be solved by rescaling z by a suitable power
509        of 2.
510 
511        (2) the absolute value of z is greater than DBL_MAX (e.g. when both
512        z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
513        Again, rescaling solves this.
514 
515        (3) the absolute value of z is close to 1.  In this case it's
516        difficult to achieve good accuracy, at least in part because a
517        change of 1ulp in the real or imaginary part of z can result in a
518        change of billions of ulps in the correctly rounded answer.
519 
520        (4) z = 0.  The simplest thing to do here is to call the
521        floating-point log with an argument of 0, and let its behaviour
522        (returning -infinity, signaling a floating-point exception, setting
523        errno, or whatever) determine that of c_log.  So the usual formula
524        is fine here.
525 
526      */
527 
528     Py_complex r;
529     double ax, ay, am, an, h;
530 
531     SPECIAL_VALUE(z, log_special_values);
532 
533     ax = fabs(z.real);
534     ay = fabs(z.imag);
535 
536     if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
537         r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
538     } else if (ax < DBL_MIN && ay < DBL_MIN) {
539         if (ax > 0. || ay > 0.) {
540             /* catch cases where hypot(ax, ay) is subnormal */
541             r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
542                      ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
543         }
544         else {
545             /* log(+/-0. +/- 0i) */
546             r.real = -INF;
547             r.imag = atan2(z.imag, z.real);
548             errno = EDOM;
549             return r;
550         }
551     } else {
552         h = hypot(ax, ay);
553         if (0.71 <= h && h <= 1.73) {
554             am = ax > ay ? ax : ay;  /* max(ax, ay) */
555             an = ax > ay ? ay : ax;  /* min(ax, ay) */
556             r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
557         } else {
558             r.real = log(h);
559         }
560     }
561     r.imag = atan2(z.imag, z.real);
562     errno = 0;
563     return r;
564 }
565 
566 
567 static Py_complex
c_log10(Py_complex z)568 c_log10(Py_complex z)
569 {
570     Py_complex r;
571     int errno_save;
572 
573     r = c_log(z);
574     errno_save = errno; /* just in case the divisions affect errno */
575     r.real = r.real / M_LN10;
576     r.imag = r.imag / M_LN10;
577     errno = errno_save;
578     return r;
579 }
580 
581 PyDoc_STRVAR(c_log10_doc,
582 "log10(x)\n"
583 "\n"
584 "Return the base-10 logarithm of x.");
585 
586 
587 static Py_complex
c_sin(Py_complex z)588 c_sin(Py_complex z)
589 {
590     /* sin(z) = -i sin(iz) */
591     Py_complex s, r;
592     s.real = -z.imag;
593     s.imag = z.real;
594     s = c_sinh(s);
595     r.real = s.imag;
596     r.imag = -s.real;
597     return r;
598 }
599 
600 PyDoc_STRVAR(c_sin_doc,
601 "sin(x)\n"
602 "\n"
603 "Return the sine of x.");
604 
605 
606 /* sinh(infinity + i*y) needs to be dealt with specially */
607 static Py_complex sinh_special_values[7][7];
608 
609 static Py_complex
c_sinh(Py_complex z)610 c_sinh(Py_complex z)
611 {
612     Py_complex r;
613     double x_minus_one;
614 
615     /* special treatment for sinh(+/-inf + iy) if y is finite and
616        nonzero */
617     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
618         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
619             && (z.imag != 0.)) {
620             if (z.real > 0) {
621                 r.real = copysign(INF, cos(z.imag));
622                 r.imag = copysign(INF, sin(z.imag));
623             }
624             else {
625                 r.real = -copysign(INF, cos(z.imag));
626                 r.imag = copysign(INF, sin(z.imag));
627             }
628         }
629         else {
630             r = sinh_special_values[special_type(z.real)]
631                                    [special_type(z.imag)];
632         }
633         /* need to set errno = EDOM if y is +/- infinity and x is not
634            a NaN */
635         if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
636             errno = EDOM;
637         else
638             errno = 0;
639         return r;
640     }
641 
642     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
643         x_minus_one = z.real - copysign(1., z.real);
644         r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
645         r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
646     } else {
647         r.real = cos(z.imag) * sinh(z.real);
648         r.imag = sin(z.imag) * cosh(z.real);
649     }
650     /* detect overflow, and set errno accordingly */
651     if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
652         errno = ERANGE;
653     else
654         errno = 0;
655     return r;
656 }
657 
658 PyDoc_STRVAR(c_sinh_doc,
659 "sinh(x)\n"
660 "\n"
661 "Return the hyperbolic sine of x.");
662 
663 
664 static Py_complex sqrt_special_values[7][7];
665 
666 static Py_complex
c_sqrt(Py_complex z)667 c_sqrt(Py_complex z)
668 {
669     /*
670        Method: use symmetries to reduce to the case when x = z.real and y
671        = z.imag are nonnegative.  Then the real part of the result is
672        given by
673 
674          s = sqrt((x + hypot(x, y))/2)
675 
676        and the imaginary part is
677 
678          d = (y/2)/s
679 
680        If either x or y is very large then there's a risk of overflow in
681        computation of the expression x + hypot(x, y).  We can avoid this
682        by rewriting the formula for s as:
683 
684          s = 2*sqrt(x/8 + hypot(x/8, y/8))
685 
686        This costs us two extra multiplications/divisions, but avoids the
687        overhead of checking for x and y large.
688 
689        If both x and y are subnormal then hypot(x, y) may also be
690        subnormal, so will lack full precision.  We solve this by rescaling
691        x and y by a sufficiently large power of 2 to ensure that x and y
692        are normal.
693     */
694 
695 
696     Py_complex r;
697     double s,d;
698     double ax, ay;
699 
700     SPECIAL_VALUE(z, sqrt_special_values);
701 
702     if (z.real == 0. && z.imag == 0.) {
703         r.real = 0.;
704         r.imag = z.imag;
705         return r;
706     }
707 
708     ax = fabs(z.real);
709     ay = fabs(z.imag);
710 
711     if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
712         /* here we catch cases where hypot(ax, ay) is subnormal */
713         ax = ldexp(ax, CM_SCALE_UP);
714         s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
715                   CM_SCALE_DOWN);
716     } else {
717         ax /= 8.;
718         s = 2.*sqrt(ax + hypot(ax, ay/8.));
719     }
720     d = ay/(2.*s);
721 
722     if (z.real >= 0.) {
723         r.real = s;
724         r.imag = copysign(d, z.imag);
725     } else {
726         r.real = d;
727         r.imag = copysign(s, z.imag);
728     }
729     errno = 0;
730     return r;
731 }
732 
733 PyDoc_STRVAR(c_sqrt_doc,
734 "sqrt(x)\n"
735 "\n"
736 "Return the square root of x.");
737 
738 
739 static Py_complex
c_tan(Py_complex z)740 c_tan(Py_complex z)
741 {
742     /* tan(z) = -i tanh(iz) */
743     Py_complex s, r;
744     s.real = -z.imag;
745     s.imag = z.real;
746     s = c_tanh(s);
747     r.real = s.imag;
748     r.imag = -s.real;
749     return r;
750 }
751 
752 PyDoc_STRVAR(c_tan_doc,
753 "tan(x)\n"
754 "\n"
755 "Return the tangent of x.");
756 
757 
758 /* tanh(infinity + i*y) needs to be dealt with specially */
759 static Py_complex tanh_special_values[7][7];
760 
761 static Py_complex
c_tanh(Py_complex z)762 c_tanh(Py_complex z)
763 {
764     /* Formula:
765 
766        tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
767        (1+tan(y)^2 tanh(x)^2)
768 
769        To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
770        as 1/cosh(x)^2.  When abs(x) is large, we approximate 1-tanh(x)^2
771        by 4 exp(-2*x) instead, to avoid possible overflow in the
772        computation of cosh(x).
773 
774     */
775 
776     Py_complex r;
777     double tx, ty, cx, txty, denom;
778 
779     /* special treatment for tanh(+/-inf + iy) if y is finite and
780        nonzero */
781     if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
782         if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
783             && (z.imag != 0.)) {
784             if (z.real > 0) {
785                 r.real = 1.0;
786                 r.imag = copysign(0.,
787                                   2.*sin(z.imag)*cos(z.imag));
788             }
789             else {
790                 r.real = -1.0;
791                 r.imag = copysign(0.,
792                                   2.*sin(z.imag)*cos(z.imag));
793             }
794         }
795         else {
796             r = tanh_special_values[special_type(z.real)]
797                                    [special_type(z.imag)];
798         }
799         /* need to set errno = EDOM if z.imag is +/-infinity and
800            z.real is finite */
801         if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
802             errno = EDOM;
803         else
804             errno = 0;
805         return r;
806     }
807 
808     /* danger of overflow in 2.*z.imag !*/
809     if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
810         r.real = copysign(1., z.real);
811         r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
812     } else {
813         tx = tanh(z.real);
814         ty = tan(z.imag);
815         cx = 1./cosh(z.real);
816         txty = tx*ty;
817         denom = 1. + txty*txty;
818         r.real = tx*(1.+ty*ty)/denom;
819         r.imag = ((ty/denom)*cx)*cx;
820     }
821     errno = 0;
822     return r;
823 }
824 
825 PyDoc_STRVAR(c_tanh_doc,
826 "tanh(x)\n"
827 "\n"
828 "Return the hyperbolic tangent of x.");
829 
830 
831 static PyObject *
cmath_log(PyObject * self,PyObject * args)832 cmath_log(PyObject *self, PyObject *args)
833 {
834     Py_complex x;
835     Py_complex y;
836 
837     if (!PyArg_ParseTuple(args, "D|D", &x, &y))
838         return NULL;
839 
840     errno = 0;
841     PyFPE_START_PROTECT("complex function", return 0)
842     x = c_log(x);
843     if (PyTuple_GET_SIZE(args) == 2) {
844         y = c_log(y);
845         x = c_quot(x, y);
846     }
847     PyFPE_END_PROTECT(x)
848     if (errno != 0)
849         return math_error();
850     return PyComplex_FromCComplex(x);
851 }
852 
853 PyDoc_STRVAR(cmath_log_doc,
854 "log(x[, base]) -> the logarithm of x to the given base.\n\
855 If the base not specified, returns the natural logarithm (base e) of x.");
856 
857 
858 /* And now the glue to make them available from Python: */
859 
860 static PyObject *
math_error(void)861 math_error(void)
862 {
863     if (errno == EDOM)
864         PyErr_SetString(PyExc_ValueError, "math domain error");
865     else if (errno == ERANGE)
866         PyErr_SetString(PyExc_OverflowError, "math range error");
867     else    /* Unexpected math error */
868         PyErr_SetFromErrno(PyExc_ValueError);
869     return NULL;
870 }
871 
872 static PyObject *
math_1(PyObject * args,Py_complex (* func)(Py_complex))873 math_1(PyObject *args, Py_complex (*func)(Py_complex))
874 {
875     Py_complex x,r ;
876     if (!PyArg_ParseTuple(args, "D", &x))
877         return NULL;
878     errno = 0;
879     PyFPE_START_PROTECT("complex function", return 0);
880     r = (*func)(x);
881     PyFPE_END_PROTECT(r);
882     if (errno == EDOM) {
883         PyErr_SetString(PyExc_ValueError, "math domain error");
884         return NULL;
885     }
886     else if (errno == ERANGE) {
887         PyErr_SetString(PyExc_OverflowError, "math range error");
888         return NULL;
889     }
890     else {
891         return PyComplex_FromCComplex(r);
892     }
893 }
894 
895 #define FUNC1(stubname, func) \
896     static PyObject * stubname(PyObject *self, PyObject *args) { \
897         return math_1(args, func); \
898     }
899 
FUNC1(cmath_acos,c_acos)900 FUNC1(cmath_acos, c_acos)
901 FUNC1(cmath_acosh, c_acosh)
902 FUNC1(cmath_asin, c_asin)
903 FUNC1(cmath_asinh, c_asinh)
904 FUNC1(cmath_atan, c_atan)
905 FUNC1(cmath_atanh, c_atanh)
906 FUNC1(cmath_cos, c_cos)
907 FUNC1(cmath_cosh, c_cosh)
908 FUNC1(cmath_exp, c_exp)
909 FUNC1(cmath_log10, c_log10)
910 FUNC1(cmath_sin, c_sin)
911 FUNC1(cmath_sinh, c_sinh)
912 FUNC1(cmath_sqrt, c_sqrt)
913 FUNC1(cmath_tan, c_tan)
914 FUNC1(cmath_tanh, c_tanh)
915 
916 static PyObject *
917 cmath_phase(PyObject *self, PyObject *args)
918 {
919     Py_complex z;
920     double phi;
921     if (!PyArg_ParseTuple(args, "D:phase", &z))
922         return NULL;
923     errno = 0;
924     PyFPE_START_PROTECT("arg function", return 0)
925     phi = c_atan2(z);
926     PyFPE_END_PROTECT(phi)
927     if (errno != 0)
928         return math_error();
929     else
930         return PyFloat_FromDouble(phi);
931 }
932 
933 PyDoc_STRVAR(cmath_phase_doc,
934 "phase(z) -> float\n\n\
935 Return argument, also known as the phase angle, of a complex.");
936 
937 static PyObject *
cmath_polar(PyObject * self,PyObject * args)938 cmath_polar(PyObject *self, PyObject *args)
939 {
940     Py_complex z;
941     double r, phi;
942     if (!PyArg_ParseTuple(args, "D:polar", &z))
943         return NULL;
944     errno = 0;
945     PyFPE_START_PROTECT("polar function", return 0)
946     phi = c_atan2(z); /* should not cause any exception */
947     r = c_abs(z); /* sets errno to ERANGE on overflow */
948     PyFPE_END_PROTECT(r)
949     if (errno != 0)
950         return math_error();
951     else
952         return Py_BuildValue("dd", r, phi);
953 }
954 
955 PyDoc_STRVAR(cmath_polar_doc,
956 "polar(z) -> r: float, phi: float\n\n\
957 Convert a complex from rectangular coordinates to polar coordinates. r is\n\
958 the distance from 0 and phi the phase angle.");
959 
960 /*
961   rect() isn't covered by the C99 standard, but it's not too hard to
962   figure out 'spirit of C99' rules for special value handing:
963 
964     rect(x, t) should behave like exp(log(x) + it) for positive-signed x
965     rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
966     rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
967       gives nan +- i0 with the sign of the imaginary part unspecified.
968 
969 */
970 
971 static Py_complex rect_special_values[7][7];
972 
973 static PyObject *
cmath_rect(PyObject * self,PyObject * args)974 cmath_rect(PyObject *self, PyObject *args)
975 {
976     Py_complex z;
977     double r, phi;
978     if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
979         return NULL;
980     errno = 0;
981     PyFPE_START_PROTECT("rect function", return 0)
982 
983     /* deal with special values */
984     if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
985         /* if r is +/-infinity and phi is finite but nonzero then
986            result is (+-INF +-INF i), but we need to compute cos(phi)
987            and sin(phi) to figure out the signs. */
988         if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
989                                   && (phi != 0.))) {
990             if (r > 0) {
991                 z.real = copysign(INF, cos(phi));
992                 z.imag = copysign(INF, sin(phi));
993             }
994             else {
995                 z.real = -copysign(INF, cos(phi));
996                 z.imag = -copysign(INF, sin(phi));
997             }
998         }
999         else {
1000             z = rect_special_values[special_type(r)]
1001                                    [special_type(phi)];
1002         }
1003         /* need to set errno = EDOM if r is a nonzero number and phi
1004            is infinite */
1005         if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
1006             errno = EDOM;
1007         else
1008             errno = 0;
1009     }
1010     else if (phi == 0.0) {
1011         /* Workaround for buggy results with phi=-0.0 on OS X 10.8.  See
1012            bugs.python.org/issue18513. */
1013         z.real = r;
1014         z.imag = r * phi;
1015         errno = 0;
1016     }
1017     else {
1018         z.real = r * cos(phi);
1019         z.imag = r * sin(phi);
1020         errno = 0;
1021     }
1022 
1023     PyFPE_END_PROTECT(z)
1024     if (errno != 0)
1025         return math_error();
1026     else
1027         return PyComplex_FromCComplex(z);
1028 }
1029 
1030 PyDoc_STRVAR(cmath_rect_doc,
1031 "rect(r, phi) -> z: complex\n\n\
1032 Convert from polar coordinates to rectangular coordinates.");
1033 
1034 static PyObject *
cmath_isnan(PyObject * self,PyObject * args)1035 cmath_isnan(PyObject *self, PyObject *args)
1036 {
1037     Py_complex z;
1038     if (!PyArg_ParseTuple(args, "D:isnan", &z))
1039         return NULL;
1040     return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
1041 }
1042 
1043 PyDoc_STRVAR(cmath_isnan_doc,
1044 "isnan(z) -> bool\n\
1045 Checks if the real or imaginary part of z not a number (NaN)");
1046 
1047 static PyObject *
cmath_isinf(PyObject * self,PyObject * args)1048 cmath_isinf(PyObject *self, PyObject *args)
1049 {
1050     Py_complex z;
1051     if (!PyArg_ParseTuple(args, "D:isnan", &z))
1052         return NULL;
1053     return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
1054                            Py_IS_INFINITY(z.imag));
1055 }
1056 
1057 PyDoc_STRVAR(cmath_isinf_doc,
1058 "isinf(z) -> bool\n\
1059 Checks if the real or imaginary part of z is infinite.");
1060 
1061 
1062 PyDoc_STRVAR(module_doc,
1063 "This module is always available. It provides access to mathematical\n"
1064 "functions for complex numbers.");
1065 
1066 static PyMethodDef cmath_methods[] = {
1067     {"acos",   cmath_acos,  METH_VARARGS, c_acos_doc},
1068     {"acosh",  cmath_acosh, METH_VARARGS, c_acosh_doc},
1069     {"asin",   cmath_asin,  METH_VARARGS, c_asin_doc},
1070     {"asinh",  cmath_asinh, METH_VARARGS, c_asinh_doc},
1071     {"atan",   cmath_atan,  METH_VARARGS, c_atan_doc},
1072     {"atanh",  cmath_atanh, METH_VARARGS, c_atanh_doc},
1073     {"cos",    cmath_cos,   METH_VARARGS, c_cos_doc},
1074     {"cosh",   cmath_cosh,  METH_VARARGS, c_cosh_doc},
1075     {"exp",    cmath_exp,   METH_VARARGS, c_exp_doc},
1076     {"isinf",  cmath_isinf, METH_VARARGS, cmath_isinf_doc},
1077     {"isnan",  cmath_isnan, METH_VARARGS, cmath_isnan_doc},
1078     {"log",    cmath_log,   METH_VARARGS, cmath_log_doc},
1079     {"log10",  cmath_log10, METH_VARARGS, c_log10_doc},
1080     {"phase",  cmath_phase, METH_VARARGS, cmath_phase_doc},
1081     {"polar",  cmath_polar, METH_VARARGS, cmath_polar_doc},
1082     {"rect",   cmath_rect,  METH_VARARGS, cmath_rect_doc},
1083     {"sin",    cmath_sin,   METH_VARARGS, c_sin_doc},
1084     {"sinh",   cmath_sinh,  METH_VARARGS, c_sinh_doc},
1085     {"sqrt",   cmath_sqrt,  METH_VARARGS, c_sqrt_doc},
1086     {"tan",    cmath_tan,   METH_VARARGS, c_tan_doc},
1087     {"tanh",   cmath_tanh,  METH_VARARGS, c_tanh_doc},
1088     {NULL,              NULL}           /* sentinel */
1089 };
1090 
1091 PyMODINIT_FUNC
initcmath(void)1092 initcmath(void)
1093 {
1094     PyObject *m;
1095 
1096     m = Py_InitModule3("cmath", cmath_methods, module_doc);
1097     if (m == NULL)
1098         return;
1099 
1100     PyModule_AddObject(m, "pi",
1101                        PyFloat_FromDouble(Py_MATH_PI));
1102     PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
1103 
1104     /* initialize special value tables */
1105 
1106 #define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
1107 #define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
1108 
1109     INIT_SPECIAL_VALUES(acos_special_values, {
1110       C(P34,INF) C(P,INF)  C(P,INF)  C(P,-INF)  C(P,-INF)  C(P34,-INF) C(N,INF)
1111       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
1112       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
1113       C(P12,INF) C(U,U)    C(P12,0.) C(P12,-0.) C(U,U)     C(P12,-INF) C(P12,N)
1114       C(P12,INF) C(U,U)    C(U,U)    C(U,U)     C(U,U)     C(P12,-INF) C(N,N)
1115       C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
1116       C(N,INF)   C(N,N)    C(N,N)    C(N,N)     C(N,N)     C(N,-INF)   C(N,N)
1117     })
1118 
1119     INIT_SPECIAL_VALUES(acosh_special_values, {
1120       C(INF,-P34) C(INF,-P)  C(INF,-P)  C(INF,P)  C(INF,P)  C(INF,P34) C(INF,N)
1121       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
1122       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
1123       C(INF,-P12) C(U,U)     C(0.,-P12) C(0.,P12) C(U,U)    C(INF,P12) C(N,N)
1124       C(INF,-P12) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,P12) C(N,N)
1125       C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1126       C(INF,N)    C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,N)   C(N,N)
1127     })
1128 
1129     INIT_SPECIAL_VALUES(asinh_special_values, {
1130       C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
1131       C(-INF,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-INF,P12) C(N,N)
1132       C(-INF,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-INF,P12) C(N,N)
1133       C(INF,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(INF,P12)  C(N,N)
1134       C(INF,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(INF,P12)  C(N,N)
1135       C(INF,-P14)  C(INF,-0.)  C(INF,-0.)  C(INF,0.)  C(INF,0.)  C(INF,P14)  C(INF,N)
1136       C(INF,N)     C(N,N)      C(N,-0.)    C(N,0.)    C(N,N)     C(INF,N)    C(N,N)
1137     })
1138 
1139     INIT_SPECIAL_VALUES(atanh_special_values, {
1140       C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
1141       C(-0.,-P12) C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(-0.,P12) C(N,N)
1142       C(-0.,-P12) C(U,U)      C(-0.,-0.)  C(-0.,0.)  C(U,U)     C(-0.,P12) C(-0.,N)
1143       C(0.,-P12)  C(U,U)      C(0.,-0.)   C(0.,0.)   C(U,U)     C(0.,P12)  C(0.,N)
1144       C(0.,-P12)  C(U,U)      C(U,U)      C(U,U)     C(U,U)     C(0.,P12)  C(N,N)
1145       C(0.,-P12)  C(0.,-P12)  C(0.,-P12)  C(0.,P12)  C(0.,P12)  C(0.,P12)  C(0.,N)
1146       C(0.,-P12)  C(N,N)      C(N,N)      C(N,N)     C(N,N)     C(0.,P12)  C(N,N)
1147     })
1148 
1149     INIT_SPECIAL_VALUES(cosh_special_values, {
1150       C(INF,N) C(U,U) C(INF,0.)  C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
1151       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
1152       C(N,0.)  C(U,U) C(1.,0.)   C(1.,-0.)  C(U,U) C(N,0.)  C(N,0.)
1153       C(N,0.)  C(U,U) C(1.,-0.)  C(1.,0.)   C(U,U) C(N,0.)  C(N,0.)
1154       C(N,N)   C(U,U) C(U,U)     C(U,U)     C(U,U) C(N,N)   C(N,N)
1155       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
1156       C(N,N)   C(N,N) C(N,0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
1157     })
1158 
1159     INIT_SPECIAL_VALUES(exp_special_values, {
1160       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(0.,0.) C(0.,0.)
1161       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
1162       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
1163       C(N,N)   C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(N,N)   C(N,N)
1164       C(N,N)   C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)   C(N,N)
1165       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1166       C(N,N)   C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)   C(N,N)
1167     })
1168 
1169     INIT_SPECIAL_VALUES(log_special_values, {
1170       C(INF,-P34) C(INF,-P)  C(INF,-P)   C(INF,P)   C(INF,P)  C(INF,P34)  C(INF,N)
1171       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
1172       C(INF,-P12) C(U,U)     C(-INF,-P)  C(-INF,P)  C(U,U)    C(INF,P12)  C(N,N)
1173       C(INF,-P12) C(U,U)     C(-INF,-0.) C(-INF,0.) C(U,U)    C(INF,P12)  C(N,N)
1174       C(INF,-P12) C(U,U)     C(U,U)      C(U,U)     C(U,U)    C(INF,P12)  C(N,N)
1175       C(INF,-P14) C(INF,-0.) C(INF,-0.)  C(INF,0.)  C(INF,0.) C(INF,P14)  C(INF,N)
1176       C(INF,N)    C(N,N)     C(N,N)      C(N,N)     C(N,N)    C(INF,N)    C(N,N)
1177     })
1178 
1179     INIT_SPECIAL_VALUES(sinh_special_values, {
1180       C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
1181       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
1182       C(0.,N)  C(U,U) C(-0.,-0.)  C(-0.,0.)  C(U,U) C(0.,N)  C(0.,N)
1183       C(0.,N)  C(U,U) C(0.,-0.)   C(0.,0.)   C(U,U) C(0.,N)  C(0.,N)
1184       C(N,N)   C(U,U) C(U,U)      C(U,U)     C(U,U) C(N,N)   C(N,N)
1185       C(INF,N) C(U,U) C(INF,-0.)  C(INF,0.)  C(U,U) C(INF,N) C(INF,N)
1186       C(N,N)   C(N,N) C(N,-0.)    C(N,0.)    C(N,N) C(N,N)   C(N,N)
1187     })
1188 
1189     INIT_SPECIAL_VALUES(sqrt_special_values, {
1190       C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
1191       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
1192       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
1193       C(INF,-INF) C(U,U)     C(0.,-0.)  C(0.,0.)  C(U,U)    C(INF,INF) C(N,N)
1194       C(INF,-INF) C(U,U)     C(U,U)     C(U,U)    C(U,U)    C(INF,INF) C(N,N)
1195       C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
1196       C(INF,-INF) C(N,N)     C(N,N)     C(N,N)    C(N,N)    C(INF,INF) C(N,N)
1197     })
1198 
1199     INIT_SPECIAL_VALUES(tanh_special_values, {
1200       C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
1201       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
1202       C(N,N)    C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N)    C(N,N)
1203       C(N,N)    C(U,U) C(0.,-0.)  C(0.,0.)  C(U,U) C(N,N)    C(N,N)
1204       C(N,N)    C(U,U) C(U,U)     C(U,U)    C(U,U) C(N,N)    C(N,N)
1205       C(1.,0.)  C(U,U) C(1.,-0.)  C(1.,0.)  C(U,U) C(1.,0.)  C(1.,0.)
1206       C(N,N)    C(N,N) C(N,-0.)   C(N,0.)   C(N,N) C(N,N)    C(N,N)
1207     })
1208 
1209     INIT_SPECIAL_VALUES(rect_special_values, {
1210       C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
1211       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
1212       C(0.,0.) C(U,U) C(-0.,0.)  C(-0.,-0.)  C(U,U) C(0.,0.) C(0.,0.)
1213       C(0.,0.) C(U,U) C(0.,-0.)  C(0.,0.)    C(U,U) C(0.,0.) C(0.,0.)
1214       C(N,N)   C(U,U) C(U,U)     C(U,U)      C(U,U) C(N,N)   C(N,N)
1215       C(INF,N) C(U,U) C(INF,-0.) C(INF,0.)   C(U,U) C(INF,N) C(INF,N)
1216       C(N,N)   C(N,N) C(N,0.)    C(N,0.)     C(N,N) C(N,N)   C(N,N)
1217     })
1218 }
1219