1 /* origin: FreeBSD /usr/src/lib/msun/src/e_j0f.c */
2 /*
3 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8 *
9 * Developed at SunPro, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
14 */
15
16 use super::{cosf, fabsf, logf, sinf, sqrtf};
17
18 const INVSQRTPI: f32 = 5.6418961287e-01; /* 0x3f106ebb */
19 const TPI: f32 = 6.3661974669e-01; /* 0x3f22f983 */
20
common(ix: u32, x: f32, y0: bool) -> f3221 fn common(ix: u32, x: f32, y0: bool) -> f32 {
22 let z: f32;
23 let s: f32;
24 let mut c: f32;
25 let mut ss: f32;
26 let mut cc: f32;
27 /*
28 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
29 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
30 */
31 s = sinf(x);
32 c = cosf(x);
33 if y0 {
34 c = -c;
35 }
36 cc = s + c;
37 if ix < 0x7f000000 {
38 ss = s - c;
39 z = -cosf(2.0 * x);
40 if s * c < 0.0 {
41 cc = z / ss;
42 } else {
43 ss = z / cc;
44 }
45 if ix < 0x58800000 {
46 if y0 {
47 ss = -ss;
48 }
49 cc = pzerof(x) * cc - qzerof(x) * ss;
50 }
51 }
52 return INVSQRTPI * cc / sqrtf(x);
53 }
54
55 /* R0/S0 on [0, 2.00] */
56 const R02: f32 = 1.5625000000e-02; /* 0x3c800000 */
57 const R03: f32 = -1.8997929874e-04; /* 0xb947352e */
58 const R04: f32 = 1.8295404516e-06; /* 0x35f58e88 */
59 const R05: f32 = -4.6183270541e-09; /* 0xb19eaf3c */
60 const S01: f32 = 1.5619102865e-02; /* 0x3c7fe744 */
61 const S02: f32 = 1.1692678527e-04; /* 0x38f53697 */
62 const S03: f32 = 5.1354652442e-07; /* 0x3509daa6 */
63 const S04: f32 = 1.1661400734e-09; /* 0x30a045e8 */
64
j0f(mut x: f32) -> f3265 pub fn j0f(mut x: f32) -> f32 {
66 let z: f32;
67 let r: f32;
68 let s: f32;
69 let mut ix: u32;
70
71 ix = x.to_bits();
72 ix &= 0x7fffffff;
73 if ix >= 0x7f800000 {
74 return 1.0 / (x * x);
75 }
76 x = fabsf(x);
77
78 if ix >= 0x40000000 {
79 /* |x| >= 2 */
80 /* large ulp error near zeros */
81 return common(ix, x, false);
82 }
83 if ix >= 0x3a000000 {
84 /* |x| >= 2**-11 */
85 /* up to 4ulp error near 2 */
86 z = x * x;
87 r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
88 s = 1.0 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
89 return (1.0 + x / 2.0) * (1.0 - x / 2.0) + z * (r / s);
90 }
91 if ix >= 0x21800000 {
92 /* |x| >= 2**-60 */
93 x = 0.25 * x * x;
94 }
95 return 1.0 - x;
96 }
97
98 const U00: f32 = -7.3804296553e-02; /* 0xbd9726b5 */
99 const U01: f32 = 1.7666645348e-01; /* 0x3e34e80d */
100 const U02: f32 = -1.3818567619e-02; /* 0xbc626746 */
101 const U03: f32 = 3.4745343146e-04; /* 0x39b62a69 */
102 const U04: f32 = -3.8140706238e-06; /* 0xb67ff53c */
103 const U05: f32 = 1.9559013964e-08; /* 0x32a802ba */
104 const U06: f32 = -3.9820518410e-11; /* 0xae2f21eb */
105 const V01: f32 = 1.2730483897e-02; /* 0x3c509385 */
106 const V02: f32 = 7.6006865129e-05; /* 0x389f65e0 */
107 const V03: f32 = 2.5915085189e-07; /* 0x348b216c */
108 const V04: f32 = 4.4111031494e-10; /* 0x2ff280c2 */
109
y0f(x: f32) -> f32110 pub fn y0f(x: f32) -> f32 {
111 let z: f32;
112 let u: f32;
113 let v: f32;
114 let ix: u32;
115
116 ix = x.to_bits();
117 if (ix & 0x7fffffff) == 0 {
118 return -1.0 / 0.0;
119 }
120 if (ix >> 31) != 0 {
121 return 0.0 / 0.0;
122 }
123 if ix >= 0x7f800000 {
124 return 1.0 / x;
125 }
126 if ix >= 0x40000000 {
127 /* |x| >= 2.0 */
128 /* large ulp error near zeros */
129 return common(ix, x, true);
130 }
131 if ix >= 0x39000000 {
132 /* x >= 2**-13 */
133 /* large ulp error at x ~= 0.89 */
134 z = x * x;
135 u = U00 + z * (U01 + z * (U02 + z * (U03 + z * (U04 + z * (U05 + z * U06)))));
136 v = 1.0 + z * (V01 + z * (V02 + z * (V03 + z * V04)));
137 return u / v + TPI * (j0f(x) * logf(x));
138 }
139 return U00 + TPI * logf(x);
140 }
141
142 /* The asymptotic expansions of pzero is
143 * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
144 * For x >= 2, We approximate pzero by
145 * pzero(x) = 1 + (R/S)
146 * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
147 * S = 1 + pS0*s^2 + ... + pS4*s^10
148 * and
149 * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
150 */
151 const PR8: [f32; 6] = [
152 /* for x in [inf, 8]=1/[0,0.125] */
153 0.0000000000e+00, /* 0x00000000 */
154 -7.0312500000e-02, /* 0xbd900000 */
155 -8.0816707611e+00, /* 0xc1014e86 */
156 -2.5706311035e+02, /* 0xc3808814 */
157 -2.4852163086e+03, /* 0xc51b5376 */
158 -5.2530439453e+03, /* 0xc5a4285a */
159 ];
160 const PS8: [f32; 5] = [
161 1.1653436279e+02, /* 0x42e91198 */
162 3.8337448730e+03, /* 0x456f9beb */
163 4.0597855469e+04, /* 0x471e95db */
164 1.1675296875e+05, /* 0x47e4087c */
165 4.7627726562e+04, /* 0x473a0bba */
166 ];
167 const PR5: [f32; 6] = [
168 /* for x in [8,4.5454]=1/[0.125,0.22001] */
169 -1.1412546255e-11, /* 0xad48c58a */
170 -7.0312492549e-02, /* 0xbd8fffff */
171 -4.1596107483e+00, /* 0xc0851b88 */
172 -6.7674766541e+01, /* 0xc287597b */
173 -3.3123129272e+02, /* 0xc3a59d9b */
174 -3.4643338013e+02, /* 0xc3ad3779 */
175 ];
176 const PS5: [f32; 5] = [
177 6.0753936768e+01, /* 0x42730408 */
178 1.0512523193e+03, /* 0x44836813 */
179 5.9789707031e+03, /* 0x45bad7c4 */
180 9.6254453125e+03, /* 0x461665c8 */
181 2.4060581055e+03, /* 0x451660ee */
182 ];
183
184 const PR3: [f32; 6] = [
185 /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
186 -2.5470459075e-09, /* 0xb12f081b */
187 -7.0311963558e-02, /* 0xbd8fffb8 */
188 -2.4090321064e+00, /* 0xc01a2d95 */
189 -2.1965976715e+01, /* 0xc1afba52 */
190 -5.8079170227e+01, /* 0xc2685112 */
191 -3.1447946548e+01, /* 0xc1fb9565 */
192 ];
193 const PS3: [f32; 5] = [
194 3.5856033325e+01, /* 0x420f6c94 */
195 3.6151397705e+02, /* 0x43b4c1ca */
196 1.1936077881e+03, /* 0x44953373 */
197 1.1279968262e+03, /* 0x448cffe6 */
198 1.7358093262e+02, /* 0x432d94b8 */
199 ];
200
201 const PR2: [f32; 6] = [
202 /* for x in [2.8570,2]=1/[0.3499,0.5] */
203 -8.8753431271e-08, /* 0xb3be98b7 */
204 -7.0303097367e-02, /* 0xbd8ffb12 */
205 -1.4507384300e+00, /* 0xbfb9b1cc */
206 -7.6356959343e+00, /* 0xc0f4579f */
207 -1.1193166733e+01, /* 0xc1331736 */
208 -3.2336456776e+00, /* 0xc04ef40d */
209 ];
210 const PS2: [f32; 5] = [
211 2.2220300674e+01, /* 0x41b1c32d */
212 1.3620678711e+02, /* 0x430834f0 */
213 2.7047027588e+02, /* 0x43873c32 */
214 1.5387539673e+02, /* 0x4319e01a */
215 1.4657617569e+01, /* 0x416a859a */
216 ];
217
pzerof(x: f32) -> f32218 fn pzerof(x: f32) -> f32 {
219 let p: &[f32; 6];
220 let q: &[f32; 5];
221 let z: f32;
222 let r: f32;
223 let s: f32;
224 let mut ix: u32;
225
226 ix = x.to_bits();
227 ix &= 0x7fffffff;
228 if ix >= 0x41000000 {
229 p = &PR8;
230 q = &PS8;
231 } else if ix >= 0x409173eb {
232 p = &PR5;
233 q = &PS5;
234 } else if ix >= 0x4036d917 {
235 p = &PR3;
236 q = &PS3;
237 } else
238 /*ix >= 0x40000000*/
239 {
240 p = &PR2;
241 q = &PS2;
242 }
243 z = 1.0 / (x * x);
244 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
245 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
246 return 1.0 + r / s;
247 }
248
249 /* For x >= 8, the asymptotic expansions of qzero is
250 * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
251 * We approximate pzero by
252 * qzero(x) = s*(-1.25 + (R/S))
253 * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
254 * S = 1 + qS0*s^2 + ... + qS5*s^12
255 * and
256 * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
257 */
258 const QR8: [f32; 6] = [
259 /* for x in [inf, 8]=1/[0,0.125] */
260 0.0000000000e+00, /* 0x00000000 */
261 7.3242187500e-02, /* 0x3d960000 */
262 1.1768206596e+01, /* 0x413c4a93 */
263 5.5767340088e+02, /* 0x440b6b19 */
264 8.8591972656e+03, /* 0x460a6cca */
265 3.7014625000e+04, /* 0x471096a0 */
266 ];
267 const QS8: [f32; 6] = [
268 1.6377603149e+02, /* 0x4323c6aa */
269 8.0983447266e+03, /* 0x45fd12c2 */
270 1.4253829688e+05, /* 0x480b3293 */
271 8.0330925000e+05, /* 0x49441ed4 */
272 8.4050156250e+05, /* 0x494d3359 */
273 -3.4389928125e+05, /* 0xc8a7eb69 */
274 ];
275
276 const QR5: [f32; 6] = [
277 /* for x in [8,4.5454]=1/[0.125,0.22001] */
278 1.8408595828e-11, /* 0x2da1ec79 */
279 7.3242180049e-02, /* 0x3d95ffff */
280 5.8356351852e+00, /* 0x40babd86 */
281 1.3511157227e+02, /* 0x43071c90 */
282 1.0272437744e+03, /* 0x448067cd */
283 1.9899779053e+03, /* 0x44f8bf4b */
284 ];
285 const QS5: [f32; 6] = [
286 8.2776611328e+01, /* 0x42a58da0 */
287 2.0778142090e+03, /* 0x4501dd07 */
288 1.8847289062e+04, /* 0x46933e94 */
289 5.6751113281e+04, /* 0x475daf1d */
290 3.5976753906e+04, /* 0x470c88c1 */
291 -5.3543427734e+03, /* 0xc5a752be */
292 ];
293
294 const QR3: [f32; 6] = [
295 /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
296 4.3774099900e-09, /* 0x3196681b */
297 7.3241114616e-02, /* 0x3d95ff70 */
298 3.3442313671e+00, /* 0x405607e3 */
299 4.2621845245e+01, /* 0x422a7cc5 */
300 1.7080809021e+02, /* 0x432acedf */
301 1.6673394775e+02, /* 0x4326bbe4 */
302 ];
303 const QS3: [f32; 6] = [
304 4.8758872986e+01, /* 0x42430916 */
305 7.0968920898e+02, /* 0x44316c1c */
306 3.7041481934e+03, /* 0x4567825f */
307 6.4604252930e+03, /* 0x45c9e367 */
308 2.5163337402e+03, /* 0x451d4557 */
309 -1.4924745178e+02, /* 0xc3153f59 */
310 ];
311
312 const QR2: [f32; 6] = [
313 /* for x in [2.8570,2]=1/[0.3499,0.5] */
314 1.5044444979e-07, /* 0x342189db */
315 7.3223426938e-02, /* 0x3d95f62a */
316 1.9981917143e+00, /* 0x3fffc4bf */
317 1.4495602608e+01, /* 0x4167edfd */
318 3.1666231155e+01, /* 0x41fd5471 */
319 1.6252708435e+01, /* 0x4182058c */
320 ];
321 const QS2: [f32; 6] = [
322 3.0365585327e+01, /* 0x41f2ecb8 */
323 2.6934811401e+02, /* 0x4386ac8f */
324 8.4478375244e+02, /* 0x44533229 */
325 8.8293585205e+02, /* 0x445cbbe5 */
326 2.1266638184e+02, /* 0x4354aa98 */
327 -5.3109550476e+00, /* 0xc0a9f358 */
328 ];
329
qzerof(x: f32) -> f32330 fn qzerof(x: f32) -> f32 {
331 let p: &[f32; 6];
332 let q: &[f32; 6];
333 let s: f32;
334 let r: f32;
335 let z: f32;
336 let mut ix: u32;
337
338 ix = x.to_bits();
339 ix &= 0x7fffffff;
340 if ix >= 0x41000000 {
341 p = &QR8;
342 q = &QS8;
343 } else if ix >= 0x409173eb {
344 p = &QR5;
345 q = &QS5;
346 } else if ix >= 0x4036d917 {
347 p = &QR3;
348 q = &QS3;
349 } else
350 /*ix >= 0x40000000*/
351 {
352 p = &QR2;
353 q = &QS2;
354 }
355 z = 1.0 / (x * x);
356 r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
357 s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
358 return (-0.125 + r / s) / x;
359 }
360