• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_log.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* log(x)
13  * Return the logarithm of x
14  *
15  * Method :
16  *   1. Argument Reduction: find k and f such that
17  *                      x = 2^k * (1+f),
18  *         where  sqrt(2)/2 < 1+f < sqrt(2) .
19  *
20  *   2. Approximation of log(1+f).
21  *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
22  *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
23  *               = 2s + s*R
24  *      We use a special Remez algorithm on [0,0.1716] to generate
25  *      a polynomial of degree 14 to approximate R The maximum error
26  *      of this polynomial approximation is bounded by 2**-58.45. In
27  *      other words,
28  *                      2      4      6      8      10      12      14
29  *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
30  *      (the values of Lg1 to Lg7 are listed in the program)
31  *      and
32  *          |      2          14          |     -58.45
33  *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
34  *          |                             |
35  *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
36  *      In order to guarantee error in log below 1ulp, we compute log
37  *      by
38  *              log(1+f) = f - s*(f - R)        (if f is not too large)
39  *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
40  *
41  *      3. Finally,  log(x) = k*ln2 + log(1+f).
42  *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
43  *         Here ln2 is split into two floating point number:
44  *                      ln2_hi + ln2_lo,
45  *         where n*ln2_hi is always exact for |n| < 2000.
46  *
47  * Special cases:
48  *      log(x) is NaN with signal if x < 0 (including -INF) ;
49  *      log(+INF) is +INF; log(0) is -INF with signal;
50  *      log(NaN) is that NaN with no signal.
51  *
52  * Accuracy:
53  *      according to an error analysis, the error is always less than
54  *      1 ulp (unit in the last place).
55  *
56  * Constants:
57  * The hexadecimal values are the intended ones for the following
58  * constants. The decimal values may be used, provided that the
59  * compiler will convert from decimal to binary accurately enough
60  * to produce the hexadecimal values shown.
61  */
62 
63 const LN2_HI: f64 = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
64 const LN2_LO: f64 = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
65 const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
66 const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
67 const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
68 const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
69 const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
70 const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
71 const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
72 
73 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
log(mut x: f64) -> f6474 pub fn log(mut x: f64) -> f64 {
75     let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54
76 
77     let mut ui = x.to_bits();
78     let mut hx: u32 = (ui >> 32) as u32;
79     let mut k: i32 = 0;
80 
81     if (hx < 0x00100000) || ((hx >> 31) != 0) {
82         /* x < 2**-126  */
83         if ui << 1 == 0 {
84             return -1. / (x * x); /* log(+-0)=-inf */
85         }
86         if hx >> 31 != 0 {
87             return (x - x) / 0.0; /* log(-#) = NaN */
88         }
89         /* subnormal number, scale x up */
90         k -= 54;
91         x *= x1p54;
92         ui = x.to_bits();
93         hx = (ui >> 32) as u32;
94     } else if hx >= 0x7ff00000 {
95         return x;
96     } else if hx == 0x3ff00000 && ui << 32 == 0 {
97         return 0.;
98     }
99 
100     /* reduce x into [sqrt(2)/2, sqrt(2)] */
101     hx += 0x3ff00000 - 0x3fe6a09e;
102     k += ((hx >> 20) as i32) - 0x3ff;
103     hx = (hx & 0x000fffff) + 0x3fe6a09e;
104     ui = ((hx as u64) << 32) | (ui & 0xffffffff);
105     x = f64::from_bits(ui);
106 
107     let f: f64 = x - 1.0;
108     let hfsq: f64 = 0.5 * f * f;
109     let s: f64 = f / (2.0 + f);
110     let z: f64 = s * s;
111     let w: f64 = z * z;
112     let t1: f64 = w * (LG2 + w * (LG4 + w * LG6));
113     let t2: f64 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7)));
114     let r: f64 = t2 + t1;
115     let dk: f64 = k as f64;
116     s * (hfsq + r) + dk * LN2_LO - hfsq + f + dk * LN2_HI
117 }
118