1 /*
2 * Copyright 2019 Google LLC.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/tessellate/GrStencilPathShader.h"
9
10 #include "src/gpu/glsl/GrGLSLGeometryProcessor.h"
11 #include "src/gpu/glsl/GrGLSLVarying.h"
12 #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
13
14 // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the
15 // parametric sense) line segments that are guaranteed to be within a distance of
16 // "MAX_LINEARIZATION_ERROR" from the actual curve.
17 constexpr static char kWangsFormulaCubicFn[] = R"(
18 #define MAX_LINEARIZATION_ERROR 0.25 // 1/4 pixel
19 float length_pow2(vec2 v) {
20 return dot(v, v);
21 }
22 float wangs_formula_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3) {
23 float k = (3.0 * 2.0) / (8.0 * MAX_LINEARIZATION_ERROR);
24 float m = max(length_pow2(-2.0*p1 + p2 + p0),
25 length_pow2(-2.0*p2 + p3 + p1));
26 return max(1.0, ceil(sqrt(k * sqrt(m))));
27 })";
28
29 constexpr static char kSkSLTypeDefs[] = R"(
30 #define float4x3 mat4x3
31 #define float3 vec3
32 #define float2 vec2
33 )";
34
35 // Converts a 4-point input patch into the rational cubic it intended to represent.
36 constexpr static char kUnpackRationalCubicFn[] = R"(
37 float4x3 unpack_rational_cubic(float2 p0, float2 p1, float2 p2, float2 p3) {
38 float4x3 P = float4x3(p0,1, p1,1, p2,1, p3,1);
39 if (isinf(P[3].y)) {
40 // This patch is actually a conic. Convert to a rational cubic.
41 float w = P[3].x;
42 float3 c = P[1] * ((2.0/3.0) * w);
43 P = float4x3(P[0], fma(P[0], float3(1.0/3.0), c), fma(P[2], float3(1.0/3.0), c), P[2]);
44 }
45 return P;
46 })";
47
48 // Evaluate our point of interest using numerically stable linear interpolations. We add our own
49 // "safe_mix" method to guarantee we get exactly "b" when T=1. The builtin mix() function seems
50 // spec'd to behave this way, but empirical results results have shown it does not always.
51 constexpr static char kEvalRationalCubicFn[] = R"(
52 float3 safe_mix(float3 a, float3 b, float T, float one_minus_T) {
53 return a*one_minus_T + b*T;
54 }
55 float2 eval_rational_cubic(float4x3 P, float T) {
56 float one_minus_T = 1.0 - T;
57 float3 ab = safe_mix(P[0], P[1], T, one_minus_T);
58 float3 bc = safe_mix(P[1], P[2], T, one_minus_T);
59 float3 cd = safe_mix(P[2], P[3], T, one_minus_T);
60 float3 abc = safe_mix(ab, bc, T, one_minus_T);
61 float3 bcd = safe_mix(bc, cd, T, one_minus_T);
62 float3 abcd = safe_mix(abc, bcd, T, one_minus_T);
63 return abcd.xy / abcd.z;
64 })";
65
66 class GrStencilPathShader::Impl : public GrGLSLGeometryProcessor {
67 protected:
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)68 void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
69 const auto& shader = args.fGeomProc.cast<GrStencilPathShader>();
70 args.fVaryingHandler->emitAttributes(shader);
71 auto v = args.fVertBuilder;
72
73 GrShaderVar vertexPos = (*shader.vertexAttributes().begin()).asShaderVar();
74 if (!shader.viewMatrix().isIdentity()) {
75 const char* viewMatrix;
76 fViewMatrixUniform = args.fUniformHandler->addUniform(
77 nullptr, kVertex_GrShaderFlag, kFloat3x3_GrSLType, "view_matrix", &viewMatrix);
78 v->codeAppendf("float2 vertexpos = (%s * float3(inputPoint, 1)).xy;", viewMatrix);
79 if (shader.willUseTessellationShaders()) {
80 // If y is infinity then x is a conic weight. Don't transform.
81 v->codeAppendf("vertexpos = (isinf(vertexpos.y)) ? inputPoint : vertexpos;");
82 }
83 vertexPos.set(kFloat2_GrSLType, "vertexpos");
84 }
85
86 if (!shader.willUseTessellationShaders()) { // This is the case for the triangle shader.
87 gpArgs->fPositionVar = vertexPos;
88 } else {
89 v->declareGlobal(GrShaderVar("vsPt", kFloat2_GrSLType, GrShaderVar::TypeModifier::Out));
90 v->codeAppendf("vsPt = %s;", vertexPos.c_str());
91 }
92
93 // No fragment shader.
94 }
95
setData(const GrGLSLProgramDataManager & pdman,const GrShaderCaps &,const GrGeometryProcessor & geomProc)96 void setData(const GrGLSLProgramDataManager& pdman,
97 const GrShaderCaps&,
98 const GrGeometryProcessor& geomProc) override {
99 const auto& shader = geomProc.cast<GrStencilPathShader>();
100 if (!shader.viewMatrix().isIdentity()) {
101 pdman.setSkMatrix(fViewMatrixUniform, shader.viewMatrix());
102 }
103 }
104
105 GrGLSLUniformHandler::UniformHandle fViewMatrixUniform;
106 };
107
createGLSLInstance(const GrShaderCaps &) const108 GrGLSLGeometryProcessor* GrStencilPathShader::createGLSLInstance(const GrShaderCaps&) const {
109 return new Impl;
110 }
111
createGLSLInstance(const GrShaderCaps &) const112 GrGLSLGeometryProcessor* GrCubicTessellateShader::createGLSLInstance(const GrShaderCaps&) const {
113 class CubicImpl : public GrStencilPathShader::Impl {
114 SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
115 const char* versionAndExtensionDecls,
116 const GrGLSLUniformHandler&,
117 const GrShaderCaps&) const override {
118 SkString code(versionAndExtensionDecls);
119 code.append(kWangsFormulaCubicFn);
120 code.append(kSkSLTypeDefs);
121 code.append(kUnpackRationalCubicFn);
122 code.append(R"(
123 layout(vertices = 1) out;
124
125 in vec2 vsPt[];
126 out vec4 X[];
127 out vec4 Y[];
128 out float w[];
129
130 void main() {
131 mat4x3 P = unpack_rational_cubic(vsPt[0], vsPt[1], vsPt[2], vsPt[3]);
132
133 // Chop the curve at T=1/2. Here we take advantage of the fact that a uniform scalar
134 // has no effect on homogeneous coordinates in order to eval quickly at .5:
135 //
136 // mix(p0, p1, .5) / mix(w0, w1, .5)
137 // == ((p0 + p1) * .5) / ((w0 + w1) * .5)
138 // == (p0 + p1) / (w0 + w1)
139 //
140 vec3 ab = P[0] + P[1];
141 vec3 bc = P[1] + P[2];
142 vec3 cd = P[2] + P[3];
143 vec3 abc = ab + bc;
144 vec3 bcd = bc + cd;
145 vec3 abcd = abc + bcd;
146
147 // Calculate how many triangles we need to linearize each half of the curve. We
148 // simply call Wang's formula for integral cubics with the down-projected points.
149 // This appears to be an upper bound on what the actual number of subdivisions would
150 // have been.
151 float w0 = wangs_formula_cubic(P[0].xy, ab.xy/ab.z, abc.xy/abc.z, abcd.xy/abcd.z);
152 float w1 = wangs_formula_cubic(abcd.xy/abcd.z, bcd.xy/bcd.z, cd.xy/cd.z, P[3].xy);
153
154 gl_TessLevelOuter[0] = w1;
155 gl_TessLevelOuter[1] = 1.0;
156 gl_TessLevelOuter[2] = w0;
157
158 // Changing the inner level to 1 when w0 == w1 == 1 collapses the entire patch to a
159 // single triangle. Otherwise, we need an inner level of 2 so our curve triangles
160 // have an interior point to originate from.
161 gl_TessLevelInner[0] = min(max(w0, w1), 2.0);
162
163 X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x);
164 Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y);
165 w[gl_InvocationID /*== 0*/] = P[1].z;
166 })");
167
168 return code;
169 }
170
171 SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
172 const char* versionAndExtensionDecls,
173 const GrGLSLUniformHandler&,
174 const GrShaderCaps&) const override {
175 SkString code(versionAndExtensionDecls);
176 code.append(kSkSLTypeDefs);
177 code.append(kEvalRationalCubicFn);
178 code.append(R"(
179 layout(triangles, equal_spacing, ccw) in;
180
181 uniform vec4 sk_RTAdjust;
182
183 in vec4 X[];
184 in vec4 Y[];
185 in float w[];
186
187 void main() {
188 // Locate our parametric point of interest. T ramps from [0..1/2] on the left edge
189 // of the triangle, and [1/2..1] on the right. If we are the patch's interior
190 // vertex, then we want T=1/2. Since the barycentric coords are (1/3, 1/3, 1/3) at
191 // the interior vertex, the below fma() works in all 3 scenarios.
192 float T = fma(.5, gl_TessCoord.y, gl_TessCoord.z);
193
194 mat4x3 P = transpose(mat3x4(X[0], Y[0], 1,w[0],w[0],1));
195 vec2 vertexpos = eval_rational_cubic(P, T);
196 if (all(notEqual(gl_TessCoord.xz, vec2(0)))) {
197 // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)].
198 vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
199 }
200
201 gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
202 })");
203
204 return code;
205 }
206 };
207
208 return new CubicImpl;
209 }
210
createGLSLInstance(const GrShaderCaps &) const211 GrGLSLGeometryProcessor* GrWedgeTessellateShader::createGLSLInstance(const GrShaderCaps&) const {
212 class WedgeImpl : public GrStencilPathShader::Impl {
213 SkString getTessControlShaderGLSL(const GrGeometryProcessor&,
214 const char* versionAndExtensionDecls,
215 const GrGLSLUniformHandler&,
216 const GrShaderCaps&) const override {
217 SkString code(versionAndExtensionDecls);
218 code.append(kWangsFormulaCubicFn);
219 code.append(kSkSLTypeDefs);
220 code.append(kUnpackRationalCubicFn);
221 code.append(R"(
222 layout(vertices = 1) out;
223
224 in vec2 vsPt[];
225 out vec4 X[];
226 out vec4 Y[];
227 out float w[];
228 out vec2 fanpoint[];
229
230 void main() {
231 mat4x3 P = unpack_rational_cubic(vsPt[0], vsPt[1], vsPt[2], vsPt[3]);
232
233 // Figure out how many segments to divide the curve into. To do this we simply call
234 // Wang's formula for integral cubics with the down-projected points. This appears
235 // to be an upper bound on what the actual number of subdivisions would have been.
236 float num_segments = wangs_formula_cubic(P[0].xy, P[1].xy/P[1].z, P[2].xy/P[2].z,
237 P[3].xy);
238
239 // Tessellate the first side of the patch into num_segments triangles.
240 gl_TessLevelOuter[0] = num_segments;
241
242 // Leave the other two sides of the patch as single segments.
243 gl_TessLevelOuter[1] = 1.0;
244 gl_TessLevelOuter[2] = 1.0;
245
246 // Changing the inner level to 1 when num_segments == 1 collapses the entire
247 // patch to a single triangle. Otherwise, we need an inner level of 2 so our curve
248 // triangles have an interior point to originate from.
249 gl_TessLevelInner[0] = min(num_segments, 2.0);
250
251 X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x);
252 Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y);
253 w[gl_InvocationID /*== 0*/] = P[1].z;
254 fanpoint[gl_InvocationID /*== 0*/] = vsPt[4];
255 })");
256
257 return code;
258 }
259
260 SkString getTessEvaluationShaderGLSL(const GrGeometryProcessor&,
261 const char* versionAndExtensionDecls,
262 const GrGLSLUniformHandler&,
263 const GrShaderCaps&) const override {
264 SkString code(versionAndExtensionDecls);
265 code.append(kSkSLTypeDefs);
266 code.append(kEvalRationalCubicFn);
267 code.append(R"(
268 layout(triangles, equal_spacing, ccw) in;
269
270 uniform vec4 sk_RTAdjust;
271
272 in vec4 X[];
273 in vec4 Y[];
274 in float w[];
275 in vec2 fanpoint[];
276
277 void main() {
278 // Locate our parametric point of interest. It is equal to the barycentric
279 // y-coordinate if we are a vertex on the tessellated edge of the triangle patch,
280 // 0.5 if we are the patch's interior vertex, or N/A if we are the fan point.
281 // NOTE: We are on the tessellated edge when the barycentric x-coordinate == 0.
282 float T = (gl_TessCoord.x == 0.0) ? gl_TessCoord.y : 0.5;
283
284 mat4x3 P = transpose(mat3x4(X[0], Y[0], 1,w[0],w[0],1));
285 vec2 vertexpos = eval_rational_cubic(P, T);
286
287 if (gl_TessCoord.x == 1.0) {
288 // We are the anchor point that fans from the center of the curve's contour.
289 vertexpos = fanpoint[0];
290 } else if (gl_TessCoord.x != 0.0) {
291 // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)].
292 vertexpos = (P[0].xy + vertexpos + P[3].xy) / 3.0;
293 }
294
295 gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0);
296 })");
297
298 return code;
299 }
300 };
301
302 return new WedgeImpl;
303 }
304
305 constexpr static int kMaxResolveLevel = GrTessellationPathRenderer::kMaxResolveLevel;
306
307 GR_DECLARE_STATIC_UNIQUE_KEY(gMiddleOutIndexBufferKey);
308
FindOrMakeMiddleOutIndexBuffer(GrResourceProvider * resourceProvider)309 sk_sp<const GrGpuBuffer> GrMiddleOutCubicShader::FindOrMakeMiddleOutIndexBuffer(
310 GrResourceProvider* resourceProvider) {
311 GR_DEFINE_STATIC_UNIQUE_KEY(gMiddleOutIndexBufferKey);
312 if (auto buffer = resourceProvider->findByUniqueKey<GrGpuBuffer>(gMiddleOutIndexBufferKey)) {
313 return std::move(buffer);
314 }
315
316 // One explicit triangle at index 0, and one middle-out cubic with kMaxResolveLevel line
317 // segments beginning at index 3.
318 constexpr static int kIndexCount = 3 + NumVerticesAtResolveLevel(kMaxResolveLevel);
319 auto buffer = resourceProvider->createBuffer(
320 kIndexCount * sizeof(uint16_t), GrGpuBufferType::kIndex, kStatic_GrAccessPattern);
321 if (!buffer) {
322 return nullptr;
323 }
324
325 // We shouldn't bin and/or cache static buffers.
326 SkASSERT(buffer->size() == kIndexCount * sizeof(uint16_t));
327 SkASSERT(!buffer->resourcePriv().getScratchKey().isValid());
328 auto indexData = static_cast<uint16_t*>(buffer->map());
329 SkAutoTMalloc<uint16_t> stagingBuffer;
330 if (!indexData) {
331 SkASSERT(!buffer->isMapped());
332 indexData = stagingBuffer.reset(kIndexCount);
333 }
334
335 // Indices 0,1,2 contain special values that emit points P0, P1, and P2 respectively. (When the
336 // vertex shader is fed an index value larger than (1 << kMaxResolveLevel), it emits
337 // P[index % 4].)
338 int i = 0;
339 indexData[i++] = (1 << kMaxResolveLevel) + 4; // % 4 == 0
340 indexData[i++] = (1 << kMaxResolveLevel) + 5; // % 4 == 1
341 indexData[i++] = (1 << kMaxResolveLevel) + 6; // % 4 == 2
342
343 // Starting at index 3, we triangulate a cubic with 2^kMaxResolveLevel line segments. Each
344 // index value corresponds to parametric value T=(index / 2^kMaxResolveLevel). Since the
345 // triangles are arranged in "middle-out" order, we will be able to conveniently control the
346 // resolveLevel by changing only the indexCount.
347 for (uint16_t advance = 1 << (kMaxResolveLevel - 1); advance; advance >>= 1) {
348 uint16_t T = 0;
349 do {
350 indexData[i++] = T;
351 indexData[i++] = (T += advance);
352 indexData[i++] = (T += advance);
353 } while (T != (1 << kMaxResolveLevel));
354 }
355 SkASSERT(i == kIndexCount);
356
357 if (buffer->isMapped()) {
358 buffer->unmap();
359 } else {
360 buffer->updateData(stagingBuffer, kIndexCount * sizeof(uint16_t));
361 }
362 buffer->resourcePriv().setUniqueKey(gMiddleOutIndexBufferKey);
363 return std::move(buffer);
364 }
365
366 class GrMiddleOutCubicShader::Impl : public GrStencilPathShader::Impl {
onEmitCode(EmitArgs & args,GrGPArgs * gpArgs)367 void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override {
368 const auto& shader = args.fGeomProc.cast<GrMiddleOutCubicShader>();
369 args.fVaryingHandler->emitAttributes(shader);
370 args.fVertBuilder->defineConstantf("int", "kMaxVertexID", "%i", 1 << kMaxResolveLevel);
371 args.fVertBuilder->defineConstantf("float", "kInverseMaxVertexID",
372 "(1.0 / float(kMaxVertexID))");
373 args.fVertBuilder->insertFunction(kUnpackRationalCubicFn);
374 args.fVertBuilder->insertFunction(kEvalRationalCubicFn);
375 args.fVertBuilder->codeAppend(R"(
376 float2 pos;
377 if (sk_VertexID > kMaxVertexID) {
378 // This is a special index value that instructs us to emit a specific point.
379 pos = ((sk_VertexID & 3) == 0) ? inputPoints_0_1.xy :
380 ((sk_VertexID & 2) == 0) ? inputPoints_0_1.zw : inputPoints_2_3.xy;
381 } else {
382 // Evaluate the cubic at T = (sk_VertexID / 2^kMaxResolveLevel).
383 float T = float(sk_VertexID) * kInverseMaxVertexID;
384 float4x3 P = unpack_rational_cubic(inputPoints_0_1.xy, inputPoints_0_1.zw,
385 inputPoints_2_3.xy, inputPoints_2_3.zw);
386 pos = eval_rational_cubic(P, T);
387 })");
388
389 GrShaderVar vertexPos("pos", kFloat2_GrSLType);
390 if (!shader.viewMatrix().isIdentity()) {
391 const char* viewMatrix;
392 fViewMatrixUniform = args.fUniformHandler->addUniform(
393 nullptr, kVertex_GrShaderFlag, kFloat3x3_GrSLType, "view_matrix", &viewMatrix);
394 args.fVertBuilder->codeAppendf(R"(
395 float2 transformedPoint = (%s * float3(pos, 1)).xy;)", viewMatrix);
396 vertexPos.set(kFloat2_GrSLType, "transformedPoint");
397 }
398 gpArgs->fPositionVar = vertexPos;
399 // No fragment shader.
400 }
401 };
402
createGLSLInstance(const GrShaderCaps &) const403 GrGLSLGeometryProcessor* GrMiddleOutCubicShader::createGLSLInstance(const GrShaderCaps&) const {
404 return new Impl;
405 }
406