• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 use super::log1pf;
2 
3 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
4 /// Inverse hyperbolic tangent (f32)
5 ///
6 /// Calculates the inverse hyperbolic tangent of `x`.
7 /// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`.
atanhf(mut x: f32) -> f328 pub fn atanhf(mut x: f32) -> f32 {
9     let mut u = x.to_bits();
10     let sign = (u >> 31) != 0;
11 
12     /* |x| */
13     u &= 0x7fffffff;
14     x = f32::from_bits(u);
15 
16     if u < 0x3f800000 - (1 << 23) {
17         if u < 0x3f800000 - (32 << 23) {
18             /* handle underflow */
19             if u < (1 << 23) {
20                 force_eval!((x * x) as f32);
21             }
22         } else {
23             /* |x| < 0.5, up to 1.7ulp error */
24             x = 0.5 * log1pf(2.0 * x + 2.0 * x * x / (1.0 - x));
25         }
26     } else {
27         /* avoid overflow */
28         x = 0.5 * log1pf(2.0 * (x / (1.0 - x)));
29     }
30 
31     if sign {
32         -x
33     } else {
34         x
35     }
36 }
37