• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkWriter32_DEFINED
9 #define SkWriter32_DEFINED
10 
11 #include "SkData.h"
12 #include "SkMatrix.h"
13 #include "SkNoncopyable.h"
14 #include "SkPath.h"
15 #include "SkPoint.h"
16 #include "SkPoint3.h"
17 #include "SkRRect.h"
18 #include "SkRect.h"
19 #include "SkRegion.h"
20 #include "SkScalar.h"
21 #include "SkStream.h"
22 #include "SkTemplates.h"
23 #include "SkTo.h"
24 #include "SkTypes.h"
25 
26 class SK_API SkWriter32 : SkNoncopyable {
27 public:
28     /**
29      *  The caller can specify an initial block of storage, which the caller manages.
30      *
31      *  SkWriter32 will try to back reserve and write calls with this external storage until the
32      *  first time an allocation doesn't fit.  From then it will use dynamically allocated storage.
33      *  This used to be optional behavior, but pipe now relies on it.
34      */
35     SkWriter32(void* external = nullptr, size_t externalBytes = 0) {
36         this->reset(external, externalBytes);
37     }
38 
39     // return the current offset (will always be a multiple of 4)
bytesWritten()40     size_t bytesWritten() const { return fUsed; }
41 
42     // Returns true iff all of the bytes written so far are stored in the initial storage
43     // buffer provided in the constructor or the most recent call to reset.
usingInitialStorage()44     bool usingInitialStorage() const { return fData == fExternal; }
45 
46     void reset(void* external = nullptr, size_t externalBytes = 0) {
47         // we cast this pointer to int* and float* at times, so assert that it is aligned.
48         SkASSERT(SkIsAlign4((uintptr_t)external));
49         // we always write multiples of 4-bytes, so truncate down the size to match that
50         externalBytes &= ~3;
51 
52         fData = (uint8_t*)external;
53         fCapacity = externalBytes;
54         fUsed = 0;
55         fExternal = external;
56     }
57 
58     // size MUST be multiple of 4
reserve(size_t size)59     uint32_t* reserve(size_t size) {
60         SkASSERT(SkAlign4(size) == size);
61         size_t offset = fUsed;
62         size_t totalRequired = fUsed + size;
63         if (totalRequired > fCapacity) {
64             this->growToAtLeast(totalRequired);
65         }
66         fUsed = totalRequired;
67         return (uint32_t*)(fData + offset);
68     }
69 
70     /**
71      *  Read a T record at offset, which must be a multiple of 4. Only legal if the record
72      *  was written atomically using the write methods below.
73      */
74     template<typename T>
readTAt(size_t offset)75     const T& readTAt(size_t offset) const {
76         SkASSERT(SkAlign4(offset) == offset);
77         SkASSERT(offset < fUsed);
78         return *(T*)(fData + offset);
79     }
80 
81     /**
82      *  Overwrite a T record at offset, which must be a multiple of 4. Only legal if the record
83      *  was written atomically using the write methods below.
84      */
85     template<typename T>
overwriteTAt(size_t offset,const T & value)86     void overwriteTAt(size_t offset, const T& value) {
87         SkASSERT(SkAlign4(offset) == offset);
88         SkASSERT(offset < fUsed);
89         *(T*)(fData + offset) = value;
90     }
91 
writeBool(bool value)92     bool writeBool(bool value) {
93         this->write32(value);
94         return value;
95     }
96 
writeInt(int32_t value)97     void writeInt(int32_t value) {
98         this->write32(value);
99     }
100 
write8(int32_t value)101     void write8(int32_t value) {
102         *(int32_t*)this->reserve(sizeof(value)) = value & 0xFF;
103     }
104 
write16(int32_t value)105     void write16(int32_t value) {
106         *(int32_t*)this->reserve(sizeof(value)) = value & 0xFFFF;
107     }
108 
write32(int32_t value)109     void write32(int32_t value) {
110         *(int32_t*)this->reserve(sizeof(value)) = value;
111     }
112 
writePtr(void * value)113     void writePtr(void* value) {
114         // this->reserve() only returns 4-byte aligned pointers,
115         // so this may be an under-aligned write if we were to do this like the others.
116         memcpy(this->reserve(sizeof(value)), &value, sizeof(value));
117     }
118 
writeScalar(SkScalar value)119     void writeScalar(SkScalar value) {
120         *(SkScalar*)this->reserve(sizeof(value)) = value;
121     }
122 
writePoint(const SkPoint & pt)123     void writePoint(const SkPoint& pt) {
124         *(SkPoint*)this->reserve(sizeof(pt)) = pt;
125     }
126 
writePoint3(const SkPoint3 & pt)127     void writePoint3(const SkPoint3& pt) {
128         *(SkPoint3*)this->reserve(sizeof(pt)) = pt;
129     }
130 
writeRect(const SkRect & rect)131     void writeRect(const SkRect& rect) {
132         *(SkRect*)this->reserve(sizeof(rect)) = rect;
133     }
134 
writeIRect(const SkIRect & rect)135     void writeIRect(const SkIRect& rect) {
136         *(SkIRect*)this->reserve(sizeof(rect)) = rect;
137     }
138 
writeRRect(const SkRRect & rrect)139     void writeRRect(const SkRRect& rrect) {
140         rrect.writeToMemory(this->reserve(SkRRect::kSizeInMemory));
141     }
142 
writePath(const SkPath & path)143     void writePath(const SkPath& path) {
144         size_t size = path.writeToMemory(nullptr);
145         SkASSERT(SkAlign4(size) == size);
146         path.writeToMemory(this->reserve(size));
147     }
148 
149     void writeMatrix(const SkMatrix& matrix);
150 
writeRegion(const SkRegion & rgn)151     void writeRegion(const SkRegion& rgn) {
152         size_t size = rgn.writeToMemory(nullptr);
153         SkASSERT(SkAlign4(size) == size);
154         rgn.writeToMemory(this->reserve(size));
155     }
156 
157     // write count bytes (must be a multiple of 4)
writeMul4(const void * values,size_t size)158     void writeMul4(const void* values, size_t size) {
159         this->write(values, size);
160     }
161 
162     /**
163      *  Write size bytes from values. size must be a multiple of 4, though
164      *  values need not be 4-byte aligned.
165      */
write(const void * values,size_t size)166     void write(const void* values, size_t size) {
167         SkASSERT(SkAlign4(size) == size);
168         sk_careful_memcpy(this->reserve(size), values, size);
169     }
170 
171     /**
172      *  Reserve size bytes. Does not need to be 4 byte aligned. The remaining space (if any) will be
173      *  filled in with zeroes.
174      */
reservePad(size_t size)175     uint32_t* reservePad(size_t size) {
176         size_t alignedSize = SkAlign4(size);
177         uint32_t* p = this->reserve(alignedSize);
178         if (alignedSize != size) {
179             SkASSERT(alignedSize >= 4);
180             p[alignedSize / 4 - 1] = 0;
181         }
182         return p;
183     }
184 
185     /**
186      *  Write size bytes from src, and pad to 4 byte alignment with zeroes.
187      */
writePad(const void * src,size_t size)188     void writePad(const void* src, size_t size) {
189         sk_careful_memcpy(this->reservePad(size), src, size);
190     }
191 
192     /**
193      *  Writes a string to the writer, which can be retrieved with
194      *  SkReader32::readString().
195      *  The length can be specified, or if -1 is passed, it will be computed by
196      *  calling strlen(). The length must be < max size_t.
197      *
198      *  If you write NULL, it will be read as "".
199      */
200     void writeString(const char* str, size_t len = (size_t)-1);
201 
202     /**
203      *  Computes the size (aligned to multiple of 4) need to write the string
204      *  in a call to writeString(). If the length is not specified, it will be
205      *  computed by calling strlen().
206      */
207     static size_t WriteStringSize(const char* str, size_t len = (size_t)-1);
208 
writeData(const SkData * data)209     void writeData(const SkData* data) {
210         uint32_t len = data ? SkToU32(data->size()) : 0;
211         this->write32(len);
212         if (data) {
213             this->writePad(data->data(), len);
214         }
215     }
216 
WriteDataSize(const SkData * data)217     static size_t WriteDataSize(const SkData* data) {
218         return 4 + SkAlign4(data ? data->size() : 0);
219     }
220 
221     /**
222      *  Move the cursor back to offset bytes from the beginning.
223      *  offset must be a multiple of 4 no greater than size().
224      */
rewindToOffset(size_t offset)225     void rewindToOffset(size_t offset) {
226         SkASSERT(SkAlign4(offset) == offset);
227         SkASSERT(offset <= bytesWritten());
228         fUsed = offset;
229     }
230 
231     // copy into a single buffer (allocated by caller). Must be at least size()
flatten(void * dst)232     void flatten(void* dst) const {
233         memcpy(dst, fData, fUsed);
234     }
235 
writeToStream(SkWStream * stream)236     bool writeToStream(SkWStream* stream) const {
237         return stream->write(fData, fUsed);
238     }
239 
240     // read from the stream, and write up to length bytes. Return the actual
241     // number of bytes written.
readFromStream(SkStream * stream,size_t length)242     size_t readFromStream(SkStream* stream, size_t length) {
243         return stream->read(this->reservePad(length), length);
244     }
245 
246     /**
247      *  Captures a snapshot of the data as it is right now, and return it.
248      */
249     sk_sp<SkData> snapshotAsData() const;
250 private:
251     void growToAtLeast(size_t size);
252 
253     uint8_t* fData;                    // Points to either fInternal or fExternal.
254     size_t fCapacity;                  // Number of bytes we can write to fData.
255     size_t fUsed;                      // Number of bytes written.
256     void* fExternal;                   // Unmanaged memory block.
257     SkAutoTMalloc<uint8_t> fInternal;  // Managed memory block.
258 };
259 
260 /**
261  *  Helper class to allocated SIZE bytes as part of the writer, and to provide
262  *  that storage to the constructor as its initial storage buffer.
263  *
264  *  This wrapper ensures proper alignment rules are met for the storage.
265  */
266 template <size_t SIZE> class SkSWriter32 : public SkWriter32 {
267 public:
SkSWriter32()268     SkSWriter32() { this->reset(); }
269 
reset()270     void reset() {this->INHERITED::reset(fData.fStorage, SIZE); }
271 
272 private:
273     union {
274         void*   fPtrAlignment;
275         double  fDoubleAlignment;
276         char    fStorage[SIZE];
277     } fData;
278 
279     typedef SkWriter32 INHERITED;
280 };
281 
282 #endif
283