• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkFloatingPoint_DEFINED
9 #define SkFloatingPoint_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkFloatBits.h"
13 #include "include/private/SkSafe_math.h"
14 #include <float.h>
15 #include <math.h>
16 #include <cmath>
17 #include <cstring>
18 #include <limits>
19 
20 
21 #if defined(SK_LEGACY_FLOAT_RSQRT)
22 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
23     #include <xmmintrin.h>
24 #elif defined(SK_ARM_HAS_NEON)
25     #include <arm_neon.h>
26 #endif
27 #endif
28 
29 // For _POSIX_VERSION
30 #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
31 #include <unistd.h>
32 #endif
33 
34 constexpr float SK_FloatSqrt2 = 1.41421356f;
35 constexpr float SK_FloatPI    = 3.14159265f;
36 constexpr double SK_DoublePI  = 3.14159265358979323846264338327950288;
37 
38 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
39 // However, on Linux including cmath undefines isfinite.
40 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
sk_float_pow(float base,float exp)41 static inline float sk_float_pow(float base, float exp) {
42     return powf(base, exp);
43 }
44 
45 #define sk_float_sqrt(x)        sqrtf(x)
46 #define sk_float_sin(x)         sinf(x)
47 #define sk_float_cos(x)         cosf(x)
48 #define sk_float_tan(x)         tanf(x)
49 #define sk_float_floor(x)       floorf(x)
50 #define sk_float_ceil(x)        ceilf(x)
51 #define sk_float_trunc(x)       truncf(x)
52 #ifdef SK_BUILD_FOR_MAC
53 #    define sk_float_acos(x)    static_cast<float>(acos(x))
54 #    define sk_float_asin(x)    static_cast<float>(asin(x))
55 #else
56 #    define sk_float_acos(x)    acosf(x)
57 #    define sk_float_asin(x)    asinf(x)
58 #endif
59 #define sk_float_atan2(y,x)     atan2f(y,x)
60 #define sk_float_abs(x)         fabsf(x)
61 #define sk_float_copysign(x, y) copysignf(x, y)
62 #define sk_float_mod(x,y)       fmodf(x,y)
63 #define sk_float_exp(x)         expf(x)
64 #define sk_float_log(x)         logf(x)
65 
sk_float_degrees_to_radians(float degrees)66 constexpr float sk_float_degrees_to_radians(float degrees) {
67     return degrees * (SK_FloatPI / 180);
68 }
69 
sk_float_radians_to_degrees(float radians)70 constexpr float sk_float_radians_to_degrees(float radians) {
71     return radians * (180 / SK_FloatPI);
72 }
73 
74 #define sk_float_round(x) sk_float_floor((x) + 0.5f)
75 
76 // can't find log2f on android, but maybe that just a tool bug?
77 #ifdef SK_BUILD_FOR_ANDROID
sk_float_log2(float x)78     static inline float sk_float_log2(float x) {
79         const double inv_ln_2 = 1.44269504088896;
80         return (float)(log(x) * inv_ln_2);
81     }
82 #else
83     #define sk_float_log2(x)        log2f(x)
84 #endif
85 
sk_float_isfinite(float x)86 static inline bool sk_float_isfinite(float x) {
87     return SkFloatBits_IsFinite(SkFloat2Bits(x));
88 }
89 
sk_floats_are_finite(float a,float b)90 static inline bool sk_floats_are_finite(float a, float b) {
91     return sk_float_isfinite(a) && sk_float_isfinite(b);
92 }
93 
sk_floats_are_finite(const float array[],int count)94 static inline bool sk_floats_are_finite(const float array[], int count) {
95     float prod = 0;
96     for (int i = 0; i < count; ++i) {
97         prod *= array[i];
98     }
99     // At this point, prod will either be NaN or 0
100     return prod == 0;   // if prod is NaN, this check will return false
101 }
102 
sk_float_isinf(float x)103 static inline bool sk_float_isinf(float x) {
104     return SkFloatBits_IsInf(SkFloat2Bits(x));
105 }
106 
sk_float_isnan(float x)107 static inline bool sk_float_isnan(float x) {
108     return !(x == x);
109 }
110 
111 #define sk_double_isnan(a)          sk_float_isnan(a)
112 
113 #define SK_MaxS32FitsInFloat    2147483520
114 #define SK_MinS32FitsInFloat    -SK_MaxS32FitsInFloat
115 
116 #define SK_MaxS64FitsInFloat    (SK_MaxS64 >> (63-24) << (63-24))   // 0x7fffff8000000000
117 #define SK_MinS64FitsInFloat    -SK_MaxS64FitsInFloat
118 
119 /**
120  *  Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
121  */
sk_float_saturate2int(float x)122 static inline int sk_float_saturate2int(float x) {
123     x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
124     x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
125     return (int)x;
126 }
127 
128 /**
129  *  Return the closest int for the given double. Returns SK_MaxS32 for NaN.
130  */
sk_double_saturate2int(double x)131 static inline int sk_double_saturate2int(double x) {
132     x = x < SK_MaxS32 ? x : SK_MaxS32;
133     x = x > SK_MinS32 ? x : SK_MinS32;
134     return (int)x;
135 }
136 
137 /**
138  *  Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
139  */
sk_float_saturate2int64(float x)140 static inline int64_t sk_float_saturate2int64(float x) {
141     x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
142     x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
143     return (int64_t)x;
144 }
145 
146 #define sk_float_floor2int(x)   sk_float_saturate2int(sk_float_floor(x))
147 #define sk_float_round2int(x)   sk_float_saturate2int(sk_float_floor((x) + 0.5f))
148 #define sk_float_ceil2int(x)    sk_float_saturate2int(sk_float_ceil(x))
149 
150 #define sk_float_floor2int_no_saturate(x)   (int)sk_float_floor(x)
151 #define sk_float_round2int_no_saturate(x)   (int)sk_float_floor((x) + 0.5f)
152 #define sk_float_ceil2int_no_saturate(x)    (int)sk_float_ceil(x)
153 
154 #define sk_double_floor(x)          floor(x)
155 #define sk_double_round(x)          floor((x) + 0.5)
156 #define sk_double_ceil(x)           ceil(x)
157 #define sk_double_floor2int(x)      (int)floor(x)
158 #define sk_double_round2int(x)      (int)floor((x) + 0.5)
159 #define sk_double_ceil2int(x)       (int)ceil(x)
160 
161 // Cast double to float, ignoring any warning about too-large finite values being cast to float.
162 // Clang thinks this is undefined, but it's actually implementation defined to return either
163 // the largest float or infinity (one of the two bracketing representable floats).  Good enough!
164 SK_ATTRIBUTE(no_sanitize("float-cast-overflow"))
sk_double_to_float(double x)165 static inline float sk_double_to_float(double x) {
166     return static_cast<float>(x);
167 }
168 
169 #define SK_FloatNaN                 std::numeric_limits<float>::quiet_NaN()
170 #define SK_FloatInfinity            (+std::numeric_limits<float>::infinity())
171 #define SK_FloatNegativeInfinity    (-std::numeric_limits<float>::infinity())
172 
173 #define SK_DoubleNaN                std::numeric_limits<double>::quiet_NaN()
174 
175 // Returns false if any of the floats are outside of [0...1]
176 // Returns true if count is 0
177 bool sk_floats_are_unit(const float array[], size_t count);
178 
179 #if defined(SK_LEGACY_FLOAT_RSQRT)
sk_float_rsqrt_portable(float x)180 static inline float sk_float_rsqrt_portable(float x) {
181     // Get initial estimate.
182     int i;
183     memcpy(&i, &x, 4);
184     i = 0x5F1FFFF9 - (i>>1);
185     float estimate;
186     memcpy(&estimate, &i, 4);
187 
188     // One step of Newton's method to refine.
189     const float estimate_sq = estimate*estimate;
190     estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
191     return estimate;
192 }
193 
194 // Fast, approximate inverse square root.
195 // Compare to name-brand "1.0f / sk_float_sqrt(x)".  Should be around 10x faster on SSE, 2x on NEON.
sk_float_rsqrt(float x)196 static inline float sk_float_rsqrt(float x) {
197 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
198 // it at compile time.  This is going to be too fast to productively hide behind a function pointer.
199 //
200 // We do one step of Newton's method to refine the estimates in the NEON and portable paths.  No
201 // refinement is faster, but very innacurate.  Two steps is more accurate, but slower than 1/sqrt.
202 //
203 // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
204 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
205     return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
206 #elif defined(SK_ARM_HAS_NEON)
207     // Get initial estimate.
208     const float32x2_t xx = vdup_n_f32(x);  // Clever readers will note we're doing everything 2x.
209     float32x2_t estimate = vrsqrte_f32(xx);
210 
211     // One step of Newton's method to refine.
212     const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
213     estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
214     return vget_lane_f32(estimate, 0);  // 1 will work fine too; the answer's in both places.
215 #else
216     return sk_float_rsqrt_portable(x);
217 #endif
218 }
219 #else
220 
sk_float_rsqrt_portable(float x)221 static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); }
sk_float_rsqrt(float x)222 static inline float sk_float_rsqrt         (float x) { return 1.0f / sk_float_sqrt(x); }
223 
224 #endif
225 
226 // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2.
227 // Returns 0 if value <= 0:
228 // Never returns a negative number, even if value is NaN.
229 //
230 //     sk_float_nextlog2((-inf..1]) -> 0
231 //     sk_float_nextlog2((1..2]) -> 1
232 //     sk_float_nextlog2((2..4]) -> 2
233 //     sk_float_nextlog2((4..8]) -> 3
234 //     ...
sk_float_nextlog2(float x)235 static inline int sk_float_nextlog2(float x) {
236     uint32_t bits = (uint32_t)SkFloat2Bits(x);
237     bits += (1u << 23) - 1u;  // Increment the exponent for non-powers-of-2.
238     int exp = ((int32_t)bits >> 23) - 127;
239     return exp & ~(exp >> 31);  // Return 0 for negative or denormalized floats, and exponents < 0.
240 }
241 
242 // This is the number of significant digits we can print in a string such that when we read that
243 // string back we get the floating point number we expect.  The minimum value C requires is 6, but
244 // most compilers support 9
245 #ifdef FLT_DECIMAL_DIG
246 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
247 #else
248 #define SK_FLT_DECIMAL_DIG 9
249 #endif
250 
251 // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
252 // so we have a helper that suppresses the possible undefined-behavior warnings.
253 
254 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_float_divide(float numer,float denom)255 static inline float sk_ieee_float_divide(float numer, float denom) {
256     return numer / denom;
257 }
258 
259 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_double_divide(double numer,double denom)260 static inline double sk_ieee_double_divide(double numer, double denom) {
261     return numer / denom;
262 }
263 
264 // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO.
sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n,float d)265 static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) {
266     return sk_ieee_float_divide(n,d);
267 }
sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n,double d)268 static inline float sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n, double d) {
269     return sk_ieee_double_divide(n,d);
270 }
271 
sk_fmaf(float f,float m,float a)272 static inline float sk_fmaf(float f, float m, float a) {
273 #if defined(FP_FAST_FMA)
274     return std::fmaf(f,m,a);
275 #else
276     return f*m+a;
277 #endif
278 }
279 
280 #endif
281