• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_cbrt.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  *
12  * Optimized by Bruce D. Evans.
13  */
14 /* cbrt(x)
15  * Return cube root of x
16  */
17 
18 use core::f64;
19 
20 const B1: u32 = 715094163; /* B1 = (1023-1023/3-0.03306235651)*2**20 */
21 const B2: u32 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
22 
23 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
24 const P0: f64 = 1.87595182427177009643; /* 0x3ffe03e6, 0x0f61e692 */
25 const P1: f64 = -1.88497979543377169875; /* 0xbffe28e0, 0x92f02420 */
26 const P2: f64 = 1.621429720105354466140; /* 0x3ff9f160, 0x4a49d6c2 */
27 const P3: f64 = -0.758397934778766047437; /* 0xbfe844cb, 0xbee751d9 */
28 const P4: f64 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
29 
30 // Cube root (f64)
31 ///
32 /// Computes the cube root of the argument.
33 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
cbrt(x: f64) -> f6434 pub fn cbrt(x: f64) -> f64 {
35     let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
36 
37     let mut ui: u64 = x.to_bits();
38     let mut r: f64;
39     let s: f64;
40     let mut t: f64;
41     let w: f64;
42     let mut hx: u32 = (ui >> 32) as u32 & 0x7fffffff;
43 
44     if hx >= 0x7ff00000 {
45         /* cbrt(NaN,INF) is itself */
46         return x + x;
47     }
48 
49     /*
50      * Rough cbrt to 5 bits:
51      *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
52      * where e is integral and >= 0, m is real and in [0, 1), and "/" and
53      * "%" are integer division and modulus with rounding towards minus
54      * infinity.  The RHS is always >= the LHS and has a maximum relative
55      * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
56      * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
57      * floating point representation, for finite positive normal values,
58      * ordinary integer divison of the value in bits magically gives
59      * almost exactly the RHS of the above provided we first subtract the
60      * exponent bias (1023 for doubles) and later add it back.  We do the
61      * subtraction virtually to keep e >= 0 so that ordinary integer
62      * division rounds towards minus infinity; this is also efficient.
63      */
64     if hx < 0x00100000 {
65         /* zero or subnormal? */
66         ui = (x * x1p54).to_bits();
67         hx = (ui >> 32) as u32 & 0x7fffffff;
68         if hx == 0 {
69             return x; /* cbrt(0) is itself */
70         }
71         hx = hx / 3 + B2;
72     } else {
73         hx = hx / 3 + B1;
74     }
75     ui &= 1 << 63;
76     ui |= (hx as u64) << 32;
77     t = f64::from_bits(ui);
78 
79     /*
80      * New cbrt to 23 bits:
81      *    cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
82      * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
83      * to within 2**-23.5 when |r - 1| < 1/10.  The rough approximation
84      * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
85      * gives us bounds for r = t**3/x.
86      *
87      * Try to optimize for parallel evaluation as in __tanf.c.
88      */
89     r = (t * t) * (t / x);
90     t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
91 
92     /*
93      * Round t away from zero to 23 bits (sloppily except for ensuring that
94      * the result is larger in magnitude than cbrt(x) but not much more than
95      * 2 23-bit ulps larger).  With rounding towards zero, the error bound
96      * would be ~5/6 instead of ~4/6.  With a maximum error of 2 23-bit ulps
97      * in the rounded t, the infinite-precision error in the Newton
98      * approximation barely affects third digit in the final error
99      * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
100      * before the final error is larger than 0.667 ulps.
101      */
102     ui = t.to_bits();
103     ui = (ui + 0x80000000) & 0xffffffffc0000000;
104     t = f64::from_bits(ui);
105 
106     /* one step Newton iteration to 53 bits with error < 0.667 ulps */
107     s = t * t; /* t*t is exact */
108     r = x / s; /* error <= 0.5 ulps; |r| < |t| */
109     w = t + t; /* t+t is exact */
110     r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
111     t = t + t * r; /* error <= 0.5 + 0.5/3 + epsilon */
112     t
113 }
114