1 // origin: FreeBSD /usr/src/lib/msun/src/k_tan.c */
2 //
3 // ====================================================
4 // Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
5 //
6 // Permission to use, copy, modify, and distribute this
7 // software is freely granted, provided that this notice
8 // is preserved.
9 // ====================================================
10
11 // kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
12 // Input x is assumed to be bounded by ~pi/4 in magnitude.
13 // Input y is the tail of x.
14 // Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
15 //
16 // Algorithm
17 // 1. Since tan(-x) = -tan(x), we need only to consider positive x.
18 // 2. Callers must return tan(-0) = -0 without calling here since our
19 // odd polynomial is not evaluated in a way that preserves -0.
20 // Callers may do the optimization tan(x) ~ x for tiny x.
21 // 3. tan(x) is approximated by a odd polynomial of degree 27 on
22 // [0,0.67434]
23 // 3 27
24 // tan(x) ~ x + T1*x + ... + T13*x
25 // where
26 //
27 // |tan(x) 2 4 26 | -59.2
28 // |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
29 // | x |
30 //
31 // Note: tan(x+y) = tan(x) + tan'(x)*y
32 // ~ tan(x) + (1+x*x)*y
33 // Therefore, for better accuracy in computing tan(x+y), let
34 // 3 2 2 2 2
35 // r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
36 // then
37 // 3 2
38 // tan(x+y) = x + (T1*x + (x *(r+y)+y))
39 //
40 // 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
41 // tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
42 // = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
43 static T: [f64; 13] = [
44 3.33333333333334091986e-01, /* 3FD55555, 55555563 */
45 1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
46 5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
47 2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
48 8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
49 3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
50 1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
51 5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
52 2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
53 7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
54 7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
55 -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
56 2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
57 ];
58 const PIO4: f64 = 7.85398163397448278999e-01; /* 3FE921FB, 54442D18 */
59 const PIO4_LO: f64 = 3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
60
61 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
k_tan(mut x: f64, mut y: f64, odd: i32) -> f6462 pub(crate) fn k_tan(mut x: f64, mut y: f64, odd: i32) -> f64 {
63 let hx = (f64::to_bits(x) >> 32) as u32;
64 let big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
65 if big {
66 let sign = hx >> 31;
67 if sign != 0 {
68 x = -x;
69 y = -y;
70 }
71 x = (PIO4 - x) + (PIO4_LO - y);
72 y = 0.0;
73 }
74 let z = x * x;
75 let w = z * z;
76 /*
77 * Break x^5*(T[1]+x^2*T[2]+...) into
78 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
79 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
80 */
81 let r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
82 let v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
83 let s = z * x;
84 let r = y + z * (s * (r + v) + y) + s * T[0];
85 let w = x + r;
86 if big {
87 let sign = hx >> 31;
88 let s = 1.0 - 2.0 * odd as f64;
89 let v = s - 2.0 * (x + (r - w * w / (w + s)));
90 return if sign != 0 { -v } else { v };
91 }
92 if odd == 0 {
93 return w;
94 }
95 /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
96 let w0 = zero_low_word(w);
97 let v = r - (w0 - x); /* w0+v = r+x */
98 let a = -1.0 / w;
99 let a0 = zero_low_word(a);
100 a0 + a * (1.0 + a0 * w0 + a0 * v)
101 }
102
zero_low_word(x: f64) -> f64103 fn zero_low_word(x: f64) -> f64 {
104 f64::from_bits(f64::to_bits(x) & 0xFFFF_FFFF_0000_0000)
105 }
106