1 #include "Python.h"
2 #include "structmember.h"
3
4 #include <ctype.h>
5 #include <stddef.h>
6 #include <stdint.h>
7
8 #include "datetime.h"
9
10 // Imports
11 static PyObject *io_open = NULL;
12 static PyObject *_tzpath_find_tzfile = NULL;
13 static PyObject *_common_mod = NULL;
14
15 typedef struct TransitionRuleType TransitionRuleType;
16 typedef struct StrongCacheNode StrongCacheNode;
17
18 typedef struct {
19 PyObject *utcoff;
20 PyObject *dstoff;
21 PyObject *tzname;
22 long utcoff_seconds;
23 } _ttinfo;
24
25 typedef struct {
26 _ttinfo std;
27 _ttinfo dst;
28 int dst_diff;
29 TransitionRuleType *start;
30 TransitionRuleType *end;
31 unsigned char std_only;
32 } _tzrule;
33
34 typedef struct {
35 PyDateTime_TZInfo base;
36 PyObject *key;
37 PyObject *file_repr;
38 PyObject *weakreflist;
39 size_t num_transitions;
40 size_t num_ttinfos;
41 int64_t *trans_list_utc;
42 int64_t *trans_list_wall[2];
43 _ttinfo **trans_ttinfos; // References to the ttinfo for each transition
44 _ttinfo *ttinfo_before;
45 _tzrule tzrule_after;
46 _ttinfo *_ttinfos; // Unique array of ttinfos for ease of deallocation
47 unsigned char fixed_offset;
48 unsigned char source;
49 } PyZoneInfo_ZoneInfo;
50
51 struct TransitionRuleType {
52 int64_t (*year_to_timestamp)(TransitionRuleType *, int);
53 };
54
55 typedef struct {
56 TransitionRuleType base;
57 uint8_t month;
58 uint8_t week;
59 uint8_t day;
60 int8_t hour;
61 int8_t minute;
62 int8_t second;
63 } CalendarRule;
64
65 typedef struct {
66 TransitionRuleType base;
67 uint8_t julian;
68 unsigned int day;
69 int8_t hour;
70 int8_t minute;
71 int8_t second;
72 } DayRule;
73
74 struct StrongCacheNode {
75 StrongCacheNode *next;
76 StrongCacheNode *prev;
77 PyObject *key;
78 PyObject *zone;
79 };
80
81 static PyTypeObject PyZoneInfo_ZoneInfoType;
82
83 // Globals
84 static PyObject *TIMEDELTA_CACHE = NULL;
85 static PyObject *ZONEINFO_WEAK_CACHE = NULL;
86 static StrongCacheNode *ZONEINFO_STRONG_CACHE = NULL;
87 static size_t ZONEINFO_STRONG_CACHE_MAX_SIZE = 8;
88
89 static _ttinfo NO_TTINFO = {NULL, NULL, NULL, 0};
90
91 // Constants
92 static const int EPOCHORDINAL = 719163;
93 static int DAYS_IN_MONTH[] = {
94 -1, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31,
95 };
96
97 static int DAYS_BEFORE_MONTH[] = {
98 -1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334,
99 };
100
101 static const int SOURCE_NOCACHE = 0;
102 static const int SOURCE_CACHE = 1;
103 static const int SOURCE_FILE = 2;
104
105 // Forward declarations
106 static int
107 load_data(PyZoneInfo_ZoneInfo *self, PyObject *file_obj);
108 static void
109 utcoff_to_dstoff(size_t *trans_idx, long *utcoffs, long *dstoffs,
110 unsigned char *isdsts, size_t num_transitions,
111 size_t num_ttinfos);
112 static int
113 ts_to_local(size_t *trans_idx, int64_t *trans_utc, long *utcoff,
114 int64_t *trans_local[2], size_t num_ttinfos,
115 size_t num_transitions);
116
117 static int
118 parse_tz_str(PyObject *tz_str_obj, _tzrule *out);
119
120 static Py_ssize_t
121 parse_abbr(const char *const p, PyObject **abbr);
122 static Py_ssize_t
123 parse_tz_delta(const char *const p, long *total_seconds);
124 static Py_ssize_t
125 parse_transition_time(const char *const p, int8_t *hour, int8_t *minute,
126 int8_t *second);
127 static Py_ssize_t
128 parse_transition_rule(const char *const p, TransitionRuleType **out);
129
130 static _ttinfo *
131 find_tzrule_ttinfo(_tzrule *rule, int64_t ts, unsigned char fold, int year);
132 static _ttinfo *
133 find_tzrule_ttinfo_fromutc(_tzrule *rule, int64_t ts, int year,
134 unsigned char *fold);
135
136 static int
137 build_ttinfo(long utcoffset, long dstoffset, PyObject *tzname, _ttinfo *out);
138 static void
139 xdecref_ttinfo(_ttinfo *ttinfo);
140 static int
141 ttinfo_eq(const _ttinfo *const tti0, const _ttinfo *const tti1);
142
143 static int
144 build_tzrule(PyObject *std_abbr, PyObject *dst_abbr, long std_offset,
145 long dst_offset, TransitionRuleType *start,
146 TransitionRuleType *end, _tzrule *out);
147 static void
148 free_tzrule(_tzrule *tzrule);
149
150 static PyObject *
151 load_timedelta(long seconds);
152
153 static int
154 get_local_timestamp(PyObject *dt, int64_t *local_ts);
155 static _ttinfo *
156 find_ttinfo(PyZoneInfo_ZoneInfo *self, PyObject *dt);
157
158 static int
159 ymd_to_ord(int y, int m, int d);
160 static int
161 is_leap_year(int year);
162
163 static size_t
164 _bisect(const int64_t value, const int64_t *arr, size_t size);
165
166 static void
167 eject_from_strong_cache(const PyTypeObject *const type, PyObject *key);
168 static void
169 clear_strong_cache(const PyTypeObject *const type);
170 static void
171 update_strong_cache(const PyTypeObject *const type, PyObject *key,
172 PyObject *zone);
173 static PyObject *
174 zone_from_strong_cache(const PyTypeObject *const type, PyObject *key);
175
176 static PyObject *
zoneinfo_new_instance(PyTypeObject * type,PyObject * key)177 zoneinfo_new_instance(PyTypeObject *type, PyObject *key)
178 {
179 PyObject *file_obj = NULL;
180 PyObject *file_path = NULL;
181
182 file_path = PyObject_CallFunctionObjArgs(_tzpath_find_tzfile, key, NULL);
183 if (file_path == NULL) {
184 return NULL;
185 }
186 else if (file_path == Py_None) {
187 file_obj = PyObject_CallMethod(_common_mod, "load_tzdata", "O", key);
188 if (file_obj == NULL) {
189 Py_DECREF(file_path);
190 return NULL;
191 }
192 }
193
194 PyObject *self = (PyObject *)(type->tp_alloc(type, 0));
195 if (self == NULL) {
196 goto error;
197 }
198
199 if (file_obj == NULL) {
200 file_obj = PyObject_CallFunction(io_open, "Os", file_path, "rb");
201 if (file_obj == NULL) {
202 goto error;
203 }
204 }
205
206 if (load_data((PyZoneInfo_ZoneInfo *)self, file_obj)) {
207 goto error;
208 }
209
210 PyObject *rv = PyObject_CallMethod(file_obj, "close", NULL);
211 Py_DECREF(file_obj);
212 file_obj = NULL;
213 if (rv == NULL) {
214 goto error;
215 }
216 Py_DECREF(rv);
217
218 ((PyZoneInfo_ZoneInfo *)self)->key = key;
219 Py_INCREF(key);
220
221 goto cleanup;
222 error:
223 Py_XDECREF(self);
224 self = NULL;
225 cleanup:
226 if (file_obj != NULL) {
227 PyObject *exc, *val, *tb;
228 PyErr_Fetch(&exc, &val, &tb);
229 PyObject *tmp = PyObject_CallMethod(file_obj, "close", NULL);
230 _PyErr_ChainExceptions(exc, val, tb);
231 if (tmp == NULL) {
232 Py_CLEAR(self);
233 }
234 Py_XDECREF(tmp);
235 Py_DECREF(file_obj);
236 }
237 Py_DECREF(file_path);
238 return self;
239 }
240
241 static PyObject *
get_weak_cache(PyTypeObject * type)242 get_weak_cache(PyTypeObject *type)
243 {
244 if (type == &PyZoneInfo_ZoneInfoType) {
245 return ZONEINFO_WEAK_CACHE;
246 }
247 else {
248 PyObject *cache =
249 PyObject_GetAttrString((PyObject *)type, "_weak_cache");
250 // We are assuming that the type lives at least as long as the function
251 // that calls get_weak_cache, and that it holds a reference to the
252 // cache, so we'll return a "borrowed reference".
253 Py_XDECREF(cache);
254 return cache;
255 }
256 }
257
258 static PyObject *
zoneinfo_new(PyTypeObject * type,PyObject * args,PyObject * kw)259 zoneinfo_new(PyTypeObject *type, PyObject *args, PyObject *kw)
260 {
261 PyObject *key = NULL;
262 static char *kwlist[] = {"key", NULL};
263 if (PyArg_ParseTupleAndKeywords(args, kw, "O", kwlist, &key) == 0) {
264 return NULL;
265 }
266
267 PyObject *instance = zone_from_strong_cache(type, key);
268 if (instance != NULL) {
269 return instance;
270 }
271
272 PyObject *weak_cache = get_weak_cache(type);
273 instance = PyObject_CallMethod(weak_cache, "get", "O", key, Py_None);
274 if (instance == NULL) {
275 return NULL;
276 }
277
278 if (instance == Py_None) {
279 Py_DECREF(instance);
280 PyObject *tmp = zoneinfo_new_instance(type, key);
281 if (tmp == NULL) {
282 return NULL;
283 }
284
285 instance =
286 PyObject_CallMethod(weak_cache, "setdefault", "OO", key, tmp);
287 Py_DECREF(tmp);
288 if (instance == NULL) {
289 return NULL;
290 }
291 ((PyZoneInfo_ZoneInfo *)instance)->source = SOURCE_CACHE;
292 }
293
294 update_strong_cache(type, key, instance);
295 return instance;
296 }
297
298 static void
zoneinfo_dealloc(PyObject * obj_self)299 zoneinfo_dealloc(PyObject *obj_self)
300 {
301 PyZoneInfo_ZoneInfo *self = (PyZoneInfo_ZoneInfo *)obj_self;
302
303 if (self->weakreflist != NULL) {
304 PyObject_ClearWeakRefs(obj_self);
305 }
306
307 if (self->trans_list_utc != NULL) {
308 PyMem_Free(self->trans_list_utc);
309 }
310
311 for (size_t i = 0; i < 2; i++) {
312 if (self->trans_list_wall[i] != NULL) {
313 PyMem_Free(self->trans_list_wall[i]);
314 }
315 }
316
317 if (self->_ttinfos != NULL) {
318 for (size_t i = 0; i < self->num_ttinfos; ++i) {
319 xdecref_ttinfo(&(self->_ttinfos[i]));
320 }
321 PyMem_Free(self->_ttinfos);
322 }
323
324 if (self->trans_ttinfos != NULL) {
325 PyMem_Free(self->trans_ttinfos);
326 }
327
328 free_tzrule(&(self->tzrule_after));
329
330 Py_XDECREF(self->key);
331 Py_XDECREF(self->file_repr);
332
333 Py_TYPE(self)->tp_free((PyObject *)self);
334 }
335
336 static PyObject *
zoneinfo_from_file(PyTypeObject * type,PyObject * args,PyObject * kwargs)337 zoneinfo_from_file(PyTypeObject *type, PyObject *args, PyObject *kwargs)
338 {
339 PyObject *file_obj = NULL;
340 PyObject *file_repr = NULL;
341 PyObject *key = Py_None;
342 PyZoneInfo_ZoneInfo *self = NULL;
343
344 static char *kwlist[] = {"", "key", NULL};
345 if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O|O", kwlist, &file_obj,
346 &key)) {
347 return NULL;
348 }
349
350 PyObject *obj_self = (PyObject *)(type->tp_alloc(type, 0));
351 self = (PyZoneInfo_ZoneInfo *)obj_self;
352 if (self == NULL) {
353 return NULL;
354 }
355
356 file_repr = PyUnicode_FromFormat("%R", file_obj);
357 if (file_repr == NULL) {
358 goto error;
359 }
360
361 if (load_data(self, file_obj)) {
362 goto error;
363 }
364
365 self->source = SOURCE_FILE;
366 self->file_repr = file_repr;
367 self->key = key;
368 Py_INCREF(key);
369
370 return obj_self;
371 error:
372 Py_XDECREF(file_repr);
373 Py_XDECREF(self);
374 return NULL;
375 }
376
377 static PyObject *
zoneinfo_no_cache(PyTypeObject * cls,PyObject * args,PyObject * kwargs)378 zoneinfo_no_cache(PyTypeObject *cls, PyObject *args, PyObject *kwargs)
379 {
380 static char *kwlist[] = {"key", NULL};
381 PyObject *key = NULL;
382 if (!PyArg_ParseTupleAndKeywords(args, kwargs, "O", kwlist, &key)) {
383 return NULL;
384 }
385
386 PyObject *out = zoneinfo_new_instance(cls, key);
387 if (out != NULL) {
388 ((PyZoneInfo_ZoneInfo *)out)->source = SOURCE_NOCACHE;
389 }
390
391 return out;
392 }
393
394 static PyObject *
zoneinfo_clear_cache(PyObject * cls,PyObject * args,PyObject * kwargs)395 zoneinfo_clear_cache(PyObject *cls, PyObject *args, PyObject *kwargs)
396 {
397 PyObject *only_keys = NULL;
398 static char *kwlist[] = {"only_keys", NULL};
399
400 if (!(PyArg_ParseTupleAndKeywords(args, kwargs, "|$O", kwlist,
401 &only_keys))) {
402 return NULL;
403 }
404
405 PyTypeObject *type = (PyTypeObject *)cls;
406 PyObject *weak_cache = get_weak_cache(type);
407
408 if (only_keys == NULL || only_keys == Py_None) {
409 PyObject *rv = PyObject_CallMethod(weak_cache, "clear", NULL);
410 if (rv != NULL) {
411 Py_DECREF(rv);
412 }
413
414 clear_strong_cache(type);
415 }
416 else {
417 PyObject *item = NULL;
418 PyObject *pop = PyUnicode_FromString("pop");
419 if (pop == NULL) {
420 return NULL;
421 }
422
423 PyObject *iter = PyObject_GetIter(only_keys);
424 if (iter == NULL) {
425 Py_DECREF(pop);
426 return NULL;
427 }
428
429 while ((item = PyIter_Next(iter))) {
430 // Remove from strong cache
431 eject_from_strong_cache(type, item);
432
433 // Remove from weak cache
434 PyObject *tmp = PyObject_CallMethodObjArgs(weak_cache, pop, item,
435 Py_None, NULL);
436
437 Py_DECREF(item);
438 if (tmp == NULL) {
439 break;
440 }
441 Py_DECREF(tmp);
442 }
443 Py_DECREF(iter);
444 Py_DECREF(pop);
445 }
446
447 if (PyErr_Occurred()) {
448 return NULL;
449 }
450
451 Py_RETURN_NONE;
452 }
453
454 static PyObject *
zoneinfo_utcoffset(PyObject * self,PyObject * dt)455 zoneinfo_utcoffset(PyObject *self, PyObject *dt)
456 {
457 _ttinfo *tti = find_ttinfo((PyZoneInfo_ZoneInfo *)self, dt);
458 if (tti == NULL) {
459 return NULL;
460 }
461 Py_INCREF(tti->utcoff);
462 return tti->utcoff;
463 }
464
465 static PyObject *
zoneinfo_dst(PyObject * self,PyObject * dt)466 zoneinfo_dst(PyObject *self, PyObject *dt)
467 {
468 _ttinfo *tti = find_ttinfo((PyZoneInfo_ZoneInfo *)self, dt);
469 if (tti == NULL) {
470 return NULL;
471 }
472 Py_INCREF(tti->dstoff);
473 return tti->dstoff;
474 }
475
476 static PyObject *
zoneinfo_tzname(PyObject * self,PyObject * dt)477 zoneinfo_tzname(PyObject *self, PyObject *dt)
478 {
479 _ttinfo *tti = find_ttinfo((PyZoneInfo_ZoneInfo *)self, dt);
480 if (tti == NULL) {
481 return NULL;
482 }
483 Py_INCREF(tti->tzname);
484 return tti->tzname;
485 }
486
487 #define HASTZINFO(p) (((_PyDateTime_BaseTZInfo *)(p))->hastzinfo)
488 #define GET_DT_TZINFO(p) \
489 (HASTZINFO(p) ? ((PyDateTime_DateTime *)(p))->tzinfo : Py_None)
490
491 static PyObject *
zoneinfo_fromutc(PyObject * obj_self,PyObject * dt)492 zoneinfo_fromutc(PyObject *obj_self, PyObject *dt)
493 {
494 if (!PyDateTime_Check(dt)) {
495 PyErr_SetString(PyExc_TypeError,
496 "fromutc: argument must be a datetime");
497 return NULL;
498 }
499 if (GET_DT_TZINFO(dt) != obj_self) {
500 PyErr_SetString(PyExc_ValueError,
501 "fromutc: dt.tzinfo "
502 "is not self");
503 return NULL;
504 }
505
506 PyZoneInfo_ZoneInfo *self = (PyZoneInfo_ZoneInfo *)obj_self;
507
508 int64_t timestamp;
509 if (get_local_timestamp(dt, ×tamp)) {
510 return NULL;
511 }
512 size_t num_trans = self->num_transitions;
513
514 _ttinfo *tti = NULL;
515 unsigned char fold = 0;
516
517 if (num_trans >= 1 && timestamp < self->trans_list_utc[0]) {
518 tti = self->ttinfo_before;
519 }
520 else if (num_trans == 0 ||
521 timestamp > self->trans_list_utc[num_trans - 1]) {
522 tti = find_tzrule_ttinfo_fromutc(&(self->tzrule_after), timestamp,
523 PyDateTime_GET_YEAR(dt), &fold);
524
525 // Immediately after the last manual transition, the fold/gap is
526 // between self->trans_ttinfos[num_transitions - 1] and whatever
527 // ttinfo applies immediately after the last transition, not between
528 // the STD and DST rules in the tzrule_after, so we may need to
529 // adjust the fold value.
530 if (num_trans) {
531 _ttinfo *tti_prev = NULL;
532 if (num_trans == 1) {
533 tti_prev = self->ttinfo_before;
534 }
535 else {
536 tti_prev = self->trans_ttinfos[num_trans - 2];
537 }
538 int64_t diff = tti_prev->utcoff_seconds - tti->utcoff_seconds;
539 if (diff > 0 &&
540 timestamp < (self->trans_list_utc[num_trans - 1] + diff)) {
541 fold = 1;
542 }
543 }
544 }
545 else {
546 size_t idx = _bisect(timestamp, self->trans_list_utc, num_trans);
547 _ttinfo *tti_prev = NULL;
548
549 if (idx >= 2) {
550 tti_prev = self->trans_ttinfos[idx - 2];
551 tti = self->trans_ttinfos[idx - 1];
552 }
553 else {
554 tti_prev = self->ttinfo_before;
555 tti = self->trans_ttinfos[0];
556 }
557
558 // Detect fold
559 int64_t shift =
560 (int64_t)(tti_prev->utcoff_seconds - tti->utcoff_seconds);
561 if (shift > (timestamp - self->trans_list_utc[idx - 1])) {
562 fold = 1;
563 }
564 }
565
566 PyObject *tmp = PyNumber_Add(dt, tti->utcoff);
567 if (tmp == NULL) {
568 return NULL;
569 }
570
571 if (fold) {
572 if (PyDateTime_CheckExact(tmp)) {
573 ((PyDateTime_DateTime *)tmp)->fold = 1;
574 dt = tmp;
575 }
576 else {
577 PyObject *replace = PyObject_GetAttrString(tmp, "replace");
578 PyObject *args = PyTuple_New(0);
579 PyObject *kwargs = PyDict_New();
580
581 Py_DECREF(tmp);
582 if (args == NULL || kwargs == NULL || replace == NULL) {
583 Py_XDECREF(args);
584 Py_XDECREF(kwargs);
585 Py_XDECREF(replace);
586 return NULL;
587 }
588
589 dt = NULL;
590 if (!PyDict_SetItemString(kwargs, "fold", _PyLong_One)) {
591 dt = PyObject_Call(replace, args, kwargs);
592 }
593
594 Py_DECREF(args);
595 Py_DECREF(kwargs);
596 Py_DECREF(replace);
597
598 if (dt == NULL) {
599 return NULL;
600 }
601 }
602 }
603 else {
604 dt = tmp;
605 }
606 return dt;
607 }
608
609 static PyObject *
zoneinfo_repr(PyZoneInfo_ZoneInfo * self)610 zoneinfo_repr(PyZoneInfo_ZoneInfo *self)
611 {
612 PyObject *rv = NULL;
613 const char *type_name = Py_TYPE((PyObject *)self)->tp_name;
614 if (!(self->key == Py_None)) {
615 rv = PyUnicode_FromFormat("%s(key=%R)", type_name, self->key);
616 }
617 else {
618 assert(PyUnicode_Check(self->file_repr));
619 rv = PyUnicode_FromFormat("%s.from_file(%U)", type_name,
620 self->file_repr);
621 }
622
623 return rv;
624 }
625
626 static PyObject *
zoneinfo_str(PyZoneInfo_ZoneInfo * self)627 zoneinfo_str(PyZoneInfo_ZoneInfo *self)
628 {
629 if (!(self->key == Py_None)) {
630 Py_INCREF(self->key);
631 return self->key;
632 }
633 else {
634 return zoneinfo_repr(self);
635 }
636 }
637
638 /* Pickles the ZoneInfo object by key and source.
639 *
640 * ZoneInfo objects are pickled by reference to the TZif file that they came
641 * from, which means that the exact transitions may be different or the file
642 * may not un-pickle if the data has changed on disk in the interim.
643 *
644 * It is necessary to include a bit indicating whether or not the object
645 * was constructed from the cache, because from-cache objects will hit the
646 * unpickling process's cache, whereas no-cache objects will bypass it.
647 *
648 * Objects constructed from ZoneInfo.from_file cannot be pickled.
649 */
650 static PyObject *
zoneinfo_reduce(PyObject * obj_self,PyObject * unused)651 zoneinfo_reduce(PyObject *obj_self, PyObject *unused)
652 {
653 PyZoneInfo_ZoneInfo *self = (PyZoneInfo_ZoneInfo *)obj_self;
654 if (self->source == SOURCE_FILE) {
655 // Objects constructed from files cannot be pickled.
656 PyObject *pickle = PyImport_ImportModule("pickle");
657 if (pickle == NULL) {
658 return NULL;
659 }
660
661 PyObject *pickle_error =
662 PyObject_GetAttrString(pickle, "PicklingError");
663 Py_DECREF(pickle);
664 if (pickle_error == NULL) {
665 return NULL;
666 }
667
668 PyErr_Format(pickle_error,
669 "Cannot pickle a ZoneInfo file from a file stream.");
670 Py_DECREF(pickle_error);
671 return NULL;
672 }
673
674 unsigned char from_cache = self->source == SOURCE_CACHE ? 1 : 0;
675 PyObject *constructor = PyObject_GetAttrString(obj_self, "_unpickle");
676
677 if (constructor == NULL) {
678 return NULL;
679 }
680
681 PyObject *rv = Py_BuildValue("O(OB)", constructor, self->key, from_cache);
682 Py_DECREF(constructor);
683 return rv;
684 }
685
686 static PyObject *
zoneinfo__unpickle(PyTypeObject * cls,PyObject * args)687 zoneinfo__unpickle(PyTypeObject *cls, PyObject *args)
688 {
689 PyObject *key;
690 unsigned char from_cache;
691 if (!PyArg_ParseTuple(args, "OB", &key, &from_cache)) {
692 return NULL;
693 }
694
695 if (from_cache) {
696 PyObject *val_args = Py_BuildValue("(O)", key);
697 if (val_args == NULL) {
698 return NULL;
699 }
700
701 PyObject *rv = zoneinfo_new(cls, val_args, NULL);
702
703 Py_DECREF(val_args);
704 return rv;
705 }
706 else {
707 return zoneinfo_new_instance(cls, key);
708 }
709 }
710
711 /* It is relatively expensive to construct new timedelta objects, and in most
712 * cases we're looking at a relatively small number of timedeltas, such as
713 * integer number of hours, etc. We will keep a cache so that we construct
714 * a minimal number of these.
715 *
716 * Possibly this should be replaced with an LRU cache so that it's not possible
717 * for the memory usage to explode from this, but in order for this to be a
718 * serious problem, one would need to deliberately craft a malicious time zone
719 * file with many distinct offsets. As of tzdb 2019c, loading every single zone
720 * fills the cache with ~450 timedeltas for a total size of ~12kB.
721 *
722 * This returns a new reference to the timedelta.
723 */
724 static PyObject *
load_timedelta(long seconds)725 load_timedelta(long seconds)
726 {
727 PyObject *rv = NULL;
728 PyObject *pyoffset = PyLong_FromLong(seconds);
729 if (pyoffset == NULL) {
730 return NULL;
731 }
732 int contains = PyDict_Contains(TIMEDELTA_CACHE, pyoffset);
733 if (contains == -1) {
734 goto error;
735 }
736
737 if (!contains) {
738 PyObject *tmp = PyDateTimeAPI->Delta_FromDelta(
739 0, seconds, 0, 1, PyDateTimeAPI->DeltaType);
740
741 if (tmp == NULL) {
742 goto error;
743 }
744
745 rv = PyDict_SetDefault(TIMEDELTA_CACHE, pyoffset, tmp);
746 Py_DECREF(tmp);
747 }
748 else {
749 rv = PyDict_GetItem(TIMEDELTA_CACHE, pyoffset);
750 }
751
752 Py_DECREF(pyoffset);
753 Py_INCREF(rv);
754 return rv;
755 error:
756 Py_DECREF(pyoffset);
757 return NULL;
758 }
759
760 /* Constructor for _ttinfo object - this starts by initializing the _ttinfo
761 * to { NULL, NULL, NULL }, so that Py_XDECREF will work on partially
762 * initialized _ttinfo objects.
763 */
764 static int
build_ttinfo(long utcoffset,long dstoffset,PyObject * tzname,_ttinfo * out)765 build_ttinfo(long utcoffset, long dstoffset, PyObject *tzname, _ttinfo *out)
766 {
767 out->utcoff = NULL;
768 out->dstoff = NULL;
769 out->tzname = NULL;
770
771 out->utcoff_seconds = utcoffset;
772 out->utcoff = load_timedelta(utcoffset);
773 if (out->utcoff == NULL) {
774 return -1;
775 }
776
777 out->dstoff = load_timedelta(dstoffset);
778 if (out->dstoff == NULL) {
779 return -1;
780 }
781
782 out->tzname = tzname;
783 Py_INCREF(tzname);
784
785 return 0;
786 }
787
788 /* Decrease reference count on any non-NULL members of a _ttinfo */
789 static void
xdecref_ttinfo(_ttinfo * ttinfo)790 xdecref_ttinfo(_ttinfo *ttinfo)
791 {
792 if (ttinfo != NULL) {
793 Py_XDECREF(ttinfo->utcoff);
794 Py_XDECREF(ttinfo->dstoff);
795 Py_XDECREF(ttinfo->tzname);
796 }
797 }
798
799 /* Equality function for _ttinfo. */
800 static int
ttinfo_eq(const _ttinfo * const tti0,const _ttinfo * const tti1)801 ttinfo_eq(const _ttinfo *const tti0, const _ttinfo *const tti1)
802 {
803 int rv;
804 if ((rv = PyObject_RichCompareBool(tti0->utcoff, tti1->utcoff, Py_EQ)) <
805 1) {
806 goto end;
807 }
808
809 if ((rv = PyObject_RichCompareBool(tti0->dstoff, tti1->dstoff, Py_EQ)) <
810 1) {
811 goto end;
812 }
813
814 if ((rv = PyObject_RichCompareBool(tti0->tzname, tti1->tzname, Py_EQ)) <
815 1) {
816 goto end;
817 }
818 end:
819 return rv;
820 }
821
822 /* Given a file-like object, this populates a ZoneInfo object
823 *
824 * The current version calls into a Python function to read the data from
825 * file into Python objects, and this translates those Python objects into
826 * C values and calculates derived values (e.g. dstoff) in C.
827 *
828 * This returns 0 on success and -1 on failure.
829 *
830 * The function will never return while `self` is partially initialized —
831 * the object only needs to be freed / deallocated if this succeeds.
832 */
833 static int
load_data(PyZoneInfo_ZoneInfo * self,PyObject * file_obj)834 load_data(PyZoneInfo_ZoneInfo *self, PyObject *file_obj)
835 {
836 PyObject *data_tuple = NULL;
837
838 long *utcoff = NULL;
839 long *dstoff = NULL;
840 size_t *trans_idx = NULL;
841 unsigned char *isdst = NULL;
842
843 self->trans_list_utc = NULL;
844 self->trans_list_wall[0] = NULL;
845 self->trans_list_wall[1] = NULL;
846 self->trans_ttinfos = NULL;
847 self->_ttinfos = NULL;
848 self->file_repr = NULL;
849
850 size_t ttinfos_allocated = 0;
851
852 data_tuple = PyObject_CallMethod(_common_mod, "load_data", "O", file_obj);
853
854 if (data_tuple == NULL) {
855 goto error;
856 }
857
858 if (!PyTuple_CheckExact(data_tuple)) {
859 PyErr_Format(PyExc_TypeError, "Invalid data result type: %r",
860 data_tuple);
861 goto error;
862 }
863
864 // Unpack the data tuple
865 PyObject *trans_idx_list = PyTuple_GetItem(data_tuple, 0);
866 if (trans_idx_list == NULL) {
867 goto error;
868 }
869
870 PyObject *trans_utc = PyTuple_GetItem(data_tuple, 1);
871 if (trans_utc == NULL) {
872 goto error;
873 }
874
875 PyObject *utcoff_list = PyTuple_GetItem(data_tuple, 2);
876 if (utcoff_list == NULL) {
877 goto error;
878 }
879
880 PyObject *isdst_list = PyTuple_GetItem(data_tuple, 3);
881 if (isdst_list == NULL) {
882 goto error;
883 }
884
885 PyObject *abbr = PyTuple_GetItem(data_tuple, 4);
886 if (abbr == NULL) {
887 goto error;
888 }
889
890 PyObject *tz_str = PyTuple_GetItem(data_tuple, 5);
891 if (tz_str == NULL) {
892 goto error;
893 }
894
895 // Load the relevant sizes
896 Py_ssize_t num_transitions = PyTuple_Size(trans_utc);
897 if (num_transitions < 0) {
898 goto error;
899 }
900
901 Py_ssize_t num_ttinfos = PyTuple_Size(utcoff_list);
902 if (num_ttinfos < 0) {
903 goto error;
904 }
905
906 self->num_transitions = (size_t)num_transitions;
907 self->num_ttinfos = (size_t)num_ttinfos;
908
909 // Load the transition indices and list
910 self->trans_list_utc =
911 PyMem_Malloc(self->num_transitions * sizeof(int64_t));
912 trans_idx = PyMem_Malloc(self->num_transitions * sizeof(Py_ssize_t));
913
914 for (size_t i = 0; i < self->num_transitions; ++i) {
915 PyObject *num = PyTuple_GetItem(trans_utc, i);
916 if (num == NULL) {
917 goto error;
918 }
919 self->trans_list_utc[i] = PyLong_AsLongLong(num);
920 if (self->trans_list_utc[i] == -1 && PyErr_Occurred()) {
921 goto error;
922 }
923
924 num = PyTuple_GetItem(trans_idx_list, i);
925 if (num == NULL) {
926 goto error;
927 }
928
929 Py_ssize_t cur_trans_idx = PyLong_AsSsize_t(num);
930 if (cur_trans_idx == -1) {
931 goto error;
932 }
933
934 trans_idx[i] = (size_t)cur_trans_idx;
935 if (trans_idx[i] > self->num_ttinfos) {
936 PyErr_Format(
937 PyExc_ValueError,
938 "Invalid transition index found while reading TZif: %zd",
939 cur_trans_idx);
940
941 goto error;
942 }
943 }
944
945 // Load UTC offsets and isdst (size num_ttinfos)
946 utcoff = PyMem_Malloc(self->num_ttinfos * sizeof(long));
947 isdst = PyMem_Malloc(self->num_ttinfos * sizeof(unsigned char));
948
949 if (utcoff == NULL || isdst == NULL) {
950 goto error;
951 }
952 for (size_t i = 0; i < self->num_ttinfos; ++i) {
953 PyObject *num = PyTuple_GetItem(utcoff_list, i);
954 if (num == NULL) {
955 goto error;
956 }
957
958 utcoff[i] = PyLong_AsLong(num);
959 if (utcoff[i] == -1 && PyErr_Occurred()) {
960 goto error;
961 }
962
963 num = PyTuple_GetItem(isdst_list, i);
964 if (num == NULL) {
965 goto error;
966 }
967
968 int isdst_with_error = PyObject_IsTrue(num);
969 if (isdst_with_error == -1) {
970 goto error;
971 }
972 else {
973 isdst[i] = (unsigned char)isdst_with_error;
974 }
975 }
976
977 dstoff = PyMem_Calloc(self->num_ttinfos, sizeof(long));
978 if (dstoff == NULL) {
979 goto error;
980 }
981
982 // Derive dstoff and trans_list_wall from the information we've loaded
983 utcoff_to_dstoff(trans_idx, utcoff, dstoff, isdst, self->num_transitions,
984 self->num_ttinfos);
985
986 if (ts_to_local(trans_idx, self->trans_list_utc, utcoff,
987 self->trans_list_wall, self->num_ttinfos,
988 self->num_transitions)) {
989 goto error;
990 }
991
992 // Build _ttinfo objects from utcoff, dstoff and abbr
993 self->_ttinfos = PyMem_Malloc(self->num_ttinfos * sizeof(_ttinfo));
994 for (size_t i = 0; i < self->num_ttinfos; ++i) {
995 PyObject *tzname = PyTuple_GetItem(abbr, i);
996 if (tzname == NULL) {
997 goto error;
998 }
999
1000 ttinfos_allocated++;
1001 if (build_ttinfo(utcoff[i], dstoff[i], tzname, &(self->_ttinfos[i]))) {
1002 goto error;
1003 }
1004 }
1005
1006 // Build our mapping from transition to the ttinfo that applies
1007 self->trans_ttinfos =
1008 PyMem_Calloc(self->num_transitions, sizeof(_ttinfo *));
1009 for (size_t i = 0; i < self->num_transitions; ++i) {
1010 size_t ttinfo_idx = trans_idx[i];
1011 assert(ttinfo_idx < self->num_ttinfos);
1012 self->trans_ttinfos[i] = &(self->_ttinfos[ttinfo_idx]);
1013 }
1014
1015 // Set ttinfo_before to the first non-DST transition
1016 for (size_t i = 0; i < self->num_ttinfos; ++i) {
1017 if (!isdst[i]) {
1018 self->ttinfo_before = &(self->_ttinfos[i]);
1019 break;
1020 }
1021 }
1022
1023 // If there are only DST ttinfos, pick the first one, if there are no
1024 // ttinfos at all, set ttinfo_before to NULL
1025 if (self->ttinfo_before == NULL && self->num_ttinfos > 0) {
1026 self->ttinfo_before = &(self->_ttinfos[0]);
1027 }
1028
1029 if (tz_str != Py_None && PyObject_IsTrue(tz_str)) {
1030 if (parse_tz_str(tz_str, &(self->tzrule_after))) {
1031 goto error;
1032 }
1033 }
1034 else {
1035 if (!self->num_ttinfos) {
1036 PyErr_Format(PyExc_ValueError, "No time zone information found.");
1037 goto error;
1038 }
1039
1040 size_t idx;
1041 if (!self->num_transitions) {
1042 idx = self->num_ttinfos - 1;
1043 }
1044 else {
1045 idx = trans_idx[self->num_transitions - 1];
1046 }
1047
1048 _ttinfo *tti = &(self->_ttinfos[idx]);
1049 build_tzrule(tti->tzname, NULL, tti->utcoff_seconds, 0, NULL, NULL,
1050 &(self->tzrule_after));
1051
1052 // We've abused the build_tzrule constructor to construct an STD-only
1053 // rule mimicking whatever ttinfo we've picked up, but it's possible
1054 // that the one we've picked up is a DST zone, so we need to make sure
1055 // that the dstoff is set correctly in that case.
1056 if (PyObject_IsTrue(tti->dstoff)) {
1057 _ttinfo *tti_after = &(self->tzrule_after.std);
1058 Py_DECREF(tti_after->dstoff);
1059 tti_after->dstoff = tti->dstoff;
1060 Py_INCREF(tti_after->dstoff);
1061 }
1062 }
1063
1064 // Determine if this is a "fixed offset" zone, meaning that the output of
1065 // the utcoffset, dst and tzname functions does not depend on the specific
1066 // datetime passed.
1067 //
1068 // We make three simplifying assumptions here:
1069 //
1070 // 1. If tzrule_after is not std_only, it has transitions that might occur
1071 // (it is possible to construct TZ strings that specify STD and DST but
1072 // no transitions ever occur, such as AAA0BBB,0/0,J365/25).
1073 // 2. If self->_ttinfos contains more than one _ttinfo object, the objects
1074 // represent different offsets.
1075 // 3. self->ttinfos contains no unused _ttinfos (in which case an otherwise
1076 // fixed-offset zone with extra _ttinfos defined may appear to *not* be
1077 // a fixed offset zone).
1078 //
1079 // Violations to these assumptions would be fairly exotic, and exotic
1080 // zones should almost certainly not be used with datetime.time (the
1081 // only thing that would be affected by this).
1082 if (self->num_ttinfos > 1 || !self->tzrule_after.std_only) {
1083 self->fixed_offset = 0;
1084 }
1085 else if (self->num_ttinfos == 0) {
1086 self->fixed_offset = 1;
1087 }
1088 else {
1089 int constant_offset =
1090 ttinfo_eq(&(self->_ttinfos[0]), &self->tzrule_after.std);
1091 if (constant_offset < 0) {
1092 goto error;
1093 }
1094 else {
1095 self->fixed_offset = constant_offset;
1096 }
1097 }
1098
1099 int rv = 0;
1100 goto cleanup;
1101 error:
1102 // These resources only need to be freed if we have failed, if we succeed
1103 // in initializing a PyZoneInfo_ZoneInfo object, we can rely on its dealloc
1104 // method to free the relevant resources.
1105 if (self->trans_list_utc != NULL) {
1106 PyMem_Free(self->trans_list_utc);
1107 self->trans_list_utc = NULL;
1108 }
1109
1110 for (size_t i = 0; i < 2; ++i) {
1111 if (self->trans_list_wall[i] != NULL) {
1112 PyMem_Free(self->trans_list_wall[i]);
1113 self->trans_list_wall[i] = NULL;
1114 }
1115 }
1116
1117 if (self->_ttinfos != NULL) {
1118 for (size_t i = 0; i < ttinfos_allocated; ++i) {
1119 xdecref_ttinfo(&(self->_ttinfos[i]));
1120 }
1121 PyMem_Free(self->_ttinfos);
1122 self->_ttinfos = NULL;
1123 }
1124
1125 if (self->trans_ttinfos != NULL) {
1126 PyMem_Free(self->trans_ttinfos);
1127 self->trans_ttinfos = NULL;
1128 }
1129
1130 rv = -1;
1131 cleanup:
1132 Py_XDECREF(data_tuple);
1133
1134 if (utcoff != NULL) {
1135 PyMem_Free(utcoff);
1136 }
1137
1138 if (dstoff != NULL) {
1139 PyMem_Free(dstoff);
1140 }
1141
1142 if (isdst != NULL) {
1143 PyMem_Free(isdst);
1144 }
1145
1146 if (trans_idx != NULL) {
1147 PyMem_Free(trans_idx);
1148 }
1149
1150 return rv;
1151 }
1152
1153 /* Function to calculate the local timestamp of a transition from the year. */
1154 int64_t
calendarrule_year_to_timestamp(TransitionRuleType * base_self,int year)1155 calendarrule_year_to_timestamp(TransitionRuleType *base_self, int year)
1156 {
1157 CalendarRule *self = (CalendarRule *)base_self;
1158
1159 // We want (year, month, day of month); we have year and month, but we
1160 // need to turn (week, day-of-week) into day-of-month
1161 //
1162 // Week 1 is the first week in which day `day` (where 0 = Sunday) appears.
1163 // Week 5 represents the last occurrence of day `day`, so we need to know
1164 // the first weekday of the month and the number of days in the month.
1165 int8_t first_day = (ymd_to_ord(year, self->month, 1) + 6) % 7;
1166 uint8_t days_in_month = DAYS_IN_MONTH[self->month];
1167 if (self->month == 2 && is_leap_year(year)) {
1168 days_in_month += 1;
1169 }
1170
1171 // This equation seems magical, so I'll break it down:
1172 // 1. calendar says 0 = Monday, POSIX says 0 = Sunday so we need first_day
1173 // + 1 to get 1 = Monday -> 7 = Sunday, which is still equivalent
1174 // because this math is mod 7
1175 // 2. Get first day - desired day mod 7 (adjusting by 7 for negative
1176 // numbers so that -1 % 7 = 6).
1177 // 3. Add 1 because month days are a 1-based index.
1178 int8_t month_day = ((int8_t)(self->day) - (first_day + 1)) % 7;
1179 if (month_day < 0) {
1180 month_day += 7;
1181 }
1182 month_day += 1;
1183
1184 // Now use a 0-based index version of `week` to calculate the w-th
1185 // occurrence of `day`
1186 month_day += ((int8_t)(self->week) - 1) * 7;
1187
1188 // month_day will only be > days_in_month if w was 5, and `w` means "last
1189 // occurrence of `d`", so now we just check if we over-shot the end of the
1190 // month and if so knock off 1 week.
1191 if (month_day > days_in_month) {
1192 month_day -= 7;
1193 }
1194
1195 int64_t ordinal = ymd_to_ord(year, self->month, month_day) - EPOCHORDINAL;
1196 return ((ordinal * 86400) + (int64_t)(self->hour * 3600) +
1197 (int64_t)(self->minute * 60) + (int64_t)(self->second));
1198 }
1199
1200 /* Constructor for CalendarRule. */
1201 int
calendarrule_new(uint8_t month,uint8_t week,uint8_t day,int8_t hour,int8_t minute,int8_t second,CalendarRule * out)1202 calendarrule_new(uint8_t month, uint8_t week, uint8_t day, int8_t hour,
1203 int8_t minute, int8_t second, CalendarRule *out)
1204 {
1205 // These bounds come from the POSIX standard, which describes an Mm.n.d
1206 // rule as:
1207 //
1208 // The d'th day (0 <= d <= 6) of week n of month m of the year (1 <= n <=
1209 // 5, 1 <= m <= 12, where week 5 means "the last d day in month m" which
1210 // may occur in either the fourth or the fifth week). Week 1 is the first
1211 // week in which the d'th day occurs. Day zero is Sunday.
1212 if (month <= 0 || month > 12) {
1213 PyErr_Format(PyExc_ValueError, "Month must be in (0, 12]");
1214 return -1;
1215 }
1216
1217 if (week <= 0 || week > 5) {
1218 PyErr_Format(PyExc_ValueError, "Week must be in (0, 5]");
1219 return -1;
1220 }
1221
1222 // day is an unsigned integer, so day < 0 should always return false, but
1223 // if day's type changes to a signed integer *without* changing this value,
1224 // it may create a bug. Considering that the compiler should be able to
1225 // optimize out the first comparison if day is an unsigned integer anyway,
1226 // we will leave this comparison in place and disable the compiler warning.
1227 #pragma GCC diagnostic push
1228 #pragma GCC diagnostic ignored "-Wtype-limits"
1229 if (day < 0 || day > 6) {
1230 #pragma GCC diagnostic pop
1231 PyErr_Format(PyExc_ValueError, "Day must be in [0, 6]");
1232 return -1;
1233 }
1234
1235 TransitionRuleType base = {&calendarrule_year_to_timestamp};
1236
1237 CalendarRule new_offset = {
1238 .base = base,
1239 .month = month,
1240 .week = week,
1241 .day = day,
1242 .hour = hour,
1243 .minute = minute,
1244 .second = second,
1245 };
1246
1247 *out = new_offset;
1248 return 0;
1249 }
1250
1251 /* Function to calculate the local timestamp of a transition from the year.
1252 *
1253 * This translates the day of the year into a local timestamp — either a
1254 * 1-based Julian day, not including leap days, or the 0-based year-day,
1255 * including leap days.
1256 * */
1257 int64_t
dayrule_year_to_timestamp(TransitionRuleType * base_self,int year)1258 dayrule_year_to_timestamp(TransitionRuleType *base_self, int year)
1259 {
1260 // The function signature requires a TransitionRuleType pointer, but this
1261 // function is only applicable to DayRule* objects.
1262 DayRule *self = (DayRule *)base_self;
1263
1264 // ymd_to_ord calculates the number of days since 0001-01-01, but we want
1265 // to know the number of days since 1970-01-01, so we must subtract off
1266 // the equivalent of ymd_to_ord(1970, 1, 1).
1267 //
1268 // We subtract off an additional 1 day to account for January 1st (we want
1269 // the number of full days *before* the date of the transition - partial
1270 // days are accounted for in the hour, minute and second portions.
1271 int64_t days_before_year = ymd_to_ord(year, 1, 1) - EPOCHORDINAL - 1;
1272
1273 // The Julian day specification skips over February 29th in leap years,
1274 // from the POSIX standard:
1275 //
1276 // Leap days shall not be counted. That is, in all years-including leap
1277 // years-February 28 is day 59 and March 1 is day 60. It is impossible to
1278 // refer explicitly to the occasional February 29.
1279 //
1280 // This is actually more useful than you'd think — if you want a rule that
1281 // always transitions on a given calendar day (other than February 29th),
1282 // you would use a Julian day, e.g. J91 always refers to April 1st and J365
1283 // always refers to December 31st.
1284 unsigned int day = self->day;
1285 if (self->julian && day >= 59 && is_leap_year(year)) {
1286 day += 1;
1287 }
1288
1289 return ((days_before_year + day) * 86400) + (self->hour * 3600) +
1290 (self->minute * 60) + self->second;
1291 }
1292
1293 /* Constructor for DayRule. */
1294 static int
dayrule_new(uint8_t julian,unsigned int day,int8_t hour,int8_t minute,int8_t second,DayRule * out)1295 dayrule_new(uint8_t julian, unsigned int day, int8_t hour, int8_t minute,
1296 int8_t second, DayRule *out)
1297 {
1298 // The POSIX standard specifies that Julian days must be in the range (1 <=
1299 // n <= 365) and that non-Julian (they call it "0-based Julian") days must
1300 // be in the range (0 <= n <= 365).
1301 if (day < julian || day > 365) {
1302 PyErr_Format(PyExc_ValueError, "day must be in [%u, 365], not: %u",
1303 julian, day);
1304 return -1;
1305 }
1306
1307 TransitionRuleType base = {
1308 &dayrule_year_to_timestamp,
1309 };
1310
1311 DayRule tmp = {
1312 .base = base,
1313 .julian = julian,
1314 .day = day,
1315 .hour = hour,
1316 .minute = minute,
1317 .second = second,
1318 };
1319
1320 *out = tmp;
1321
1322 return 0;
1323 }
1324
1325 /* Calculate the start and end rules for a _tzrule in the given year. */
1326 static void
tzrule_transitions(_tzrule * rule,int year,int64_t * start,int64_t * end)1327 tzrule_transitions(_tzrule *rule, int year, int64_t *start, int64_t *end)
1328 {
1329 assert(rule->start != NULL);
1330 assert(rule->end != NULL);
1331 *start = rule->start->year_to_timestamp(rule->start, year);
1332 *end = rule->end->year_to_timestamp(rule->end, year);
1333 }
1334
1335 /* Calculate the _ttinfo that applies at a given local time from a _tzrule.
1336 *
1337 * This takes a local timestamp and fold for disambiguation purposes; the year
1338 * could technically be calculated from the timestamp, but given that the
1339 * callers of this function already have the year information accessible from
1340 * the datetime struct, it is taken as an additional parameter to reduce
1341 * unncessary calculation.
1342 * */
1343 static _ttinfo *
find_tzrule_ttinfo(_tzrule * rule,int64_t ts,unsigned char fold,int year)1344 find_tzrule_ttinfo(_tzrule *rule, int64_t ts, unsigned char fold, int year)
1345 {
1346 if (rule->std_only) {
1347 return &(rule->std);
1348 }
1349
1350 int64_t start, end;
1351 uint8_t isdst;
1352
1353 tzrule_transitions(rule, year, &start, &end);
1354
1355 // With fold = 0, the period (denominated in local time) with the smaller
1356 // offset starts at the end of the gap and ends at the end of the fold;
1357 // with fold = 1, it runs from the start of the gap to the beginning of the
1358 // fold.
1359 //
1360 // So in order to determine the DST boundaries we need to know both the
1361 // fold and whether DST is positive or negative (rare), and it turns out
1362 // that this boils down to fold XOR is_positive.
1363 if (fold == (rule->dst_diff >= 0)) {
1364 end -= rule->dst_diff;
1365 }
1366 else {
1367 start += rule->dst_diff;
1368 }
1369
1370 if (start < end) {
1371 isdst = (ts >= start) && (ts < end);
1372 }
1373 else {
1374 isdst = (ts < end) || (ts >= start);
1375 }
1376
1377 if (isdst) {
1378 return &(rule->dst);
1379 }
1380 else {
1381 return &(rule->std);
1382 }
1383 }
1384
1385 /* Calculate the ttinfo and fold that applies for a _tzrule at an epoch time.
1386 *
1387 * This function can determine the _ttinfo that applies at a given epoch time,
1388 * (analogous to trans_list_utc), and whether or not the datetime is in a fold.
1389 * This is to be used in the .fromutc() function.
1390 *
1391 * The year is technically a redundant parameter, because it can be calculated
1392 * from the timestamp, but all callers of this function should have the year
1393 * in the datetime struct anyway, so taking it as a parameter saves unnecessary
1394 * calculation.
1395 **/
1396 static _ttinfo *
find_tzrule_ttinfo_fromutc(_tzrule * rule,int64_t ts,int year,unsigned char * fold)1397 find_tzrule_ttinfo_fromutc(_tzrule *rule, int64_t ts, int year,
1398 unsigned char *fold)
1399 {
1400 if (rule->std_only) {
1401 *fold = 0;
1402 return &(rule->std);
1403 }
1404
1405 int64_t start, end;
1406 uint8_t isdst;
1407 tzrule_transitions(rule, year, &start, &end);
1408 start -= rule->std.utcoff_seconds;
1409 end -= rule->dst.utcoff_seconds;
1410
1411 if (start < end) {
1412 isdst = (ts >= start) && (ts < end);
1413 }
1414 else {
1415 isdst = (ts < end) || (ts >= start);
1416 }
1417
1418 // For positive DST, the ambiguous period is one dst_diff after the end of
1419 // DST; for negative DST, the ambiguous period is one dst_diff before the
1420 // start of DST.
1421 int64_t ambig_start, ambig_end;
1422 if (rule->dst_diff > 0) {
1423 ambig_start = end;
1424 ambig_end = end + rule->dst_diff;
1425 }
1426 else {
1427 ambig_start = start;
1428 ambig_end = start - rule->dst_diff;
1429 }
1430
1431 *fold = (ts >= ambig_start) && (ts < ambig_end);
1432
1433 if (isdst) {
1434 return &(rule->dst);
1435 }
1436 else {
1437 return &(rule->std);
1438 }
1439 }
1440
1441 /* Parse a TZ string in the format specified by the POSIX standard:
1442 *
1443 * std offset[dst[offset],start[/time],end[/time]]
1444 *
1445 * std and dst must be 3 or more characters long and must not contain a
1446 * leading colon, embedded digits, commas, nor a plus or minus signs; The
1447 * spaces between "std" and "offset" are only for display and are not actually
1448 * present in the string.
1449 *
1450 * The format of the offset is ``[+|-]hh[:mm[:ss]]``
1451 *
1452 * See the POSIX.1 spec: IEE Std 1003.1-2018 §8.3:
1453 *
1454 * https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
1455 */
1456 static int
parse_tz_str(PyObject * tz_str_obj,_tzrule * out)1457 parse_tz_str(PyObject *tz_str_obj, _tzrule *out)
1458 {
1459 PyObject *std_abbr = NULL;
1460 PyObject *dst_abbr = NULL;
1461 TransitionRuleType *start = NULL;
1462 TransitionRuleType *end = NULL;
1463 // Initialize offsets to invalid value (> 24 hours)
1464 long std_offset = 1 << 20;
1465 long dst_offset = 1 << 20;
1466
1467 char *tz_str = PyBytes_AsString(tz_str_obj);
1468 if (tz_str == NULL) {
1469 return -1;
1470 }
1471 char *p = tz_str;
1472
1473 // Read the `std` abbreviation, which must be at least 3 characters long.
1474 Py_ssize_t num_chars = parse_abbr(p, &std_abbr);
1475 if (num_chars < 1) {
1476 PyErr_Format(PyExc_ValueError, "Invalid STD format in %R", tz_str_obj);
1477 goto error;
1478 }
1479
1480 p += num_chars;
1481
1482 // Now read the STD offset, which is required
1483 num_chars = parse_tz_delta(p, &std_offset);
1484 if (num_chars < 0) {
1485 PyErr_Format(PyExc_ValueError, "Invalid STD offset in %R", tz_str_obj);
1486 goto error;
1487 }
1488 p += num_chars;
1489
1490 // If the string ends here, there is no DST, otherwise we must parse the
1491 // DST abbreviation and start and end dates and times.
1492 if (*p == '\0') {
1493 goto complete;
1494 }
1495
1496 num_chars = parse_abbr(p, &dst_abbr);
1497 if (num_chars < 1) {
1498 PyErr_Format(PyExc_ValueError, "Invalid DST format in %R", tz_str_obj);
1499 goto error;
1500 }
1501 p += num_chars;
1502
1503 if (*p == ',') {
1504 // From the POSIX standard:
1505 //
1506 // If no offset follows dst, the alternative time is assumed to be one
1507 // hour ahead of standard time.
1508 dst_offset = std_offset + 3600;
1509 }
1510 else {
1511 num_chars = parse_tz_delta(p, &dst_offset);
1512 if (num_chars < 0) {
1513 PyErr_Format(PyExc_ValueError, "Invalid DST offset in %R",
1514 tz_str_obj);
1515 goto error;
1516 }
1517
1518 p += num_chars;
1519 }
1520
1521 TransitionRuleType **transitions[2] = {&start, &end};
1522 for (size_t i = 0; i < 2; ++i) {
1523 if (*p != ',') {
1524 PyErr_Format(PyExc_ValueError,
1525 "Missing transition rules in TZ string: %R",
1526 tz_str_obj);
1527 goto error;
1528 }
1529 p++;
1530
1531 num_chars = parse_transition_rule(p, transitions[i]);
1532 if (num_chars < 0) {
1533 PyErr_Format(PyExc_ValueError,
1534 "Malformed transition rule in TZ string: %R",
1535 tz_str_obj);
1536 goto error;
1537 }
1538 p += num_chars;
1539 }
1540
1541 if (*p != '\0') {
1542 PyErr_Format(PyExc_ValueError,
1543 "Extraneous characters at end of TZ string: %R",
1544 tz_str_obj);
1545 goto error;
1546 }
1547
1548 complete:
1549 build_tzrule(std_abbr, dst_abbr, std_offset, dst_offset, start, end, out);
1550 Py_DECREF(std_abbr);
1551 Py_XDECREF(dst_abbr);
1552
1553 return 0;
1554 error:
1555 Py_XDECREF(std_abbr);
1556 if (dst_abbr != NULL && dst_abbr != Py_None) {
1557 Py_DECREF(dst_abbr);
1558 }
1559
1560 if (start != NULL) {
1561 PyMem_Free(start);
1562 }
1563
1564 if (end != NULL) {
1565 PyMem_Free(end);
1566 }
1567
1568 return -1;
1569 }
1570
1571 static int
parse_uint(const char * const p,uint8_t * value)1572 parse_uint(const char *const p, uint8_t *value)
1573 {
1574 if (!isdigit(*p)) {
1575 return -1;
1576 }
1577
1578 *value = (*p) - '0';
1579 return 0;
1580 }
1581
1582 /* Parse the STD and DST abbreviations from a TZ string. */
1583 static Py_ssize_t
parse_abbr(const char * const p,PyObject ** abbr)1584 parse_abbr(const char *const p, PyObject **abbr)
1585 {
1586 const char *ptr = p;
1587 char buff = *ptr;
1588 const char *str_start;
1589 const char *str_end;
1590
1591 if (*ptr == '<') {
1592 ptr++;
1593 str_start = ptr;
1594 while ((buff = *ptr) != '>') {
1595 // From the POSIX standard:
1596 //
1597 // In the quoted form, the first character shall be the less-than
1598 // ( '<' ) character and the last character shall be the
1599 // greater-than ( '>' ) character. All characters between these
1600 // quoting characters shall be alphanumeric characters from the
1601 // portable character set in the current locale, the plus-sign (
1602 // '+' ) character, or the minus-sign ( '-' ) character. The std
1603 // and dst fields in this case shall not include the quoting
1604 // characters.
1605 if (!isalpha(buff) && !isdigit(buff) && buff != '+' &&
1606 buff != '-') {
1607 return -1;
1608 }
1609 ptr++;
1610 }
1611 str_end = ptr;
1612 ptr++;
1613 }
1614 else {
1615 str_start = p;
1616 // From the POSIX standard:
1617 //
1618 // In the unquoted form, all characters in these fields shall be
1619 // alphabetic characters from the portable character set in the
1620 // current locale.
1621 while (isalpha(*ptr)) {
1622 ptr++;
1623 }
1624 str_end = ptr;
1625 }
1626
1627 *abbr = PyUnicode_FromStringAndSize(str_start, str_end - str_start);
1628 if (*abbr == NULL) {
1629 return -1;
1630 }
1631
1632 return ptr - p;
1633 }
1634
1635 /* Parse a UTC offset from a TZ str. */
1636 static Py_ssize_t
parse_tz_delta(const char * const p,long * total_seconds)1637 parse_tz_delta(const char *const p, long *total_seconds)
1638 {
1639 // From the POSIX spec:
1640 //
1641 // Indicates the value added to the local time to arrive at Coordinated
1642 // Universal Time. The offset has the form:
1643 //
1644 // hh[:mm[:ss]]
1645 //
1646 // One or more digits may be used; the value is always interpreted as a
1647 // decimal number.
1648 //
1649 // The POSIX spec says that the values for `hour` must be between 0 and 24
1650 // hours, but RFC 8536 §3.3.1 specifies that the hours part of the
1651 // transition times may be signed and range from -167 to 167.
1652 long sign = -1;
1653 long hours = 0;
1654 long minutes = 0;
1655 long seconds = 0;
1656
1657 const char *ptr = p;
1658 char buff = *ptr;
1659 if (buff == '-' || buff == '+') {
1660 // Negative numbers correspond to *positive* offsets, from the spec:
1661 //
1662 // If preceded by a '-', the timezone shall be east of the Prime
1663 // Meridian; otherwise, it shall be west (which may be indicated by
1664 // an optional preceding '+' ).
1665 if (buff == '-') {
1666 sign = 1;
1667 }
1668
1669 ptr++;
1670 }
1671
1672 // The hour can be 1 or 2 numeric characters
1673 for (size_t i = 0; i < 2; ++i) {
1674 buff = *ptr;
1675 if (!isdigit(buff)) {
1676 if (i == 0) {
1677 return -1;
1678 }
1679 else {
1680 break;
1681 }
1682 }
1683
1684 hours *= 10;
1685 hours += buff - '0';
1686 ptr++;
1687 }
1688
1689 if (hours > 24 || hours < 0) {
1690 return -1;
1691 }
1692
1693 // Minutes and seconds always of the format ":dd"
1694 long *outputs[2] = {&minutes, &seconds};
1695 for (size_t i = 0; i < 2; ++i) {
1696 if (*ptr != ':') {
1697 goto complete;
1698 }
1699 ptr++;
1700
1701 for (size_t j = 0; j < 2; ++j) {
1702 buff = *ptr;
1703 if (!isdigit(buff)) {
1704 return -1;
1705 }
1706 *(outputs[i]) *= 10;
1707 *(outputs[i]) += buff - '0';
1708 ptr++;
1709 }
1710 }
1711
1712 complete:
1713 *total_seconds = sign * ((hours * 3600) + (minutes * 60) + seconds);
1714
1715 return ptr - p;
1716 }
1717
1718 /* Parse the date portion of a transition rule. */
1719 static Py_ssize_t
parse_transition_rule(const char * const p,TransitionRuleType ** out)1720 parse_transition_rule(const char *const p, TransitionRuleType **out)
1721 {
1722 // The full transition rule indicates when to change back and forth between
1723 // STD and DST, and has the form:
1724 //
1725 // date[/time],date[/time]
1726 //
1727 // This function parses an individual date[/time] section, and returns
1728 // the number of characters that contributed to the transition rule. This
1729 // does not include the ',' at the end of the first rule.
1730 //
1731 // The POSIX spec states that if *time* is not given, the default is 02:00.
1732 const char *ptr = p;
1733 int8_t hour = 2;
1734 int8_t minute = 0;
1735 int8_t second = 0;
1736
1737 // Rules come in one of three flavors:
1738 //
1739 // 1. Jn: Julian day n, with no leap days.
1740 // 2. n: Day of year (0-based, with leap days)
1741 // 3. Mm.n.d: Specifying by month, week and day-of-week.
1742
1743 if (*ptr == 'M') {
1744 uint8_t month, week, day;
1745 ptr++;
1746 if (parse_uint(ptr, &month)) {
1747 return -1;
1748 }
1749 ptr++;
1750 if (*ptr != '.') {
1751 uint8_t tmp;
1752 if (parse_uint(ptr, &tmp)) {
1753 return -1;
1754 }
1755
1756 month *= 10;
1757 month += tmp;
1758 ptr++;
1759 }
1760
1761 uint8_t *values[2] = {&week, &day};
1762 for (size_t i = 0; i < 2; ++i) {
1763 if (*ptr != '.') {
1764 return -1;
1765 }
1766 ptr++;
1767
1768 if (parse_uint(ptr, values[i])) {
1769 return -1;
1770 }
1771 ptr++;
1772 }
1773
1774 if (*ptr == '/') {
1775 ptr++;
1776 Py_ssize_t num_chars =
1777 parse_transition_time(ptr, &hour, &minute, &second);
1778 if (num_chars < 0) {
1779 return -1;
1780 }
1781 ptr += num_chars;
1782 }
1783
1784 CalendarRule *rv = PyMem_Calloc(1, sizeof(CalendarRule));
1785 if (rv == NULL) {
1786 return -1;
1787 }
1788
1789 if (calendarrule_new(month, week, day, hour, minute, second, rv)) {
1790 PyMem_Free(rv);
1791 return -1;
1792 }
1793
1794 *out = (TransitionRuleType *)rv;
1795 }
1796 else {
1797 uint8_t julian = 0;
1798 unsigned int day = 0;
1799 if (*ptr == 'J') {
1800 julian = 1;
1801 ptr++;
1802 }
1803
1804 for (size_t i = 0; i < 3; ++i) {
1805 if (!isdigit(*ptr)) {
1806 if (i == 0) {
1807 return -1;
1808 }
1809 break;
1810 }
1811 day *= 10;
1812 day += (*ptr) - '0';
1813 ptr++;
1814 }
1815
1816 if (*ptr == '/') {
1817 ptr++;
1818 Py_ssize_t num_chars =
1819 parse_transition_time(ptr, &hour, &minute, &second);
1820 if (num_chars < 0) {
1821 return -1;
1822 }
1823 ptr += num_chars;
1824 }
1825
1826 DayRule *rv = PyMem_Calloc(1, sizeof(DayRule));
1827 if (rv == NULL) {
1828 return -1;
1829 }
1830
1831 if (dayrule_new(julian, day, hour, minute, second, rv)) {
1832 PyMem_Free(rv);
1833 return -1;
1834 }
1835 *out = (TransitionRuleType *)rv;
1836 }
1837
1838 return ptr - p;
1839 }
1840
1841 /* Parse the time portion of a transition rule (e.g. following an /) */
1842 static Py_ssize_t
parse_transition_time(const char * const p,int8_t * hour,int8_t * minute,int8_t * second)1843 parse_transition_time(const char *const p, int8_t *hour, int8_t *minute,
1844 int8_t *second)
1845 {
1846 // From the spec:
1847 //
1848 // The time has the same format as offset except that no leading sign
1849 // ( '-' or '+' ) is allowed.
1850 //
1851 // The format for the offset is:
1852 //
1853 // h[h][:mm[:ss]]
1854 //
1855 // RFC 8536 also allows transition times to be signed and to range from
1856 // -167 to +167, but the current version only supports [0, 99].
1857 //
1858 // TODO: Support the full range of transition hours.
1859 int8_t *components[3] = {hour, minute, second};
1860 const char *ptr = p;
1861 int8_t sign = 1;
1862
1863 if (*ptr == '-' || *ptr == '+') {
1864 if (*ptr == '-') {
1865 sign = -1;
1866 }
1867 ptr++;
1868 }
1869
1870 for (size_t i = 0; i < 3; ++i) {
1871 if (i > 0) {
1872 if (*ptr != ':') {
1873 break;
1874 }
1875 ptr++;
1876 }
1877
1878 uint8_t buff = 0;
1879 for (size_t j = 0; j < 2; j++) {
1880 if (!isdigit(*ptr)) {
1881 if (i == 0 && j > 0) {
1882 break;
1883 }
1884 return -1;
1885 }
1886
1887 buff *= 10;
1888 buff += (*ptr) - '0';
1889 ptr++;
1890 }
1891
1892 *(components[i]) = sign * buff;
1893 }
1894
1895 return ptr - p;
1896 }
1897
1898 /* Constructor for a _tzrule.
1899 *
1900 * If `dst_abbr` is NULL, this will construct an "STD-only" _tzrule, in which
1901 * case `dst_offset` will be ignored and `start` and `end` are expected to be
1902 * NULL as well.
1903 *
1904 * Returns 0 on success.
1905 */
1906 static int
build_tzrule(PyObject * std_abbr,PyObject * dst_abbr,long std_offset,long dst_offset,TransitionRuleType * start,TransitionRuleType * end,_tzrule * out)1907 build_tzrule(PyObject *std_abbr, PyObject *dst_abbr, long std_offset,
1908 long dst_offset, TransitionRuleType *start,
1909 TransitionRuleType *end, _tzrule *out)
1910 {
1911 _tzrule rv = {{0}};
1912
1913 rv.start = start;
1914 rv.end = end;
1915
1916 if (build_ttinfo(std_offset, 0, std_abbr, &rv.std)) {
1917 goto error;
1918 }
1919
1920 if (dst_abbr != NULL) {
1921 rv.dst_diff = dst_offset - std_offset;
1922 if (build_ttinfo(dst_offset, rv.dst_diff, dst_abbr, &rv.dst)) {
1923 goto error;
1924 }
1925 }
1926 else {
1927 rv.std_only = 1;
1928 }
1929
1930 *out = rv;
1931
1932 return 0;
1933 error:
1934 xdecref_ttinfo(&rv.std);
1935 xdecref_ttinfo(&rv.dst);
1936 return -1;
1937 }
1938
1939 /* Destructor for _tzrule. */
1940 static void
free_tzrule(_tzrule * tzrule)1941 free_tzrule(_tzrule *tzrule)
1942 {
1943 xdecref_ttinfo(&(tzrule->std));
1944 if (!tzrule->std_only) {
1945 xdecref_ttinfo(&(tzrule->dst));
1946 }
1947
1948 if (tzrule->start != NULL) {
1949 PyMem_Free(tzrule->start);
1950 }
1951
1952 if (tzrule->end != NULL) {
1953 PyMem_Free(tzrule->end);
1954 }
1955 }
1956
1957 /* Calculate DST offsets from transitions and UTC offsets
1958 *
1959 * This is necessary because each C `ttinfo` only contains the UTC offset,
1960 * time zone abbreviation and an isdst boolean - it does not include the
1961 * amount of the DST offset, but we need the amount for the dst() function.
1962 *
1963 * Thus function uses heuristics to infer what the offset should be, so it
1964 * is not guaranteed that this will work for all zones. If we cannot assign
1965 * a value for a given DST offset, we'll assume it's 1H rather than 0H, so
1966 * bool(dt.dst()) will always match ttinfo.isdst.
1967 */
1968 static void
utcoff_to_dstoff(size_t * trans_idx,long * utcoffs,long * dstoffs,unsigned char * isdsts,size_t num_transitions,size_t num_ttinfos)1969 utcoff_to_dstoff(size_t *trans_idx, long *utcoffs, long *dstoffs,
1970 unsigned char *isdsts, size_t num_transitions,
1971 size_t num_ttinfos)
1972 {
1973 size_t dst_count = 0;
1974 size_t dst_found = 0;
1975 for (size_t i = 0; i < num_ttinfos; ++i) {
1976 dst_count++;
1977 }
1978
1979 for (size_t i = 1; i < num_transitions; ++i) {
1980 if (dst_count == dst_found) {
1981 break;
1982 }
1983
1984 size_t idx = trans_idx[i];
1985 size_t comp_idx = trans_idx[i - 1];
1986
1987 // Only look at DST offsets that have nto been assigned already
1988 if (!isdsts[idx] || dstoffs[idx] != 0) {
1989 continue;
1990 }
1991
1992 long dstoff = 0;
1993 long utcoff = utcoffs[idx];
1994
1995 if (!isdsts[comp_idx]) {
1996 dstoff = utcoff - utcoffs[comp_idx];
1997 }
1998
1999 if (!dstoff && idx < (num_ttinfos - 1)) {
2000 comp_idx = trans_idx[i + 1];
2001
2002 // If the following transition is also DST and we couldn't find
2003 // the DST offset by this point, we're going to have to skip it
2004 // and hope this transition gets assigned later
2005 if (isdsts[comp_idx]) {
2006 continue;
2007 }
2008
2009 dstoff = utcoff - utcoffs[comp_idx];
2010 }
2011
2012 if (dstoff) {
2013 dst_found++;
2014 dstoffs[idx] = dstoff;
2015 }
2016 }
2017
2018 if (dst_found < dst_count) {
2019 // If there are time zones we didn't find a value for, we'll end up
2020 // with dstoff = 0 for something where isdst=1. This is obviously
2021 // wrong — one hour will be a much better guess than 0.
2022 for (size_t idx = 0; idx < num_ttinfos; ++idx) {
2023 if (isdsts[idx] && !dstoffs[idx]) {
2024 dstoffs[idx] = 3600;
2025 }
2026 }
2027 }
2028 }
2029
2030 #define _swap(x, y, buffer) \
2031 buffer = x; \
2032 x = y; \
2033 y = buffer;
2034
2035 /* Calculate transitions in local time from UTC time and offsets.
2036 *
2037 * We want to know when each transition occurs, denominated in the number of
2038 * nominal wall-time seconds between 1970-01-01T00:00:00 and the transition in
2039 * *local time* (note: this is *not* equivalent to the output of
2040 * datetime.timestamp, which is the total number of seconds actual elapsed
2041 * since 1970-01-01T00:00:00Z in UTC).
2042 *
2043 * This is an ambiguous question because "local time" can be ambiguous — but it
2044 * is disambiguated by the `fold` parameter, so we allocate two arrays:
2045 *
2046 * trans_local[0]: The wall-time transitions for fold=0
2047 * trans_local[1]: The wall-time transitions for fold=1
2048 *
2049 * This returns 0 on success and a negative number of failure. The trans_local
2050 * arrays must be freed if they are not NULL.
2051 */
2052 static int
ts_to_local(size_t * trans_idx,int64_t * trans_utc,long * utcoff,int64_t * trans_local[2],size_t num_ttinfos,size_t num_transitions)2053 ts_to_local(size_t *trans_idx, int64_t *trans_utc, long *utcoff,
2054 int64_t *trans_local[2], size_t num_ttinfos,
2055 size_t num_transitions)
2056 {
2057 if (num_transitions == 0) {
2058 return 0;
2059 }
2060
2061 // Copy the UTC transitions into each array to be modified in place later
2062 for (size_t i = 0; i < 2; ++i) {
2063 trans_local[i] = PyMem_Malloc(num_transitions * sizeof(int64_t));
2064 if (trans_local[i] == NULL) {
2065 return -1;
2066 }
2067
2068 memcpy(trans_local[i], trans_utc, num_transitions * sizeof(int64_t));
2069 }
2070
2071 int64_t offset_0, offset_1, buff;
2072 if (num_ttinfos > 1) {
2073 offset_0 = utcoff[0];
2074 offset_1 = utcoff[trans_idx[0]];
2075
2076 if (offset_1 > offset_0) {
2077 _swap(offset_0, offset_1, buff);
2078 }
2079 }
2080 else {
2081 offset_0 = utcoff[0];
2082 offset_1 = utcoff[0];
2083 }
2084
2085 trans_local[0][0] += offset_0;
2086 trans_local[1][0] += offset_1;
2087
2088 for (size_t i = 1; i < num_transitions; ++i) {
2089 offset_0 = utcoff[trans_idx[i - 1]];
2090 offset_1 = utcoff[trans_idx[i]];
2091
2092 if (offset_1 > offset_0) {
2093 _swap(offset_1, offset_0, buff);
2094 }
2095
2096 trans_local[0][i] += offset_0;
2097 trans_local[1][i] += offset_1;
2098 }
2099
2100 return 0;
2101 }
2102
2103 /* Simple bisect_right binary search implementation */
2104 static size_t
_bisect(const int64_t value,const int64_t * arr,size_t size)2105 _bisect(const int64_t value, const int64_t *arr, size_t size)
2106 {
2107 size_t lo = 0;
2108 size_t hi = size;
2109 size_t m;
2110
2111 while (lo < hi) {
2112 m = (lo + hi) / 2;
2113 if (arr[m] > value) {
2114 hi = m;
2115 }
2116 else {
2117 lo = m + 1;
2118 }
2119 }
2120
2121 return hi;
2122 }
2123
2124 /* Find the ttinfo rules that apply at a given local datetime. */
2125 static _ttinfo *
find_ttinfo(PyZoneInfo_ZoneInfo * self,PyObject * dt)2126 find_ttinfo(PyZoneInfo_ZoneInfo *self, PyObject *dt)
2127 {
2128 // datetime.time has a .tzinfo attribute that passes None as the dt
2129 // argument; it only really has meaning for fixed-offset zones.
2130 if (dt == Py_None) {
2131 if (self->fixed_offset) {
2132 return &(self->tzrule_after.std);
2133 }
2134 else {
2135 return &NO_TTINFO;
2136 }
2137 }
2138
2139 int64_t ts;
2140 if (get_local_timestamp(dt, &ts)) {
2141 return NULL;
2142 }
2143
2144 unsigned char fold = PyDateTime_DATE_GET_FOLD(dt);
2145 assert(fold < 2);
2146 int64_t *local_transitions = self->trans_list_wall[fold];
2147 size_t num_trans = self->num_transitions;
2148
2149 if (num_trans && ts < local_transitions[0]) {
2150 return self->ttinfo_before;
2151 }
2152 else if (!num_trans || ts > local_transitions[self->num_transitions - 1]) {
2153 return find_tzrule_ttinfo(&(self->tzrule_after), ts, fold,
2154 PyDateTime_GET_YEAR(dt));
2155 }
2156 else {
2157 size_t idx = _bisect(ts, local_transitions, self->num_transitions) - 1;
2158 assert(idx < self->num_transitions);
2159 return self->trans_ttinfos[idx];
2160 }
2161 }
2162
2163 static int
is_leap_year(int year)2164 is_leap_year(int year)
2165 {
2166 const unsigned int ayear = (unsigned int)year;
2167 return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
2168 }
2169
2170 /* Calculates ordinal datetime from year, month and day. */
2171 static int
ymd_to_ord(int y,int m,int d)2172 ymd_to_ord(int y, int m, int d)
2173 {
2174 y -= 1;
2175 int days_before_year = (y * 365) + (y / 4) - (y / 100) + (y / 400);
2176 int yearday = DAYS_BEFORE_MONTH[m];
2177 if (m > 2 && is_leap_year(y + 1)) {
2178 yearday += 1;
2179 }
2180
2181 return days_before_year + yearday + d;
2182 }
2183
2184 /* Calculate the number of seconds since 1970-01-01 in local time.
2185 *
2186 * This gets a datetime in the same "units" as self->trans_list_wall so that we
2187 * can easily determine which transitions a datetime falls between. See the
2188 * comment above ts_to_local for more information.
2189 * */
2190 static int
get_local_timestamp(PyObject * dt,int64_t * local_ts)2191 get_local_timestamp(PyObject *dt, int64_t *local_ts)
2192 {
2193 assert(local_ts != NULL);
2194
2195 int hour, minute, second;
2196 int ord;
2197 if (PyDateTime_CheckExact(dt)) {
2198 int y = PyDateTime_GET_YEAR(dt);
2199 int m = PyDateTime_GET_MONTH(dt);
2200 int d = PyDateTime_GET_DAY(dt);
2201 hour = PyDateTime_DATE_GET_HOUR(dt);
2202 minute = PyDateTime_DATE_GET_MINUTE(dt);
2203 second = PyDateTime_DATE_GET_SECOND(dt);
2204
2205 ord = ymd_to_ord(y, m, d);
2206 }
2207 else {
2208 PyObject *num = PyObject_CallMethod(dt, "toordinal", NULL);
2209 if (num == NULL) {
2210 return -1;
2211 }
2212
2213 ord = PyLong_AsLong(num);
2214 Py_DECREF(num);
2215 if (ord == -1 && PyErr_Occurred()) {
2216 return -1;
2217 }
2218
2219 num = PyObject_GetAttrString(dt, "hour");
2220 if (num == NULL) {
2221 return -1;
2222 }
2223 hour = PyLong_AsLong(num);
2224 Py_DECREF(num);
2225 if (hour == -1) {
2226 return -1;
2227 }
2228
2229 num = PyObject_GetAttrString(dt, "minute");
2230 if (num == NULL) {
2231 return -1;
2232 }
2233 minute = PyLong_AsLong(num);
2234 Py_DECREF(num);
2235 if (minute == -1) {
2236 return -1;
2237 }
2238
2239 num = PyObject_GetAttrString(dt, "second");
2240 if (num == NULL) {
2241 return -1;
2242 }
2243 second = PyLong_AsLong(num);
2244 Py_DECREF(num);
2245 if (second == -1) {
2246 return -1;
2247 }
2248 }
2249
2250 *local_ts = (int64_t)(ord - EPOCHORDINAL) * 86400 +
2251 (int64_t)(hour * 3600 + minute * 60 + second);
2252
2253 return 0;
2254 }
2255
2256 /////
2257 // Functions for cache handling
2258
2259 /* Constructor for StrongCacheNode */
2260 static StrongCacheNode *
strong_cache_node_new(PyObject * key,PyObject * zone)2261 strong_cache_node_new(PyObject *key, PyObject *zone)
2262 {
2263 StrongCacheNode *node = PyMem_Malloc(sizeof(StrongCacheNode));
2264 if (node == NULL) {
2265 return NULL;
2266 }
2267
2268 Py_INCREF(key);
2269 Py_INCREF(zone);
2270
2271 node->next = NULL;
2272 node->prev = NULL;
2273 node->key = key;
2274 node->zone = zone;
2275
2276 return node;
2277 }
2278
2279 /* Destructor for StrongCacheNode */
2280 void
strong_cache_node_free(StrongCacheNode * node)2281 strong_cache_node_free(StrongCacheNode *node)
2282 {
2283 Py_XDECREF(node->key);
2284 Py_XDECREF(node->zone);
2285
2286 PyMem_Free(node);
2287 }
2288
2289 /* Frees all nodes at or after a specified root in the strong cache.
2290 *
2291 * This can be used on the root node to free the entire cache or it can be used
2292 * to clear all nodes that have been expired (which, if everything is going
2293 * right, will actually only be 1 node at a time).
2294 */
2295 void
strong_cache_free(StrongCacheNode * root)2296 strong_cache_free(StrongCacheNode *root)
2297 {
2298 StrongCacheNode *node = root;
2299 StrongCacheNode *next_node;
2300 while (node != NULL) {
2301 next_node = node->next;
2302 strong_cache_node_free(node);
2303
2304 node = next_node;
2305 }
2306 }
2307
2308 /* Removes a node from the cache and update its neighbors.
2309 *
2310 * This is used both when ejecting a node from the cache and when moving it to
2311 * the front of the cache.
2312 */
2313 static void
remove_from_strong_cache(StrongCacheNode * node)2314 remove_from_strong_cache(StrongCacheNode *node)
2315 {
2316 if (ZONEINFO_STRONG_CACHE == node) {
2317 ZONEINFO_STRONG_CACHE = node->next;
2318 }
2319
2320 if (node->prev != NULL) {
2321 node->prev->next = node->next;
2322 }
2323
2324 if (node->next != NULL) {
2325 node->next->prev = node->prev;
2326 }
2327
2328 node->next = NULL;
2329 node->prev = NULL;
2330 }
2331
2332 /* Retrieves the node associated with a key, if it exists.
2333 *
2334 * This traverses the strong cache until it finds a matching key and returns a
2335 * pointer to the relevant node if found. Returns NULL if no node is found.
2336 *
2337 * root may be NULL, indicating an empty cache.
2338 */
2339 static StrongCacheNode *
find_in_strong_cache(const StrongCacheNode * const root,PyObject * const key)2340 find_in_strong_cache(const StrongCacheNode *const root, PyObject *const key)
2341 {
2342 const StrongCacheNode *node = root;
2343 while (node != NULL) {
2344 if (PyObject_RichCompareBool(key, node->key, Py_EQ)) {
2345 return (StrongCacheNode *)node;
2346 }
2347
2348 node = node->next;
2349 }
2350
2351 return NULL;
2352 }
2353
2354 /* Ejects a given key from the class's strong cache, if applicable.
2355 *
2356 * This function is used to enable the per-key functionality in clear_cache.
2357 */
2358 static void
eject_from_strong_cache(const PyTypeObject * const type,PyObject * key)2359 eject_from_strong_cache(const PyTypeObject *const type, PyObject *key)
2360 {
2361 if (type != &PyZoneInfo_ZoneInfoType) {
2362 return;
2363 }
2364
2365 StrongCacheNode *node = find_in_strong_cache(ZONEINFO_STRONG_CACHE, key);
2366 if (node != NULL) {
2367 remove_from_strong_cache(node);
2368
2369 strong_cache_node_free(node);
2370 }
2371 }
2372
2373 /* Moves a node to the front of the LRU cache.
2374 *
2375 * The strong cache is an LRU cache, so whenever a given node is accessed, if
2376 * it is not at the front of the cache, it needs to be moved there.
2377 */
2378 static void
move_strong_cache_node_to_front(StrongCacheNode ** root,StrongCacheNode * node)2379 move_strong_cache_node_to_front(StrongCacheNode **root, StrongCacheNode *node)
2380 {
2381 StrongCacheNode *root_p = *root;
2382 if (root_p == node) {
2383 return;
2384 }
2385
2386 remove_from_strong_cache(node);
2387
2388 node->prev = NULL;
2389 node->next = root_p;
2390
2391 if (root_p != NULL) {
2392 root_p->prev = node;
2393 }
2394
2395 *root = node;
2396 }
2397
2398 /* Retrieves a ZoneInfo from the strong cache if it's present.
2399 *
2400 * This function finds the ZoneInfo by key and if found will move the node to
2401 * the front of the LRU cache and return a new reference to it. It returns NULL
2402 * if the key is not in the cache.
2403 *
2404 * The strong cache is currently only implemented for the base class, so this
2405 * always returns a cache miss for subclasses.
2406 */
2407 static PyObject *
zone_from_strong_cache(const PyTypeObject * const type,PyObject * const key)2408 zone_from_strong_cache(const PyTypeObject *const type, PyObject *const key)
2409 {
2410 if (type != &PyZoneInfo_ZoneInfoType) {
2411 return NULL; // Strong cache currently only implemented for base class
2412 }
2413
2414 StrongCacheNode *node = find_in_strong_cache(ZONEINFO_STRONG_CACHE, key);
2415
2416 if (node != NULL) {
2417 move_strong_cache_node_to_front(&ZONEINFO_STRONG_CACHE, node);
2418 Py_INCREF(node->zone);
2419 return node->zone;
2420 }
2421
2422 return NULL; // Cache miss
2423 }
2424
2425 /* Inserts a new key into the strong LRU cache.
2426 *
2427 * This function is only to be used after a cache miss — it creates a new node
2428 * at the front of the cache and ejects any stale entries (keeping the size of
2429 * the cache to at most ZONEINFO_STRONG_CACHE_MAX_SIZE).
2430 */
2431 static void
update_strong_cache(const PyTypeObject * const type,PyObject * key,PyObject * zone)2432 update_strong_cache(const PyTypeObject *const type, PyObject *key,
2433 PyObject *zone)
2434 {
2435 if (type != &PyZoneInfo_ZoneInfoType) {
2436 return;
2437 }
2438
2439 StrongCacheNode *new_node = strong_cache_node_new(key, zone);
2440
2441 move_strong_cache_node_to_front(&ZONEINFO_STRONG_CACHE, new_node);
2442
2443 StrongCacheNode *node = new_node->next;
2444 for (size_t i = 1; i < ZONEINFO_STRONG_CACHE_MAX_SIZE; ++i) {
2445 if (node == NULL) {
2446 return;
2447 }
2448 node = node->next;
2449 }
2450
2451 // Everything beyond this point needs to be freed
2452 if (node != NULL) {
2453 if (node->prev != NULL) {
2454 node->prev->next = NULL;
2455 }
2456 strong_cache_free(node);
2457 }
2458 }
2459
2460 /* Clears all entries into a type's strong cache.
2461 *
2462 * Because the strong cache is not implemented for subclasses, this is a no-op
2463 * for everything except the base class.
2464 */
2465 void
clear_strong_cache(const PyTypeObject * const type)2466 clear_strong_cache(const PyTypeObject *const type)
2467 {
2468 if (type != &PyZoneInfo_ZoneInfoType) {
2469 return;
2470 }
2471
2472 strong_cache_free(ZONEINFO_STRONG_CACHE);
2473 ZONEINFO_STRONG_CACHE = NULL;
2474 }
2475
2476 static PyObject *
new_weak_cache(void)2477 new_weak_cache(void)
2478 {
2479 PyObject *weakref_module = PyImport_ImportModule("weakref");
2480 if (weakref_module == NULL) {
2481 return NULL;
2482 }
2483
2484 PyObject *weak_cache =
2485 PyObject_CallMethod(weakref_module, "WeakValueDictionary", "");
2486 Py_DECREF(weakref_module);
2487 return weak_cache;
2488 }
2489
2490 static int
initialize_caches(void)2491 initialize_caches(void)
2492 {
2493 // TODO: Move to a PyModule_GetState / PEP 573 based caching system.
2494 if (TIMEDELTA_CACHE == NULL) {
2495 TIMEDELTA_CACHE = PyDict_New();
2496 }
2497 else {
2498 Py_INCREF(TIMEDELTA_CACHE);
2499 }
2500
2501 if (TIMEDELTA_CACHE == NULL) {
2502 return -1;
2503 }
2504
2505 if (ZONEINFO_WEAK_CACHE == NULL) {
2506 ZONEINFO_WEAK_CACHE = new_weak_cache();
2507 }
2508 else {
2509 Py_INCREF(ZONEINFO_WEAK_CACHE);
2510 }
2511
2512 if (ZONEINFO_WEAK_CACHE == NULL) {
2513 return -1;
2514 }
2515
2516 return 0;
2517 }
2518
2519 static PyObject *
zoneinfo_init_subclass(PyTypeObject * cls,PyObject * args,PyObject ** kwargs)2520 zoneinfo_init_subclass(PyTypeObject *cls, PyObject *args, PyObject **kwargs)
2521 {
2522 PyObject *weak_cache = new_weak_cache();
2523 if (weak_cache == NULL) {
2524 return NULL;
2525 }
2526
2527 PyObject_SetAttrString((PyObject *)cls, "_weak_cache", weak_cache);
2528 Py_DECREF(weak_cache);
2529 Py_RETURN_NONE;
2530 }
2531
2532 /////
2533 // Specify the ZoneInfo type
2534 static PyMethodDef zoneinfo_methods[] = {
2535 {"clear_cache", (PyCFunction)(void (*)(void))zoneinfo_clear_cache,
2536 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
2537 PyDoc_STR("Clear the ZoneInfo cache.")},
2538 {"no_cache", (PyCFunction)(void (*)(void))zoneinfo_no_cache,
2539 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
2540 PyDoc_STR("Get a new instance of ZoneInfo, bypassing the cache.")},
2541 {"from_file", (PyCFunction)(void (*)(void))zoneinfo_from_file,
2542 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
2543 PyDoc_STR("Create a ZoneInfo file from a file object.")},
2544 {"utcoffset", (PyCFunction)zoneinfo_utcoffset, METH_O,
2545 PyDoc_STR("Retrieve a timedelta representing the UTC offset in a zone at "
2546 "the given datetime.")},
2547 {"dst", (PyCFunction)zoneinfo_dst, METH_O,
2548 PyDoc_STR("Retrieve a timedelta representing the amount of DST applied "
2549 "in a zone at the given datetime.")},
2550 {"tzname", (PyCFunction)zoneinfo_tzname, METH_O,
2551 PyDoc_STR("Retrieve a string containing the abbreviation for the time "
2552 "zone that applies in a zone at a given datetime.")},
2553 {"fromutc", (PyCFunction)zoneinfo_fromutc, METH_O,
2554 PyDoc_STR("Given a datetime with local time in UTC, retrieve an adjusted "
2555 "datetime in local time.")},
2556 {"__reduce__", (PyCFunction)zoneinfo_reduce, METH_NOARGS,
2557 PyDoc_STR("Function for serialization with the pickle protocol.")},
2558 {"_unpickle", (PyCFunction)zoneinfo__unpickle, METH_VARARGS | METH_CLASS,
2559 PyDoc_STR("Private method used in unpickling.")},
2560 {"__init_subclass__", (PyCFunction)(void (*)(void))zoneinfo_init_subclass,
2561 METH_VARARGS | METH_KEYWORDS | METH_CLASS,
2562 PyDoc_STR("Function to initialize subclasses.")},
2563 {NULL} /* Sentinel */
2564 };
2565
2566 static PyMemberDef zoneinfo_members[] = {
2567 {.name = "key",
2568 .offset = offsetof(PyZoneInfo_ZoneInfo, key),
2569 .type = T_OBJECT_EX,
2570 .flags = READONLY,
2571 .doc = NULL},
2572 {NULL}, /* Sentinel */
2573 };
2574
2575 static PyTypeObject PyZoneInfo_ZoneInfoType = {
2576 PyVarObject_HEAD_INIT(NULL, 0) //
2577 .tp_name = "zoneinfo.ZoneInfo",
2578 .tp_basicsize = sizeof(PyZoneInfo_ZoneInfo),
2579 .tp_weaklistoffset = offsetof(PyZoneInfo_ZoneInfo, weakreflist),
2580 .tp_repr = (reprfunc)zoneinfo_repr,
2581 .tp_str = (reprfunc)zoneinfo_str,
2582 .tp_getattro = PyObject_GenericGetAttr,
2583 .tp_flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE),
2584 /* .tp_doc = zoneinfo_doc, */
2585 .tp_methods = zoneinfo_methods,
2586 .tp_members = zoneinfo_members,
2587 .tp_new = zoneinfo_new,
2588 .tp_dealloc = zoneinfo_dealloc,
2589 };
2590
2591 /////
2592 // Specify the _zoneinfo module
2593 static PyMethodDef module_methods[] = {{NULL, NULL}};
2594 static void
module_free()2595 module_free()
2596 {
2597 Py_XDECREF(_tzpath_find_tzfile);
2598 _tzpath_find_tzfile = NULL;
2599
2600 Py_XDECREF(_common_mod);
2601 _common_mod = NULL;
2602
2603 Py_XDECREF(io_open);
2604 io_open = NULL;
2605
2606 xdecref_ttinfo(&NO_TTINFO);
2607
2608 if (TIMEDELTA_CACHE != NULL && Py_REFCNT(TIMEDELTA_CACHE) > 1) {
2609 Py_DECREF(TIMEDELTA_CACHE);
2610 } else {
2611 Py_CLEAR(TIMEDELTA_CACHE);
2612 }
2613
2614 if (ZONEINFO_WEAK_CACHE != NULL && Py_REFCNT(ZONEINFO_WEAK_CACHE) > 1) {
2615 Py_DECREF(ZONEINFO_WEAK_CACHE);
2616 } else {
2617 Py_CLEAR(ZONEINFO_WEAK_CACHE);
2618 }
2619
2620 clear_strong_cache(&PyZoneInfo_ZoneInfoType);
2621 }
2622
2623 static int
zoneinfomodule_exec(PyObject * m)2624 zoneinfomodule_exec(PyObject *m)
2625 {
2626 PyDateTime_IMPORT;
2627 PyZoneInfo_ZoneInfoType.tp_base = PyDateTimeAPI->TZInfoType;
2628 if (PyType_Ready(&PyZoneInfo_ZoneInfoType) < 0) {
2629 goto error;
2630 }
2631
2632 Py_INCREF(&PyZoneInfo_ZoneInfoType);
2633 PyModule_AddObject(m, "ZoneInfo", (PyObject *)&PyZoneInfo_ZoneInfoType);
2634
2635 /* Populate imports */
2636 PyObject *_tzpath_module = PyImport_ImportModule("zoneinfo._tzpath");
2637 if (_tzpath_module == NULL) {
2638 goto error;
2639 }
2640
2641 _tzpath_find_tzfile =
2642 PyObject_GetAttrString(_tzpath_module, "find_tzfile");
2643 Py_DECREF(_tzpath_module);
2644 if (_tzpath_find_tzfile == NULL) {
2645 goto error;
2646 }
2647
2648 PyObject *io_module = PyImport_ImportModule("io");
2649 if (io_module == NULL) {
2650 goto error;
2651 }
2652
2653 io_open = PyObject_GetAttrString(io_module, "open");
2654 Py_DECREF(io_module);
2655 if (io_open == NULL) {
2656 goto error;
2657 }
2658
2659 _common_mod = PyImport_ImportModule("zoneinfo._common");
2660 if (_common_mod == NULL) {
2661 goto error;
2662 }
2663
2664 if (NO_TTINFO.utcoff == NULL) {
2665 NO_TTINFO.utcoff = Py_None;
2666 NO_TTINFO.dstoff = Py_None;
2667 NO_TTINFO.tzname = Py_None;
2668
2669 for (size_t i = 0; i < 3; ++i) {
2670 Py_INCREF(Py_None);
2671 }
2672 }
2673
2674 if (initialize_caches()) {
2675 goto error;
2676 }
2677
2678 return 0;
2679
2680 error:
2681 return -1;
2682 }
2683
2684 static PyModuleDef_Slot zoneinfomodule_slots[] = {
2685 {Py_mod_exec, zoneinfomodule_exec}, {0, NULL}};
2686
2687 static struct PyModuleDef zoneinfomodule = {
2688 PyModuleDef_HEAD_INIT,
2689 .m_name = "_zoneinfo",
2690 .m_doc = "C implementation of the zoneinfo module",
2691 .m_size = 0,
2692 .m_methods = module_methods,
2693 .m_slots = zoneinfomodule_slots,
2694 .m_free = (freefunc)module_free};
2695
2696 PyMODINIT_FUNC
PyInit__zoneinfo(void)2697 PyInit__zoneinfo(void)
2698 {
2699 return PyModuleDef_Init(&zoneinfomodule);
2700 }
2701