1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkMatrix.h"
9 #include "include/core/SkPoint3.h"
10 #include "include/private/SkNx.h"
11 #include "include/private/SkTPin.h"
12 #include "include/private/SkVx.h"
13 #include "src/core/SkGeometry.h"
14 #include "src/core/SkPointPriv.h"
15
16 #include <tuple>
17 #include <utility>
18
to_vector(const Sk2s & x)19 static SkVector to_vector(const Sk2s& x) {
20 SkVector vector;
21 x.store(&vector);
22 return vector;
23 }
24
25 ////////////////////////////////////////////////////////////////////////
26
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)27 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
28 SkScalar ab = a - b;
29 SkScalar bc = b - c;
30 if (ab < 0) {
31 bc = -bc;
32 }
33 return ab == 0 || bc < 0;
34 }
35
36 ////////////////////////////////////////////////////////////////////////
37
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)38 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
39 SkASSERT(ratio);
40
41 if (numer < 0) {
42 numer = -numer;
43 denom = -denom;
44 }
45
46 if (denom == 0 || numer == 0 || numer >= denom) {
47 return 0;
48 }
49
50 SkScalar r = numer / denom;
51 if (SkScalarIsNaN(r)) {
52 return 0;
53 }
54 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
55 if (r == 0) { // catch underflow if numer <<<< denom
56 return 0;
57 }
58 *ratio = r;
59 return 1;
60 }
61
62 // Just returns its argument, but makes it easy to set a break-point to know when
63 // SkFindUnitQuadRoots is going to return 0 (an error).
return_check_zero(int value)64 static int return_check_zero(int value) {
65 if (value == 0) {
66 return 0;
67 }
68 return value;
69 }
70
71 /** From Numerical Recipes in C.
72
73 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
74 x1 = Q / A
75 x2 = C / Q
76 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])77 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
78 SkASSERT(roots);
79
80 if (A == 0) {
81 return return_check_zero(valid_unit_divide(-C, B, roots));
82 }
83
84 SkScalar* r = roots;
85
86 // use doubles so we don't overflow temporarily trying to compute R
87 double dr = (double)B * B - 4 * (double)A * C;
88 if (dr < 0) {
89 return return_check_zero(0);
90 }
91 dr = sqrt(dr);
92 SkScalar R = SkDoubleToScalar(dr);
93 if (!SkScalarIsFinite(R)) {
94 return return_check_zero(0);
95 }
96
97 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
98 r += valid_unit_divide(Q, A, r);
99 r += valid_unit_divide(C, Q, r);
100 if (r - roots == 2) {
101 if (roots[0] > roots[1]) {
102 using std::swap;
103 swap(roots[0], roots[1]);
104 } else if (roots[0] == roots[1]) { // nearly-equal?
105 r -= 1; // skip the double root
106 }
107 }
108 return return_check_zero((int)(r - roots));
109 }
110
111 ///////////////////////////////////////////////////////////////////////////////
112 ///////////////////////////////////////////////////////////////////////////////
113
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)114 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
115 SkASSERT(src);
116 SkASSERT(t >= 0 && t <= SK_Scalar1);
117
118 if (pt) {
119 *pt = SkEvalQuadAt(src, t);
120 }
121 if (tangent) {
122 *tangent = SkEvalQuadTangentAt(src, t);
123 }
124 }
125
SkEvalQuadAt(const SkPoint src[3],SkScalar t)126 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
127 return to_point(SkQuadCoeff(src).eval(t));
128 }
129
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)130 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
131 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
132 // zero tangent vector when t is 0 or 1, and the control point is equal
133 // to the end point. In this case, use the quad end points to compute the tangent.
134 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
135 return src[2] - src[0];
136 }
137 SkASSERT(src);
138 SkASSERT(t >= 0 && t <= SK_Scalar1);
139
140 Sk2s P0 = from_point(src[0]);
141 Sk2s P1 = from_point(src[1]);
142 Sk2s P2 = from_point(src[2]);
143
144 Sk2s B = P1 - P0;
145 Sk2s A = P2 - P1 - B;
146 Sk2s T = A * Sk2s(t) + B;
147
148 return to_vector(T + T);
149 }
150
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)151 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
152 return v0 + (v1 - v0) * t;
153 }
154
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)155 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
156 SkASSERT(t > 0 && t < SK_Scalar1);
157
158 Sk2s p0 = from_point(src[0]);
159 Sk2s p1 = from_point(src[1]);
160 Sk2s p2 = from_point(src[2]);
161 Sk2s tt(t);
162
163 Sk2s p01 = interp(p0, p1, tt);
164 Sk2s p12 = interp(p1, p2, tt);
165
166 dst[0] = to_point(p0);
167 dst[1] = to_point(p01);
168 dst[2] = to_point(interp(p01, p12, tt));
169 dst[3] = to_point(p12);
170 dst[4] = to_point(p2);
171 }
172
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])173 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
174 SkChopQuadAt(src, dst, 0.5f);
175 }
176
SkMeasureAngleBetweenVectors(SkVector a,SkVector b)177 float SkMeasureAngleBetweenVectors(SkVector a, SkVector b) {
178 float cosTheta = sk_ieee_float_divide(a.dot(b), sqrtf(a.dot(a) * b.dot(b)));
179 // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
180 cosTheta = std::max(std::min(1.f, cosTheta), -1.f);
181 return acosf(cosTheta);
182 }
183
SkFindBisector(SkVector a,SkVector b)184 SkVector SkFindBisector(SkVector a, SkVector b) {
185 std::array<SkVector, 2> v;
186 if (a.dot(b) >= 0) {
187 // a,b are within +/-90 degrees apart.
188 v = {a, b};
189 } else if (a.cross(b) >= 0) {
190 // a,b are >90 degrees apart. Find the bisector of their interior normals instead. (Above 90
191 // degrees, the original vectors start cancelling each other out which eventually becomes
192 // unstable.)
193 v[0].set(-a.fY, +a.fX);
194 v[1].set(+b.fY, -b.fX);
195 } else {
196 // a,b are <-90 degrees apart. Find the bisector of their interior normals instead. (Below
197 // -90 degrees, the original vectors start cancelling each other out which eventually
198 // becomes unstable.)
199 v[0].set(+a.fY, -a.fX);
200 v[1].set(-b.fY, +b.fX);
201 }
202 // Return "normalize(v[0]) + normalize(v[1])".
203 Sk2f x0_x1, y0_y1;
204 Sk2f::Load2(v.data(), &x0_x1, &y0_y1);
205 Sk2f invLengths = 1.0f / (x0_x1 * x0_x1 + y0_y1 * y0_y1).sqrt();
206 x0_x1 *= invLengths;
207 y0_y1 *= invLengths;
208 return SkPoint{x0_x1[0] + x0_x1[1], y0_y1[0] + y0_y1[1]};
209 }
210
SkFindQuadMidTangent(const SkPoint src[3])211 float SkFindQuadMidTangent(const SkPoint src[3]) {
212 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
213 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
214 //
215 // n dot midtangent = 0
216 //
217 SkVector tan0 = src[1] - src[0];
218 SkVector tan1 = src[2] - src[1];
219 SkVector bisector = SkFindBisector(tan0, -tan1);
220
221 // The midtangent can be found where (F' dot bisector) = 0:
222 //
223 // 0 = (F'(T) dot bisector) = |2*T 1| * |p0 - 2*p1 + p2| * |bisector.x|
224 // |-2*p0 + 2*p1 | |bisector.y|
225 //
226 // = |2*T 1| * |tan1 - tan0| * |nx|
227 // |2*tan0 | |ny|
228 //
229 // = 2*T * ((tan1 - tan0) dot bisector) + (2*tan0 dot bisector)
230 //
231 // T = (tan0 dot bisector) / ((tan0 - tan1) dot bisector)
232 float T = sk_ieee_float_divide(tan0.dot(bisector), (tan0 - tan1).dot(bisector));
233 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=nan will take this branch.
234 T = .5; // The quadratic was a line or near-line. Just chop at .5.
235 }
236
237 return T;
238 }
239
240 /** Quad'(t) = At + B, where
241 A = 2(a - 2b + c)
242 B = 2(b - a)
243 Solve for t, only if it fits between 0 < t < 1
244 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])245 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
246 /* At + B == 0
247 t = -B / A
248 */
249 return valid_unit_divide(a - b, a - b - b + c, tValue);
250 }
251
flatten_double_quad_extrema(SkScalar coords[14])252 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
253 coords[2] = coords[6] = coords[4];
254 }
255
256 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
257 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
258 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])259 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
260 SkASSERT(src);
261 SkASSERT(dst);
262
263 SkScalar a = src[0].fY;
264 SkScalar b = src[1].fY;
265 SkScalar c = src[2].fY;
266
267 if (is_not_monotonic(a, b, c)) {
268 SkScalar tValue;
269 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
270 SkChopQuadAt(src, dst, tValue);
271 flatten_double_quad_extrema(&dst[0].fY);
272 return 1;
273 }
274 // if we get here, we need to force dst to be monotonic, even though
275 // we couldn't compute a unit_divide value (probably underflow).
276 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
277 }
278 dst[0].set(src[0].fX, a);
279 dst[1].set(src[1].fX, b);
280 dst[2].set(src[2].fX, c);
281 return 0;
282 }
283
284 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
285 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
286 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])287 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
288 SkASSERT(src);
289 SkASSERT(dst);
290
291 SkScalar a = src[0].fX;
292 SkScalar b = src[1].fX;
293 SkScalar c = src[2].fX;
294
295 if (is_not_monotonic(a, b, c)) {
296 SkScalar tValue;
297 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
298 SkChopQuadAt(src, dst, tValue);
299 flatten_double_quad_extrema(&dst[0].fX);
300 return 1;
301 }
302 // if we get here, we need to force dst to be monotonic, even though
303 // we couldn't compute a unit_divide value (probably underflow).
304 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
305 }
306 dst[0].set(a, src[0].fY);
307 dst[1].set(b, src[1].fY);
308 dst[2].set(c, src[2].fY);
309 return 0;
310 }
311
312 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
313 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
314 // F''(t) = 2 (a - 2b + c)
315 //
316 // A = 2 (b - a)
317 // B = 2 (a - 2b + c)
318 //
319 // Maximum curvature for a quadratic means solving
320 // Fx' Fx'' + Fy' Fy'' = 0
321 //
322 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
323 //
SkFindQuadMaxCurvature(const SkPoint src[3])324 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
325 SkScalar Ax = src[1].fX - src[0].fX;
326 SkScalar Ay = src[1].fY - src[0].fY;
327 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
328 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
329
330 SkScalar numer = -(Ax * Bx + Ay * By);
331 SkScalar denom = Bx * Bx + By * By;
332 if (denom < 0) {
333 numer = -numer;
334 denom = -denom;
335 }
336 if (numer <= 0) {
337 return 0;
338 }
339 if (numer >= denom) { // Also catches denom=0.
340 return 1;
341 }
342 SkScalar t = numer / denom;
343 SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t));
344 return t;
345 }
346
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])347 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
348 SkScalar t = SkFindQuadMaxCurvature(src);
349 if (t > 0 && t < 1) {
350 SkChopQuadAt(src, dst, t);
351 return 2;
352 } else {
353 memcpy(dst, src, 3 * sizeof(SkPoint));
354 return 1;
355 }
356 }
357
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])358 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
359 Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
360 Sk2s s0 = from_point(src[0]);
361 Sk2s s1 = from_point(src[1]);
362 Sk2s s2 = from_point(src[2]);
363
364 dst[0] = to_point(s0);
365 dst[1] = to_point(s0 + (s1 - s0) * scale);
366 dst[2] = to_point(s2 + (s1 - s2) * scale);
367 dst[3] = to_point(s2);
368 }
369
370 //////////////////////////////////////////////////////////////////////////////
371 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
372 //////////////////////////////////////////////////////////////////////////////
373
eval_cubic_derivative(const SkPoint src[4],SkScalar t)374 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
375 SkQuadCoeff coeff;
376 Sk2s P0 = from_point(src[0]);
377 Sk2s P1 = from_point(src[1]);
378 Sk2s P2 = from_point(src[2]);
379 Sk2s P3 = from_point(src[3]);
380
381 coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
382 coeff.fB = times_2(P2 - times_2(P1) + P0);
383 coeff.fC = P1 - P0;
384 return to_vector(coeff.eval(t));
385 }
386
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)387 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
388 Sk2s P0 = from_point(src[0]);
389 Sk2s P1 = from_point(src[1]);
390 Sk2s P2 = from_point(src[2]);
391 Sk2s P3 = from_point(src[3]);
392 Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
393 Sk2s B = P2 - times_2(P1) + P0;
394
395 return to_vector(A * Sk2s(t) + B);
396 }
397
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)398 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
399 SkVector* tangent, SkVector* curvature) {
400 SkASSERT(src);
401 SkASSERT(t >= 0 && t <= SK_Scalar1);
402
403 if (loc) {
404 *loc = to_point(SkCubicCoeff(src).eval(t));
405 }
406 if (tangent) {
407 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
408 // adjacent control point is equal to the end point. In this case, use the
409 // next control point or the end points to compute the tangent.
410 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
411 if (t == 0) {
412 *tangent = src[2] - src[0];
413 } else {
414 *tangent = src[3] - src[1];
415 }
416 if (!tangent->fX && !tangent->fY) {
417 *tangent = src[3] - src[0];
418 }
419 } else {
420 *tangent = eval_cubic_derivative(src, t);
421 }
422 }
423 if (curvature) {
424 *curvature = eval_cubic_2ndDerivative(src, t);
425 }
426 }
427
428 /** Cubic'(t) = At^2 + Bt + C, where
429 A = 3(-a + 3(b - c) + d)
430 B = 6(a - 2b + c)
431 C = 3(b - a)
432 Solve for t, keeping only those that fit betwee 0 < t < 1
433 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])434 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
435 SkScalar tValues[2]) {
436 // we divide A,B,C by 3 to simplify
437 SkScalar A = d - a + 3*(b - c);
438 SkScalar B = 2*(a - b - b + c);
439 SkScalar C = b - a;
440
441 return SkFindUnitQuadRoots(A, B, C, tValues);
442 }
443
444 // This does not return b when t==1, but it otherwise seems to get better precision than
445 // "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
446 // The responsibility falls on the caller to check that t != 1 before calling.
447 template<int N, typename T>
unchecked_mix(const skvx::Vec<N,T> & a,const skvx::Vec<N,T> & b,const skvx::Vec<N,T> & t)448 inline static skvx::Vec<N,T> unchecked_mix(const skvx::Vec<N,T>& a, const skvx::Vec<N,T>& b,
449 const skvx::Vec<N,T>& t) {
450 return (b - a)*t + a;
451 }
452
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)453 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
454 using float2 = skvx::Vec<2,float>;
455 SkASSERT(0 <= t && t <= 1);
456
457 if (t == 1) {
458 memcpy(dst, src, sizeof(SkPoint) * 4);
459 dst[4] = dst[5] = dst[6] = src[3];
460 return;
461 }
462
463 float2 p0 = skvx::bit_pun<float2>(src[0]);
464 float2 p1 = skvx::bit_pun<float2>(src[1]);
465 float2 p2 = skvx::bit_pun<float2>(src[2]);
466 float2 p3 = skvx::bit_pun<float2>(src[3]);
467 float2 T = t;
468
469 float2 ab = unchecked_mix(p0, p1, T);
470 float2 bc = unchecked_mix(p1, p2, T);
471 float2 cd = unchecked_mix(p2, p3, T);
472 float2 abc = unchecked_mix(ab, bc, T);
473 float2 bcd = unchecked_mix(bc, cd, T);
474 float2 abcd = unchecked_mix(abc, bcd, T);
475
476 dst[0] = skvx::bit_pun<SkPoint>(p0);
477 dst[1] = skvx::bit_pun<SkPoint>(ab);
478 dst[2] = skvx::bit_pun<SkPoint>(abc);
479 dst[3] = skvx::bit_pun<SkPoint>(abcd);
480 dst[4] = skvx::bit_pun<SkPoint>(bcd);
481 dst[5] = skvx::bit_pun<SkPoint>(cd);
482 dst[6] = skvx::bit_pun<SkPoint>(p3);
483 }
484
SkChopCubicAt(const SkPoint src[4],SkPoint dst[10],float t0,float t1)485 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1) {
486 using float4 = skvx::Vec<4,float>;
487 using float2 = skvx::Vec<2,float>;
488 SkASSERT(0 <= t0 && t0 <= t1 && t1 <= 1);
489
490 if (t1 == 1) {
491 SkChopCubicAt(src, dst, t0);
492 dst[7] = dst[8] = dst[9] = src[3];
493 return;
494 }
495
496 // Perform both chops in parallel using 4-lane SIMD.
497 float4 p00, p11, p22, p33, T;
498 p00.lo = p00.hi = skvx::bit_pun<float2>(src[0]);
499 p11.lo = p11.hi = skvx::bit_pun<float2>(src[1]);
500 p22.lo = p22.hi = skvx::bit_pun<float2>(src[2]);
501 p33.lo = p33.hi = skvx::bit_pun<float2>(src[3]);
502 T.lo = t0;
503 T.hi = t1;
504
505 float4 ab = unchecked_mix(p00, p11, T);
506 float4 bc = unchecked_mix(p11, p22, T);
507 float4 cd = unchecked_mix(p22, p33, T);
508 float4 abc = unchecked_mix(ab, bc, T);
509 float4 bcd = unchecked_mix(bc, cd, T);
510 float4 abcd = unchecked_mix(abc, bcd, T);
511 float4 middle = unchecked_mix(abc, bcd, skvx::shuffle<2,3,0,1>(T));
512
513 dst[0] = skvx::bit_pun<SkPoint>(p00.lo);
514 dst[1] = skvx::bit_pun<SkPoint>(ab.lo);
515 dst[2] = skvx::bit_pun<SkPoint>(abc.lo);
516 dst[3] = skvx::bit_pun<SkPoint>(abcd.lo);
517 middle.store(dst + 4);
518 dst[6] = skvx::bit_pun<SkPoint>(abcd.hi);
519 dst[7] = skvx::bit_pun<SkPoint>(bcd.hi);
520 dst[8] = skvx::bit_pun<SkPoint>(cd.hi);
521 dst[9] = skvx::bit_pun<SkPoint>(p33.hi);
522 }
523
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int tCount)524 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
525 const SkScalar tValues[], int tCount) {
526 using float2 = skvx::Vec<2,float>;
527
528 #ifdef SK_DEBUG
529 float lastT = 0;
530 for (int i = 0; i < tCount; i++) {
531 SkASSERT(lastT <= tValues[i] && tValues[i] <= 1);
532 lastT = tValues[i];
533 }
534 #endif
535
536 if (dst) {
537 if (tCount == 0) { // nothing to chop
538 memcpy(dst, src, 4*sizeof(SkPoint));
539 } else {
540 int i = 0;
541 for (; i < tCount - 1; i += 2) {
542 // Do two chops at once.
543 float2 tt = float2::Load(tValues + i);
544 if (i != 0) {
545 float lastT = tValues[i - 1];
546 tt = skvx::pin((tt - lastT) / (1 - lastT), float2(0), float2(1));
547 }
548 SkChopCubicAt(src, dst, tt[0], tt[1]);
549 src = dst = dst + 6;
550 }
551 if (i < tCount) {
552 // Chop the final cubic if there was an odd number of chops.
553 SkASSERT(i + 1 == tCount);
554 float t = tValues[i];
555 if (i != 0) {
556 float lastT = tValues[i - 1];
557 t = SkTPin(sk_ieee_float_divide(t - lastT, 1 - lastT), 0.f, 1.f);
558 }
559 SkChopCubicAt(src, dst, t);
560 }
561 }
562 }
563 }
564
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])565 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
566 SkChopCubicAt(src, dst, 0.5f);
567 }
568
SkMeasureNonInflectCubicRotation(const SkPoint pts[4])569 float SkMeasureNonInflectCubicRotation(const SkPoint pts[4]) {
570 SkVector a = pts[1] - pts[0];
571 SkVector b = pts[2] - pts[1];
572 SkVector c = pts[3] - pts[2];
573 if (a.isZero()) {
574 return SkMeasureAngleBetweenVectors(b, c);
575 }
576 if (b.isZero()) {
577 return SkMeasureAngleBetweenVectors(a, c);
578 }
579 if (c.isZero()) {
580 return SkMeasureAngleBetweenVectors(a, b);
581 }
582 // Postulate: When no points are colocated and there are no inflection points in T=0..1, the
583 // rotation is: 360 degrees, minus the angle [p0,p1,p2], minus the angle [p1,p2,p3].
584 return 2*SK_ScalarPI - SkMeasureAngleBetweenVectors(a,-b) - SkMeasureAngleBetweenVectors(b,-c);
585 }
586
fma(const Sk4f & f,float m,const Sk4f & a)587 static Sk4f fma(const Sk4f& f, float m, const Sk4f& a) {
588 return SkNx_fma(f, Sk4f(m), a);
589 }
590
591 // Finds the root nearest 0.5. Returns 0.5 if the roots are undefined or outside 0..1.
solve_quadratic_equation_for_midtangent(float a,float b,float c,float discr)592 static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr) {
593 // Quadratic formula from Numerical Recipes in C:
594 float q = -.5f * (b + copysignf(sqrtf(discr), b));
595 // The roots are q/a and c/q. Pick the midtangent closer to T=.5.
596 float _5qa = -.5f*q*a;
597 float T = fabsf(q*q + _5qa) < fabsf(a*c + _5qa) ? sk_ieee_float_divide(q,a)
598 : sk_ieee_float_divide(c,q);
599 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
600 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at .5.
601 T = .5;
602 }
603 return T;
604 }
605
solve_quadratic_equation_for_midtangent(float a,float b,float c)606 static float solve_quadratic_equation_for_midtangent(float a, float b, float c) {
607 return solve_quadratic_equation_for_midtangent(a, b, c, b*b - 4*a*c);
608 }
609
SkFindCubicMidTangent(const SkPoint src[4])610 float SkFindCubicMidTangent(const SkPoint src[4]) {
611 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
612 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
613 //
614 // bisector dot midtangent == 0
615 //
616 SkVector tan0 = (src[0] == src[1]) ? src[2] - src[0] : src[1] - src[0];
617 SkVector tan1 = (src[2] == src[3]) ? src[3] - src[1] : src[3] - src[2];
618 SkVector bisector = SkFindBisector(tan0, -tan1);
619
620 // Find the T value at the midtangent. This is a simple quadratic equation:
621 //
622 // midtangent dot bisector == 0, or using a tangent matrix C' in power basis form:
623 //
624 // |C'x C'y|
625 // |T^2 T 1| * |. . | * |bisector.x| == 0
626 // |. . | |bisector.y|
627 //
628 // The coeffs for the quadratic equation we need to solve are therefore: C' * bisector
629 static const Sk4f kM[4] = {Sk4f(-1, 2, -1, 0),
630 Sk4f( 3, -4, 1, 0),
631 Sk4f(-3, 2, 0, 0)};
632 Sk4f C_x = fma(kM[0], src[0].fX,
633 fma(kM[1], src[1].fX,
634 fma(kM[2], src[2].fX, Sk4f(src[3].fX, 0,0,0))));
635 Sk4f C_y = fma(kM[0], src[0].fY,
636 fma(kM[1], src[1].fY,
637 fma(kM[2], src[2].fY, Sk4f(src[3].fY, 0,0,0))));
638 Sk4f coeffs = C_x * bisector.x() + C_y * bisector.y();
639
640 // Now solve the quadratic for T.
641 float T = 0;
642 float a=coeffs[0], b=coeffs[1], c=coeffs[2];
643 float discr = b*b - 4*a*c;
644 if (discr > 0) { // This will only be false if the curve is a line.
645 return solve_quadratic_equation_for_midtangent(a, b, c, discr);
646 } else {
647 // This is a 0- or 360-degree flat line. It doesn't have single points of midtangent.
648 // (tangent == midtangent at every point on the curve except the cusp points.)
649 // Chop in between both cusps instead, if any. There can be up to two cusps on a flat line,
650 // both where the tangent is perpendicular to the starting tangent:
651 //
652 // tangent dot tan0 == 0
653 //
654 coeffs = C_x * tan0.x() + C_y * tan0.y();
655 a = coeffs[0];
656 b = coeffs[1];
657 if (a != 0) {
658 // We want the point in between both cusps. The midpoint of:
659 //
660 // (-b +/- sqrt(b^2 - 4*a*c)) / (2*a)
661 //
662 // Is equal to:
663 //
664 // -b / (2*a)
665 T = -b / (2*a);
666 }
667 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
668 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at
669 // .5.
670 T = .5;
671 }
672 return T;
673 }
674 }
675
flatten_double_cubic_extrema(SkScalar coords[14])676 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
677 coords[4] = coords[8] = coords[6];
678 }
679
680 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
681 the resulting beziers are monotonic in Y. This is called by the scan
682 converter. Depending on what is returned, dst[] is treated as follows:
683 0 dst[0..3] is the original cubic
684 1 dst[0..3] and dst[3..6] are the two new cubics
685 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
686 If dst == null, it is ignored and only the count is returned.
687 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])688 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
689 SkScalar tValues[2];
690 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
691 src[3].fY, tValues);
692
693 SkChopCubicAt(src, dst, tValues, roots);
694 if (dst && roots > 0) {
695 // we do some cleanup to ensure our Y extrema are flat
696 flatten_double_cubic_extrema(&dst[0].fY);
697 if (roots == 2) {
698 flatten_double_cubic_extrema(&dst[3].fY);
699 }
700 }
701 return roots;
702 }
703
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])704 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
705 SkScalar tValues[2];
706 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
707 src[3].fX, tValues);
708
709 SkChopCubicAt(src, dst, tValues, roots);
710 if (dst && roots > 0) {
711 // we do some cleanup to ensure our Y extrema are flat
712 flatten_double_cubic_extrema(&dst[0].fX);
713 if (roots == 2) {
714 flatten_double_cubic_extrema(&dst[3].fX);
715 }
716 }
717 return roots;
718 }
719
720 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
721
722 Inflection means that curvature is zero.
723 Curvature is [F' x F''] / [F'^3]
724 So we solve F'x X F''y - F'y X F''y == 0
725 After some canceling of the cubic term, we get
726 A = b - a
727 B = c - 2b + a
728 C = d - 3c + 3b - a
729 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
730 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])731 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
732 SkScalar Ax = src[1].fX - src[0].fX;
733 SkScalar Ay = src[1].fY - src[0].fY;
734 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
735 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
736 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
737 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
738
739 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
740 Ax*Cy - Ay*Cx,
741 Ax*By - Ay*Bx,
742 tValues);
743 }
744
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])745 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
746 SkScalar tValues[2];
747 int count = SkFindCubicInflections(src, tValues);
748
749 if (dst) {
750 if (count == 0) {
751 memcpy(dst, src, 4 * sizeof(SkPoint));
752 } else {
753 SkChopCubicAt(src, dst, tValues, count);
754 }
755 }
756 return count + 1;
757 }
758
759 // Assumes the third component of points is 1.
760 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)761 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
762 const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
763 const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
764 const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
765 return (xComp + yComp + wComp);
766 }
767
768 // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed
769 // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2).
770 // Returns 2^1023 if abs(n) < 2^-1022 (including 0).
771 // Returns NaN if n is Inf or NaN.
previous_inverse_pow2(double n)772 inline static double previous_inverse_pow2(double n) {
773 uint64_t bits;
774 memcpy(&bits, &n, sizeof(double));
775 bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp
776 bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0
777 memcpy(&n, &bits, sizeof(double));
778 return n;
779 }
780
write_cubic_inflection_roots(double t0,double s0,double t1,double s1,double * t,double * s)781 inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1,
782 double* t, double* s) {
783 t[0] = t0;
784 s[0] = s0;
785
786 // This copysign/abs business orients the implicit function so positive values are always on the
787 // "left" side of the curve.
788 t[1] = -copysign(t1, t1 * s1);
789 s[1] = -fabs(s1);
790
791 // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
792 if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
793 using std::swap;
794 swap(t[0], t[1]);
795 swap(s[0], s[1]);
796 }
797 }
798
SkClassifyCubic(const SkPoint P[4],double t[2],double s[2],double d[4])799 SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) {
800 // Find the cubic's inflection function, I = [T^3 -3T^2 3T -1] dot D. (D0 will always be 0
801 // for integral cubics.)
802 //
803 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
804 // 4.2 Curve Categorization:
805 //
806 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
807 double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]);
808 double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]);
809 double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]);
810
811 double D3 = 3 * A3;
812 double D2 = D3 - A2;
813 double D1 = D2 - A2 + A1;
814
815 // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
816 // from overflow down the road while solving for roots and KLM functionals.
817 double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3));
818 double norm = previous_inverse_pow2(Dmax);
819 D1 *= norm;
820 D2 *= norm;
821 D3 *= norm;
822
823 if (d) {
824 d[3] = D3;
825 d[2] = D2;
826 d[1] = D1;
827 d[0] = 0;
828 }
829
830 // Now use the inflection function to classify the cubic.
831 //
832 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
833 // 4.4 Integral Cubics:
834 //
835 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
836 if (0 != D1) {
837 double discr = 3*D2*D2 - 4*D1*D3;
838 if (discr > 0) { // Serpentine.
839 if (t && s) {
840 double q = 3*D2 + copysign(sqrt(3*discr), D2);
841 write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s);
842 }
843 return SkCubicType::kSerpentine;
844 } else if (discr < 0) { // Loop.
845 if (t && s) {
846 double q = D2 + copysign(sqrt(-discr), D2);
847 write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s);
848 }
849 return SkCubicType::kLoop;
850 } else { // Cusp.
851 if (t && s) {
852 write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s);
853 }
854 return SkCubicType::kLocalCusp;
855 }
856 } else {
857 if (0 != D2) { // Cusp at T=infinity.
858 if (t && s) {
859 write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity.
860 }
861 return SkCubicType::kCuspAtInfinity;
862 } else { // Degenerate.
863 if (t && s) {
864 write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity.
865 }
866 return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint;
867 }
868 }
869 }
870
bubble_sort(T array[],int count)871 template <typename T> void bubble_sort(T array[], int count) {
872 for (int i = count - 1; i > 0; --i)
873 for (int j = i; j > 0; --j)
874 if (array[j] < array[j-1])
875 {
876 T tmp(array[j]);
877 array[j] = array[j-1];
878 array[j-1] = tmp;
879 }
880 }
881
882 /**
883 * Given an array and count, remove all pair-wise duplicates from the array,
884 * keeping the existing sorting, and return the new count
885 */
collaps_duplicates(SkScalar array[],int count)886 static int collaps_duplicates(SkScalar array[], int count) {
887 for (int n = count; n > 1; --n) {
888 if (array[0] == array[1]) {
889 for (int i = 1; i < n; ++i) {
890 array[i - 1] = array[i];
891 }
892 count -= 1;
893 } else {
894 array += 1;
895 }
896 }
897 return count;
898 }
899
900 #ifdef SK_DEBUG
901
902 #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array)
903
test_collaps_duplicates()904 static void test_collaps_duplicates() {
905 static bool gOnce;
906 if (gOnce) { return; }
907 gOnce = true;
908 const SkScalar src0[] = { 0 };
909 const SkScalar src1[] = { 0, 0 };
910 const SkScalar src2[] = { 0, 1 };
911 const SkScalar src3[] = { 0, 0, 0 };
912 const SkScalar src4[] = { 0, 0, 1 };
913 const SkScalar src5[] = { 0, 1, 1 };
914 const SkScalar src6[] = { 0, 1, 2 };
915 const struct {
916 const SkScalar* fData;
917 int fCount;
918 int fCollapsedCount;
919 } data[] = {
920 { TEST_COLLAPS_ENTRY(src0), 1 },
921 { TEST_COLLAPS_ENTRY(src1), 1 },
922 { TEST_COLLAPS_ENTRY(src2), 2 },
923 { TEST_COLLAPS_ENTRY(src3), 1 },
924 { TEST_COLLAPS_ENTRY(src4), 2 },
925 { TEST_COLLAPS_ENTRY(src5), 2 },
926 { TEST_COLLAPS_ENTRY(src6), 3 },
927 };
928 for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
929 SkScalar dst[3];
930 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
931 int count = collaps_duplicates(dst, data[i].fCount);
932 SkASSERT(data[i].fCollapsedCount == count);
933 for (int j = 1; j < count; ++j) {
934 SkASSERT(dst[j-1] < dst[j]);
935 }
936 }
937 }
938 #endif
939
SkScalarCubeRoot(SkScalar x)940 static SkScalar SkScalarCubeRoot(SkScalar x) {
941 return SkScalarPow(x, 0.3333333f);
942 }
943
944 /* Solve coeff(t) == 0, returning the number of roots that
945 lie withing 0 < t < 1.
946 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
947
948 Eliminates repeated roots (so that all tValues are distinct, and are always
949 in increasing order.
950 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])951 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
952 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
953 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
954 }
955
956 SkScalar a, b, c, Q, R;
957
958 {
959 SkASSERT(coeff[0] != 0);
960
961 SkScalar inva = SkScalarInvert(coeff[0]);
962 a = coeff[1] * inva;
963 b = coeff[2] * inva;
964 c = coeff[3] * inva;
965 }
966 Q = (a*a - b*3) / 9;
967 R = (2*a*a*a - 9*a*b + 27*c) / 54;
968
969 SkScalar Q3 = Q * Q * Q;
970 SkScalar R2MinusQ3 = R * R - Q3;
971 SkScalar adiv3 = a / 3;
972
973 if (R2MinusQ3 < 0) { // we have 3 real roots
974 // the divide/root can, due to finite precisions, be slightly outside of -1...1
975 SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f));
976 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
977
978 tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f);
979 tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
980 tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
981 SkDEBUGCODE(test_collaps_duplicates();)
982
983 // now sort the roots
984 bubble_sort(tValues, 3);
985 return collaps_duplicates(tValues, 3);
986 } else { // we have 1 real root
987 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
988 A = SkScalarCubeRoot(A);
989 if (R > 0) {
990 A = -A;
991 }
992 if (A != 0) {
993 A += Q / A;
994 }
995 tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f);
996 return 1;
997 }
998 }
999
1000 /* Looking for F' dot F'' == 0
1001
1002 A = b - a
1003 B = c - 2b + a
1004 C = d - 3c + 3b - a
1005
1006 F' = 3Ct^2 + 6Bt + 3A
1007 F'' = 6Ct + 6B
1008
1009 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1010 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])1011 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
1012 SkScalar a = src[2] - src[0];
1013 SkScalar b = src[4] - 2 * src[2] + src[0];
1014 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
1015
1016 coeff[0] = c * c;
1017 coeff[1] = 3 * b * c;
1018 coeff[2] = 2 * b * b + c * a;
1019 coeff[3] = a * b;
1020 }
1021
1022 /* Looking for F' dot F'' == 0
1023
1024 A = b - a
1025 B = c - 2b + a
1026 C = d - 3c + 3b - a
1027
1028 F' = 3Ct^2 + 6Bt + 3A
1029 F'' = 6Ct + 6B
1030
1031 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1032 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])1033 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
1034 SkScalar coeffX[4], coeffY[4];
1035 int i;
1036
1037 formulate_F1DotF2(&src[0].fX, coeffX);
1038 formulate_F1DotF2(&src[0].fY, coeffY);
1039
1040 for (i = 0; i < 4; i++) {
1041 coeffX[i] += coeffY[i];
1042 }
1043
1044 int numRoots = solve_cubic_poly(coeffX, tValues);
1045 // now remove extrema where the curvature is zero (mins)
1046 // !!!! need a test for this !!!!
1047 return numRoots;
1048 }
1049
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])1050 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
1051 SkScalar tValues[3]) {
1052 SkScalar t_storage[3];
1053
1054 if (tValues == nullptr) {
1055 tValues = t_storage;
1056 }
1057
1058 SkScalar roots[3];
1059 int rootCount = SkFindCubicMaxCurvature(src, roots);
1060
1061 // Throw out values not inside 0..1.
1062 int count = 0;
1063 for (int i = 0; i < rootCount; ++i) {
1064 if (0 < roots[i] && roots[i] < 1) {
1065 tValues[count++] = roots[i];
1066 }
1067 }
1068
1069 if (dst) {
1070 if (count == 0) {
1071 memcpy(dst, src, 4 * sizeof(SkPoint));
1072 } else {
1073 SkChopCubicAt(src, dst, tValues, count);
1074 }
1075 }
1076 return count + 1;
1077 }
1078
1079 // Returns a constant proportional to the dimensions of the cubic.
1080 // Constant found through experimentation -- maybe there's a better way....
calc_cubic_precision(const SkPoint src[4])1081 static SkScalar calc_cubic_precision(const SkPoint src[4]) {
1082 return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1])
1083 + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f;
1084 }
1085
1086 // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined
1087 // by the line segment src[lineIndex], src[lineIndex+1].
on_same_side(const SkPoint src[4],int testIndex,int lineIndex)1088 static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) {
1089 SkPoint origin = src[lineIndex];
1090 SkVector line = src[lineIndex + 1] - origin;
1091 SkScalar crosses[2];
1092 for (int index = 0; index < 2; ++index) {
1093 SkVector testLine = src[testIndex + index] - origin;
1094 crosses[index] = line.cross(testLine);
1095 }
1096 return crosses[0] * crosses[1] >= 0;
1097 }
1098
1099 // Return location (in t) of cubic cusp, if there is one.
1100 // Note that classify cubic code does not reliably return all cusp'd cubics, so
1101 // it is not called here.
SkFindCubicCusp(const SkPoint src[4])1102 SkScalar SkFindCubicCusp(const SkPoint src[4]) {
1103 // When the adjacent control point matches the end point, it behaves as if
1104 // the cubic has a cusp: there's a point of max curvature where the derivative
1105 // goes to zero. Ideally, this would be where t is zero or one, but math
1106 // error makes not so. It is not uncommon to create cubics this way; skip them.
1107 if (src[0] == src[1]) {
1108 return -1;
1109 }
1110 if (src[2] == src[3]) {
1111 return -1;
1112 }
1113 // Cubics only have a cusp if the line segments formed by the control and end points cross.
1114 // Detect crossing if line ends are on opposite sides of plane formed by the other line.
1115 if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) {
1116 return -1;
1117 }
1118 // Cubics may have multiple points of maximum curvature, although at most only
1119 // one is a cusp.
1120 SkScalar maxCurvature[3];
1121 int roots = SkFindCubicMaxCurvature(src, maxCurvature);
1122 for (int index = 0; index < roots; ++index) {
1123 SkScalar testT = maxCurvature[index];
1124 if (0 >= testT || testT >= 1) { // no need to consider max curvature on the end
1125 continue;
1126 }
1127 // A cusp is at the max curvature, and also has a derivative close to zero.
1128 // Choose the 'close to zero' meaning by comparing the derivative length
1129 // with the overall cubic size.
1130 SkVector dPt = eval_cubic_derivative(src, testT);
1131 SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt);
1132 SkScalar precision = calc_cubic_precision(src);
1133 if (dPtMagnitude < precision) {
1134 // All three max curvature t values may be close to the cusp;
1135 // return the first one.
1136 return testT;
1137 }
1138 }
1139 return -1;
1140 }
1141
1142 #include "src/pathops/SkPathOpsCubic.h"
1143
1144 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
1145
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)1146 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
1147 InterceptProc method) {
1148 SkDCubic cubic;
1149 double roots[3];
1150 int count = (cubic.set(src).*method)(intercept, roots);
1151 if (count > 0) {
1152 SkDCubicPair pair = cubic.chopAt(roots[0]);
1153 for (int i = 0; i < 7; ++i) {
1154 dst[i] = pair.pts[i].asSkPoint();
1155 }
1156 return true;
1157 }
1158 return false;
1159 }
1160
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])1161 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
1162 return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
1163 }
1164
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])1165 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
1166 return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
1167 }
1168
1169 ///////////////////////////////////////////////////////////////////////////////
1170 //
1171 // NURB representation for conics. Helpful explanations at:
1172 //
1173 // http://citeseerx.ist.psu.edu/viewdoc/
1174 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
1175 // and
1176 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1177 //
1178 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1179 // ------------------------------------------
1180 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1181 //
1182 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1183 // ------------------------------------------------
1184 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1185 //
1186
1187 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1188 //
1189 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1190 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1191 // t^0 : -2 P0 w + 2 P1 w
1192 //
1193 // We disregard magnitude, so we can freely ignore the denominator of F', and
1194 // divide the numerator by 2
1195 //
1196 // coeff[0] for t^2
1197 // coeff[1] for t^1
1198 // coeff[2] for t^0
1199 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])1200 static void conic_deriv_coeff(const SkScalar src[],
1201 SkScalar w,
1202 SkScalar coeff[3]) {
1203 const SkScalar P20 = src[4] - src[0];
1204 const SkScalar P10 = src[2] - src[0];
1205 const SkScalar wP10 = w * P10;
1206 coeff[0] = w * P20 - P20;
1207 coeff[1] = P20 - 2 * wP10;
1208 coeff[2] = wP10;
1209 }
1210
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)1211 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1212 SkScalar coeff[3];
1213 conic_deriv_coeff(src, w, coeff);
1214
1215 SkScalar tValues[2];
1216 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1217 SkASSERT(0 == roots || 1 == roots);
1218
1219 if (1 == roots) {
1220 *t = tValues[0];
1221 return true;
1222 }
1223 return false;
1224 }
1225
1226 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1227 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1228 SkScalar ab = SkScalarInterp(src[0], src[3], t);
1229 SkScalar bc = SkScalarInterp(src[3], src[6], t);
1230 dst[0] = ab;
1231 dst[3] = SkScalarInterp(ab, bc, t);
1232 dst[6] = bc;
1233 }
1234
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkPoint3 dst[3])1235 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1236 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1237 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1238 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1239 }
1240
project_down(const SkPoint3 & src)1241 static SkPoint project_down(const SkPoint3& src) {
1242 return {src.fX / src.fZ, src.fY / src.fZ};
1243 }
1244
1245 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1246 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1247 SkPoint3 tmp[3], tmp2[3];
1248
1249 ratquad_mapTo3D(fPts, fW, tmp);
1250
1251 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1252 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1253 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1254
1255 dst[0].fPts[0] = fPts[0];
1256 dst[0].fPts[1] = project_down(tmp2[0]);
1257 dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1258 dst[1].fPts[1] = project_down(tmp2[2]);
1259 dst[1].fPts[2] = fPts[2];
1260
1261 // to put in "standard form", where w0 and w2 are both 1, we compute the
1262 // new w1 as sqrt(w1*w1/w0*w2)
1263 // or
1264 // w1 /= sqrt(w0*w2)
1265 //
1266 // However, in our case, we know that for dst[0]:
1267 // w0 == 1, and for dst[1], w2 == 1
1268 //
1269 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1270 dst[0].fW = tmp2[0].fZ / root;
1271 dst[1].fW = tmp2[2].fZ / root;
1272 SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1273 SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1274 return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1275 }
1276
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1277 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1278 if (0 == t1 || 1 == t2) {
1279 if (0 == t1 && 1 == t2) {
1280 *dst = *this;
1281 return;
1282 } else {
1283 SkConic pair[2];
1284 if (this->chopAt(t1 ? t1 : t2, pair)) {
1285 *dst = pair[SkToBool(t1)];
1286 return;
1287 }
1288 }
1289 }
1290 SkConicCoeff coeff(*this);
1291 Sk2s tt1(t1);
1292 Sk2s aXY = coeff.fNumer.eval(tt1);
1293 Sk2s aZZ = coeff.fDenom.eval(tt1);
1294 Sk2s midTT((t1 + t2) / 2);
1295 Sk2s dXY = coeff.fNumer.eval(midTT);
1296 Sk2s dZZ = coeff.fDenom.eval(midTT);
1297 Sk2s tt2(t2);
1298 Sk2s cXY = coeff.fNumer.eval(tt2);
1299 Sk2s cZZ = coeff.fDenom.eval(tt2);
1300 Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1301 Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1302 dst->fPts[0] = to_point(aXY / aZZ);
1303 dst->fPts[1] = to_point(bXY / bZZ);
1304 dst->fPts[2] = to_point(cXY / cZZ);
1305 Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1306 dst->fW = ww[0];
1307 }
1308
evalAt(SkScalar t) const1309 SkPoint SkConic::evalAt(SkScalar t) const {
1310 return to_point(SkConicCoeff(*this).eval(t));
1311 }
1312
evalTangentAt(SkScalar t) const1313 SkVector SkConic::evalTangentAt(SkScalar t) const {
1314 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1315 // and the control point is equal to the end point.
1316 // In this case, use the conic endpoints to compute the tangent.
1317 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1318 return fPts[2] - fPts[0];
1319 }
1320 Sk2s p0 = from_point(fPts[0]);
1321 Sk2s p1 = from_point(fPts[1]);
1322 Sk2s p2 = from_point(fPts[2]);
1323 Sk2s ww(fW);
1324
1325 Sk2s p20 = p2 - p0;
1326 Sk2s p10 = p1 - p0;
1327
1328 Sk2s C = ww * p10;
1329 Sk2s A = ww * p20 - p20;
1330 Sk2s B = p20 - C - C;
1331
1332 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1333 }
1334
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1335 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1336 SkASSERT(t >= 0 && t <= SK_Scalar1);
1337
1338 if (pt) {
1339 *pt = this->evalAt(t);
1340 }
1341 if (tangent) {
1342 *tangent = this->evalTangentAt(t);
1343 }
1344 }
1345
subdivide_w_value(SkScalar w)1346 static SkScalar subdivide_w_value(SkScalar w) {
1347 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1348 }
1349
chop(SkConic * SK_RESTRICT dst) const1350 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1351 Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1352 SkScalar newW = subdivide_w_value(fW);
1353
1354 Sk2s p0 = from_point(fPts[0]);
1355 Sk2s p1 = from_point(fPts[1]);
1356 Sk2s p2 = from_point(fPts[2]);
1357 Sk2s ww(fW);
1358
1359 Sk2s wp1 = ww * p1;
1360 Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1361 SkPoint mPt = to_point(m);
1362 if (!mPt.isFinite()) {
1363 double w_d = fW;
1364 double w_2 = w_d * 2;
1365 double scale_half = 1 / (1 + w_d) * 0.5;
1366 mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1367 mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1368 }
1369 dst[0].fPts[0] = fPts[0];
1370 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1371 dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1372 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1373 dst[1].fPts[2] = fPts[2];
1374
1375 dst[0].fW = dst[1].fW = newW;
1376 }
1377
1378 /*
1379 * "High order approximation of conic sections by quadratic splines"
1380 * by Michael Floater, 1993
1381 */
1382 #define AS_QUAD_ERROR_SETUP \
1383 SkScalar a = fW - 1; \
1384 SkScalar k = a / (4 * (2 + a)); \
1385 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1386 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1387
computeAsQuadError(SkVector * err) const1388 void SkConic::computeAsQuadError(SkVector* err) const {
1389 AS_QUAD_ERROR_SETUP
1390 err->set(x, y);
1391 }
1392
asQuadTol(SkScalar tol) const1393 bool SkConic::asQuadTol(SkScalar tol) const {
1394 AS_QUAD_ERROR_SETUP
1395 return (x * x + y * y) <= tol * tol;
1396 }
1397
1398 // Limit the number of suggested quads to approximate a conic
1399 #define kMaxConicToQuadPOW2 5
1400
computeQuadPOW2(SkScalar tol) const1401 int SkConic::computeQuadPOW2(SkScalar tol) const {
1402 if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1403 return 0;
1404 }
1405
1406 AS_QUAD_ERROR_SETUP
1407
1408 SkScalar error = SkScalarSqrt(x * x + y * y);
1409 int pow2;
1410 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1411 if (error <= tol) {
1412 break;
1413 }
1414 error *= 0.25f;
1415 }
1416 // float version -- using ceil gives the same results as the above.
1417 if (false) {
1418 SkScalar err = SkScalarSqrt(x * x + y * y);
1419 if (err <= tol) {
1420 return 0;
1421 }
1422 SkScalar tol2 = tol * tol;
1423 if (tol2 == 0) {
1424 return kMaxConicToQuadPOW2;
1425 }
1426 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1427 int altPow2 = SkScalarCeilToInt(fpow2);
1428 if (altPow2 != pow2) {
1429 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1430 }
1431 pow2 = altPow2;
1432 }
1433 return pow2;
1434 }
1435
1436 // This was originally developed and tested for pathops: see SkOpTypes.h
1437 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1438 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1439 return (a - b) * (c - b) <= 0;
1440 }
1441
subdivide(const SkConic & src,SkPoint pts[],int level)1442 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1443 SkASSERT(level >= 0);
1444
1445 if (0 == level) {
1446 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1447 return pts + 2;
1448 } else {
1449 SkConic dst[2];
1450 src.chop(dst);
1451 const SkScalar startY = src.fPts[0].fY;
1452 SkScalar endY = src.fPts[2].fY;
1453 if (between(startY, src.fPts[1].fY, endY)) {
1454 // If the input is monotonic and the output is not, the scan converter hangs.
1455 // Ensure that the chopped conics maintain their y-order.
1456 SkScalar midY = dst[0].fPts[2].fY;
1457 if (!between(startY, midY, endY)) {
1458 // If the computed midpoint is outside the ends, move it to the closer one.
1459 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1460 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1461 }
1462 if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1463 // If the 1st control is not between the start and end, put it at the start.
1464 // This also reduces the quad to a line.
1465 dst[0].fPts[1].fY = startY;
1466 }
1467 if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1468 // If the 2nd control is not between the start and end, put it at the end.
1469 // This also reduces the quad to a line.
1470 dst[1].fPts[1].fY = endY;
1471 }
1472 // Verify that all five points are in order.
1473 SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1474 SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1475 SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1476 }
1477 --level;
1478 pts = subdivide(dst[0], pts, level);
1479 return subdivide(dst[1], pts, level);
1480 }
1481 }
1482
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1483 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1484 SkASSERT(pow2 >= 0);
1485 *pts = fPts[0];
1486 SkDEBUGCODE(SkPoint* endPts);
1487 if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ...
1488 SkConic dst[2];
1489 this->chop(dst);
1490 // check to see if the first chop generates a pair of lines
1491 if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1492 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1493 pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines
1494 pts[4] = dst[1].fPts[2];
1495 pow2 = 1;
1496 SkDEBUGCODE(endPts = &pts[5]);
1497 goto commonFinitePtCheck;
1498 }
1499 }
1500 SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1501 commonFinitePtCheck:
1502 const int quadCount = 1 << pow2;
1503 const int ptCount = 2 * quadCount + 1;
1504 SkASSERT(endPts - pts == ptCount);
1505 if (!SkPointPriv::AreFinite(pts, ptCount)) {
1506 // if we generated a non-finite, pin ourselves to the middle of the hull,
1507 // as our first and last are already on the first/last pts of the hull.
1508 for (int i = 1; i < ptCount - 1; ++i) {
1509 pts[i] = fPts[1];
1510 }
1511 }
1512 return 1 << pow2;
1513 }
1514
findMidTangent() const1515 float SkConic::findMidTangent() const {
1516 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
1517 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
1518 //
1519 // bisector dot midtangent = 0
1520 //
1521 SkVector tan0 = fPts[1] - fPts[0];
1522 SkVector tan1 = fPts[2] - fPts[1];
1523 SkVector bisector = SkFindBisector(tan0, -tan1);
1524
1525 // Start by finding the tangent function's power basis coefficients. These define a tangent
1526 // direction (scaled by some uniform value) as:
1527 // |T^2|
1528 // Tangent_Direction(T) = dx,dy = |A B C| * |T |
1529 // |. . .| |1 |
1530 //
1531 // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
1532 // if we are only interested in a vector in the same *direction* as a given tangent line. Since
1533 // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
1534 // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
1535 // function that we use to find a tangent.
1536 SkVector A = (fPts[2] - fPts[0]) * (fW - 1);
1537 SkVector B = (fPts[2] - fPts[0]) - (fPts[1] - fPts[0]) * (fW*2);
1538 SkVector C = (fPts[1] - fPts[0]) * fW;
1539
1540 // Now solve for "bisector dot midtangent = 0":
1541 //
1542 // |T^2|
1543 // bisector * |A B C| * |T | = 0
1544 // |. . .| |1 |
1545 //
1546 float a = bisector.dot(A);
1547 float b = bisector.dot(B);
1548 float c = bisector.dot(C);
1549 return solve_quadratic_equation_for_midtangent(a, b, c);
1550 }
1551
findXExtrema(SkScalar * t) const1552 bool SkConic::findXExtrema(SkScalar* t) const {
1553 return conic_find_extrema(&fPts[0].fX, fW, t);
1554 }
1555
findYExtrema(SkScalar * t) const1556 bool SkConic::findYExtrema(SkScalar* t) const {
1557 return conic_find_extrema(&fPts[0].fY, fW, t);
1558 }
1559
chopAtXExtrema(SkConic dst[2]) const1560 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1561 SkScalar t;
1562 if (this->findXExtrema(&t)) {
1563 if (!this->chopAt(t, dst)) {
1564 // if chop can't return finite values, don't chop
1565 return false;
1566 }
1567 // now clean-up the middle, since we know t was meant to be at
1568 // an X-extrema
1569 SkScalar value = dst[0].fPts[2].fX;
1570 dst[0].fPts[1].fX = value;
1571 dst[1].fPts[0].fX = value;
1572 dst[1].fPts[1].fX = value;
1573 return true;
1574 }
1575 return false;
1576 }
1577
chopAtYExtrema(SkConic dst[2]) const1578 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1579 SkScalar t;
1580 if (this->findYExtrema(&t)) {
1581 if (!this->chopAt(t, dst)) {
1582 // if chop can't return finite values, don't chop
1583 return false;
1584 }
1585 // now clean-up the middle, since we know t was meant to be at
1586 // an Y-extrema
1587 SkScalar value = dst[0].fPts[2].fY;
1588 dst[0].fPts[1].fY = value;
1589 dst[1].fPts[0].fY = value;
1590 dst[1].fPts[1].fY = value;
1591 return true;
1592 }
1593 return false;
1594 }
1595
computeTightBounds(SkRect * bounds) const1596 void SkConic::computeTightBounds(SkRect* bounds) const {
1597 SkPoint pts[4];
1598 pts[0] = fPts[0];
1599 pts[1] = fPts[2];
1600 int count = 2;
1601
1602 SkScalar t;
1603 if (this->findXExtrema(&t)) {
1604 this->evalAt(t, &pts[count++]);
1605 }
1606 if (this->findYExtrema(&t)) {
1607 this->evalAt(t, &pts[count++]);
1608 }
1609 bounds->setBounds(pts, count);
1610 }
1611
computeFastBounds(SkRect * bounds) const1612 void SkConic::computeFastBounds(SkRect* bounds) const {
1613 bounds->setBounds(fPts, 3);
1614 }
1615
1616 #if 0 // unimplemented
1617 bool SkConic::findMaxCurvature(SkScalar* t) const {
1618 // TODO: Implement me
1619 return false;
1620 }
1621 #endif
1622
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1623 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) {
1624 if (!matrix.hasPerspective()) {
1625 return w;
1626 }
1627
1628 SkPoint3 src[3], dst[3];
1629
1630 ratquad_mapTo3D(pts, w, src);
1631
1632 matrix.mapHomogeneousPoints(dst, src, 3);
1633
1634 // w' = sqrt(w1*w1/w0*w2)
1635 // use doubles temporarily, to handle small numer/denom
1636 double w0 = dst[0].fZ;
1637 double w1 = dst[1].fZ;
1638 double w2 = dst[2].fZ;
1639 return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2)));
1640 }
1641
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1642 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1643 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1644 // rotate by x,y so that uStart is (1.0)
1645 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1646 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1647
1648 SkScalar absY = SkScalarAbs(y);
1649
1650 // check for (effectively) coincident vectors
1651 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1652 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1653 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1654 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1655 return 0;
1656 }
1657
1658 if (dir == kCCW_SkRotationDirection) {
1659 y = -y;
1660 }
1661
1662 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1663 // 0 == [0 .. 90)
1664 // 1 == [90 ..180)
1665 // 2 == [180..270)
1666 // 3 == [270..360)
1667 //
1668 int quadrant = 0;
1669 if (0 == y) {
1670 quadrant = 2; // 180
1671 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1672 } else if (0 == x) {
1673 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1674 quadrant = y > 0 ? 1 : 3; // 90 : 270
1675 } else {
1676 if (y < 0) {
1677 quadrant += 2;
1678 }
1679 if ((x < 0) != (y < 0)) {
1680 quadrant += 1;
1681 }
1682 }
1683
1684 const SkPoint quadrantPts[] = {
1685 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1686 };
1687 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1688
1689 int conicCount = quadrant;
1690 for (int i = 0; i < conicCount; ++i) {
1691 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1692 }
1693
1694 // Now compute any remaing (sub-90-degree) arc for the last conic
1695 const SkPoint finalP = { x, y };
1696 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1697 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1698 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1699
1700 if (dot < 1) {
1701 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1702 // compute the bisector vector, and then rescale to be the off-curve point.
1703 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1704 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1705 // This is nice, since our computed weight is cos(theta/2) as well!
1706 //
1707 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1708 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1709 if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1710 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1711 conicCount += 1;
1712 }
1713 }
1714
1715 // now handle counter-clockwise and the initial unitStart rotation
1716 SkMatrix matrix;
1717 matrix.setSinCos(uStart.fY, uStart.fX);
1718 if (dir == kCCW_SkRotationDirection) {
1719 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1720 }
1721 if (userMatrix) {
1722 matrix.postConcat(*userMatrix);
1723 }
1724 for (int i = 0; i < conicCount; ++i) {
1725 matrix.mapPoints(dst[i].fPts, 3);
1726 }
1727 return conicCount;
1728 }
1729