1 /*
2 * Copyright 2010 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "GrRenderTargetOpList.h"
9 #include "GrAuditTrail.h"
10 #include "GrCaps.h"
11 #include "GrGpu.h"
12 #include "GrGpuCommandBuffer.h"
13 #include "GrMemoryPool.h"
14 #include "GrRect.h"
15 #include "GrRenderTargetContext.h"
16 #include "GrResourceAllocator.h"
17 #include "SkExchange.h"
18 #include "SkRectPriv.h"
19 #include "SkTraceEvent.h"
20 #include "ops/GrClearOp.h"
21 #include "ops/GrCopySurfaceOp.h"
22
23 ////////////////////////////////////////////////////////////////////////////////
24
25 // Experimentally we have found that most combining occurs within the first 10 comparisons.
26 static const int kMaxOpMergeDistance = 10;
27 static const int kMaxOpChainDistance = 10;
28
29 ////////////////////////////////////////////////////////////////////////////////
30
31 using DstProxy = GrXferProcessor::DstProxy;
32
33 ////////////////////////////////////////////////////////////////////////////////
34
can_reorder(const SkRect & a,const SkRect & b)35 static inline bool can_reorder(const SkRect& a, const SkRect& b) { return !GrRectsOverlap(a, b); }
36
37 ////////////////////////////////////////////////////////////////////////////////
38
List(std::unique_ptr<GrOp> op)39 inline GrRenderTargetOpList::OpChain::List::List(std::unique_ptr<GrOp> op)
40 : fHead(std::move(op)), fTail(fHead.get()) {
41 this->validate();
42 }
43
List(List && that)44 inline GrRenderTargetOpList::OpChain::List::List(List&& that) { *this = std::move(that); }
45
operator =(List && that)46 inline GrRenderTargetOpList::OpChain::List& GrRenderTargetOpList::OpChain::List::operator=(
47 List&& that) {
48 fHead = std::move(that.fHead);
49 fTail = that.fTail;
50 that.fTail = nullptr;
51 this->validate();
52 return *this;
53 }
54
popHead()55 inline std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::List::popHead() {
56 SkASSERT(fHead);
57 auto temp = fHead->cutChain();
58 std::swap(temp, fHead);
59 if (!fHead) {
60 SkASSERT(fTail == temp.get());
61 fTail = nullptr;
62 }
63 return temp;
64 }
65
removeOp(GrOp * op)66 inline std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::List::removeOp(GrOp* op) {
67 #ifdef SK_DEBUG
68 auto head = op;
69 while (head->prevInChain()) { head = head->prevInChain(); }
70 SkASSERT(head == fHead.get());
71 #endif
72 auto prev = op->prevInChain();
73 if (!prev) {
74 SkASSERT(op == fHead.get());
75 return this->popHead();
76 }
77 auto temp = prev->cutChain();
78 if (auto next = temp->cutChain()) {
79 prev->chainConcat(std::move(next));
80 } else {
81 SkASSERT(fTail == op);
82 fTail = prev;
83 }
84 this->validate();
85 return temp;
86 }
87
pushHead(std::unique_ptr<GrOp> op)88 inline void GrRenderTargetOpList::OpChain::List::pushHead(std::unique_ptr<GrOp> op) {
89 SkASSERT(op);
90 SkASSERT(op->isChainHead());
91 SkASSERT(op->isChainTail());
92 if (fHead) {
93 op->chainConcat(std::move(fHead));
94 fHead = std::move(op);
95 } else {
96 fHead = std::move(op);
97 fTail = fHead.get();
98 }
99 }
100
pushTail(std::unique_ptr<GrOp> op)101 inline void GrRenderTargetOpList::OpChain::List::pushTail(std::unique_ptr<GrOp> op) {
102 SkASSERT(op->isChainTail());
103 fTail->chainConcat(std::move(op));
104 fTail = fTail->nextInChain();
105 }
106
validate() const107 inline void GrRenderTargetOpList::OpChain::List::validate() const {
108 #ifdef SK_DEBUG
109 if (fHead) {
110 SkASSERT(fTail);
111 fHead->validateChain(fTail);
112 }
113 #endif
114 }
115
116 ////////////////////////////////////////////////////////////////////////////////
117
OpChain(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,GrAppliedClip * appliedClip,const DstProxy * dstProxy)118 GrRenderTargetOpList::OpChain::OpChain(std::unique_ptr<GrOp> op,
119 GrProcessorSet::Analysis processorAnalysis,
120 GrAppliedClip* appliedClip, const DstProxy* dstProxy)
121 : fList{std::move(op)}
122 , fProcessorAnalysis(processorAnalysis)
123 , fAppliedClip(appliedClip) {
124 if (fProcessorAnalysis.requiresDstTexture()) {
125 SkASSERT(dstProxy && dstProxy->proxy());
126 fDstProxy = *dstProxy;
127 }
128 fBounds = fList.head()->bounds();
129 }
130
visitProxies(const GrOp::VisitProxyFunc & func,GrOp::VisitorType visitor) const131 void GrRenderTargetOpList::OpChain::visitProxies(const GrOp::VisitProxyFunc& func,
132 GrOp::VisitorType visitor) const {
133 if (fList.empty()) {
134 return;
135 }
136 for (const auto& op : GrOp::ChainRange<>(fList.head())) {
137 op.visitProxies(func, visitor);
138 }
139 if (fDstProxy.proxy()) {
140 func(fDstProxy.proxy());
141 }
142 if (fAppliedClip) {
143 fAppliedClip->visitProxies(func);
144 }
145 }
146
deleteOps(GrOpMemoryPool * pool)147 void GrRenderTargetOpList::OpChain::deleteOps(GrOpMemoryPool* pool) {
148 while (!fList.empty()) {
149 pool->release(fList.popHead());
150 }
151 }
152
153 // Concatenates two op chains and attempts to merge ops across the chains. Assumes that we know that
154 // the two chains are chainable. Returns the new chain.
DoConcat(List chainA,List chainB,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)155 GrRenderTargetOpList::OpChain::List GrRenderTargetOpList::OpChain::DoConcat(
156 List chainA, List chainB, const GrCaps& caps, GrOpMemoryPool* pool,
157 GrAuditTrail* auditTrail) {
158 // We process ops in chain b from head to tail. We attempt to merge with nodes in a, starting
159 // at chain a's tail and working toward the head. We produce one of the following outcomes:
160 // 1) b's head is merged into an op in a.
161 // 2) An op from chain a is merged into b's head. (In this case b's head gets processed again.)
162 // 3) b's head is popped from chain a and added at the tail of a.
163 // After result 3 we don't want to attempt to merge the next head of b with the new tail of a,
164 // as we assume merges were already attempted when chain b was created. So we keep track of the
165 // original tail of a and start our iteration of a there. We also track the bounds of the nodes
166 // appended to chain a that will be skipped for bounds testing. If the original tail of a is
167 // merged into an op in b (case 2) then we advance the "original tail" towards the head of a.
168 GrOp* origATail = chainA.tail();
169 SkRect skipBounds = SkRectPriv::MakeLargestInverted();
170 do {
171 int numMergeChecks = 0;
172 bool merged = false;
173 bool noSkip = (origATail == chainA.tail());
174 SkASSERT(noSkip == (skipBounds == SkRectPriv::MakeLargestInverted()));
175 bool canBackwardMerge = noSkip || can_reorder(chainB.head()->bounds(), skipBounds);
176 SkRect forwardMergeBounds = skipBounds;
177 GrOp* a = origATail;
178 while (a) {
179 bool canForwardMerge =
180 (a == chainA.tail()) || can_reorder(a->bounds(), forwardMergeBounds);
181 if (canForwardMerge || canBackwardMerge) {
182 auto result = a->combineIfPossible(chainB.head(), caps);
183 SkASSERT(result != GrOp::CombineResult::kCannotCombine);
184 merged = (result == GrOp::CombineResult::kMerged);
185 GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
186 chainB.head()->name(), chainB.head()->uniqueID(), a->name(),
187 a->uniqueID());
188 }
189 if (merged) {
190 GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, a, chainB.head());
191 if (canBackwardMerge) {
192 pool->release(chainB.popHead());
193 } else {
194 // We merged the contents of b's head into a. We will replace b's head with a in
195 // chain b.
196 SkASSERT(canForwardMerge);
197 if (a == origATail) {
198 origATail = a->prevInChain();
199 }
200 std::unique_ptr<GrOp> detachedA = chainA.removeOp(a);
201 pool->release(chainB.popHead());
202 chainB.pushHead(std::move(detachedA));
203 if (chainA.empty()) {
204 // We merged all the nodes in chain a to chain b.
205 return chainB;
206 }
207 }
208 break;
209 } else {
210 if (++numMergeChecks == kMaxOpMergeDistance) {
211 break;
212 }
213 forwardMergeBounds.joinNonEmptyArg(a->bounds());
214 canBackwardMerge =
215 canBackwardMerge && can_reorder(chainB.head()->bounds(), a->bounds());
216 a = a->prevInChain();
217 }
218 }
219 // If we weren't able to merge b's head then pop b's head from chain b and make it the new
220 // tail of a.
221 if (!merged) {
222 chainA.pushTail(chainB.popHead());
223 skipBounds.joinNonEmptyArg(chainA.tail()->bounds());
224 }
225 } while (!chainB.empty());
226 return chainA;
227 }
228
229 // Attempts to concatenate the given chain onto our own and merge ops across the chains. Returns
230 // whether the operation succeeded. On success, the provided list will be returned empty.
tryConcat(List * list,GrProcessorSet::Analysis processorAnalysis,const DstProxy & dstProxy,const GrAppliedClip * appliedClip,const SkRect & bounds,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)231 bool GrRenderTargetOpList::OpChain::tryConcat(
232 List* list, GrProcessorSet::Analysis processorAnalysis, const DstProxy& dstProxy,
233 const GrAppliedClip* appliedClip, const SkRect& bounds, const GrCaps& caps,
234 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
235 SkASSERT(!fList.empty());
236 SkASSERT(!list->empty());
237 SkASSERT(fProcessorAnalysis.requiresDstTexture() == SkToBool(fDstProxy.proxy()));
238 SkASSERT(processorAnalysis.requiresDstTexture() == SkToBool(dstProxy.proxy()));
239 // All returns use explicit tuple constructor rather than {a, b} to work around old GCC bug.
240 if (fList.head()->classID() != list->head()->classID() ||
241 SkToBool(fAppliedClip) != SkToBool(appliedClip) ||
242 (fAppliedClip && *fAppliedClip != *appliedClip) ||
243 (fProcessorAnalysis.requiresNonOverlappingDraws() !=
244 processorAnalysis.requiresNonOverlappingDraws()) ||
245 (fProcessorAnalysis.requiresNonOverlappingDraws() &&
246 // Non-overlaping draws are only required when Ganesh will either insert a barrier,
247 // or read back a new dst texture between draws. In either case, we can neither
248 // chain nor combine overlapping Ops.
249 GrRectsTouchOrOverlap(fBounds, bounds)) ||
250 (fProcessorAnalysis.requiresDstTexture() != processorAnalysis.requiresDstTexture()) ||
251 (fProcessorAnalysis.requiresDstTexture() && fDstProxy != dstProxy)) {
252 return false;
253 }
254
255 SkDEBUGCODE(bool first = true;)
256 do {
257 switch (fList.tail()->combineIfPossible(list->head(), caps)) {
258 case GrOp::CombineResult::kCannotCombine:
259 // If an op supports chaining then it is required that chaining is transitive and
260 // that if any two ops in two different chains can merge then the two chains
261 // may also be chained together. Thus, we should only hit this on the first
262 // iteration.
263 SkASSERT(first);
264 return false;
265 case GrOp::CombineResult::kMayChain:
266 fList = DoConcat(std::move(fList), skstd::exchange(*list, List()), caps, pool,
267 auditTrail);
268 // The above exchange cleared out 'list'. The list needs to be empty now for the
269 // loop to terminate.
270 SkASSERT(list->empty());
271 break;
272 case GrOp::CombineResult::kMerged: {
273 GrOP_INFO("\t\t: (%s opID: %u) -> Combining with (%s, opID: %u)\n",
274 list->tail()->name(), list->tail()->uniqueID(), list->head()->name(),
275 list->head()->uniqueID());
276 GR_AUDIT_TRAIL_OPS_RESULT_COMBINED(auditTrail, fList.tail(), list->head());
277 pool->release(list->popHead());
278 break;
279 }
280 }
281 SkDEBUGCODE(first = false);
282 } while (!list->empty());
283
284 // The new ops were successfully merged and/or chained onto our own.
285 fBounds.joinPossiblyEmptyRect(bounds);
286 return true;
287 }
288
prependChain(OpChain * that,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)289 bool GrRenderTargetOpList::OpChain::prependChain(OpChain* that, const GrCaps& caps,
290 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
291 if (!that->tryConcat(
292 &fList, fProcessorAnalysis, fDstProxy, fAppliedClip, fBounds, caps, pool, auditTrail)) {
293 this->validate();
294 // append failed
295 return false;
296 }
297
298 // 'that' owns the combined chain. Move it into 'this'.
299 SkASSERT(fList.empty());
300 fList = std::move(that->fList);
301 fBounds = that->fBounds;
302
303 that->fDstProxy.setProxy(nullptr);
304 if (that->fAppliedClip) {
305 for (int i = 0; i < that->fAppliedClip->numClipCoverageFragmentProcessors(); ++i) {
306 that->fAppliedClip->detachClipCoverageFragmentProcessor(i);
307 }
308 }
309 this->validate();
310 return true;
311 }
312
appendOp(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,const DstProxy * dstProxy,const GrAppliedClip * appliedClip,const GrCaps & caps,GrOpMemoryPool * pool,GrAuditTrail * auditTrail)313 std::unique_ptr<GrOp> GrRenderTargetOpList::OpChain::appendOp(
314 std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis,
315 const DstProxy* dstProxy, const GrAppliedClip* appliedClip, const GrCaps& caps,
316 GrOpMemoryPool* pool, GrAuditTrail* auditTrail) {
317 const GrXferProcessor::DstProxy noDstProxy;
318 if (!dstProxy) {
319 dstProxy = &noDstProxy;
320 }
321 SkASSERT(op->isChainHead() && op->isChainTail());
322 SkRect opBounds = op->bounds();
323 List chain(std::move(op));
324 if (!this->tryConcat(
325 &chain, processorAnalysis, *dstProxy, appliedClip, opBounds, caps, pool, auditTrail)) {
326 // append failed, give the op back to the caller.
327 this->validate();
328 return chain.popHead();
329 }
330
331 SkASSERT(chain.empty());
332 this->validate();
333 return nullptr;
334 }
335
validate() const336 inline void GrRenderTargetOpList::OpChain::validate() const {
337 #ifdef SK_DEBUG
338 fList.validate();
339 for (const auto& op : GrOp::ChainRange<>(fList.head())) {
340 // Not using SkRect::contains because we allow empty rects.
341 SkASSERT(fBounds.fLeft <= op.bounds().fLeft && fBounds.fTop <= op.bounds().fTop &&
342 fBounds.fRight >= op.bounds().fRight && fBounds.fBottom >= op.bounds().fBottom);
343 }
344 #endif
345 }
346
347 ////////////////////////////////////////////////////////////////////////////////
348
GrRenderTargetOpList(GrResourceProvider * resourceProvider,sk_sp<GrOpMemoryPool> opMemoryPool,GrRenderTargetProxy * proxy,GrAuditTrail * auditTrail)349 GrRenderTargetOpList::GrRenderTargetOpList(GrResourceProvider* resourceProvider,
350 sk_sp<GrOpMemoryPool> opMemoryPool,
351 GrRenderTargetProxy* proxy,
352 GrAuditTrail* auditTrail)
353 : INHERITED(resourceProvider, std::move(opMemoryPool), proxy, auditTrail)
354 , fLastClipStackGenID(SK_InvalidUniqueID)
355 SkDEBUGCODE(, fNumClips(0)) {
356 }
357
deleteOps()358 void GrRenderTargetOpList::deleteOps() {
359 for (auto& chain : fOpChains) {
360 chain.deleteOps(fOpMemoryPool.get());
361 }
362 fOpChains.reset();
363 }
364
~GrRenderTargetOpList()365 GrRenderTargetOpList::~GrRenderTargetOpList() {
366 this->deleteOps();
367 }
368
369 ////////////////////////////////////////////////////////////////////////////////
370
371 #ifdef SK_DEBUG
dump(bool printDependencies) const372 void GrRenderTargetOpList::dump(bool printDependencies) const {
373 INHERITED::dump(printDependencies);
374
375 SkDebugf("ops (%d):\n", fOpChains.count());
376 for (int i = 0; i < fOpChains.count(); ++i) {
377 SkDebugf("*******************************\n");
378 if (!fOpChains[i].head()) {
379 SkDebugf("%d: <combined forward or failed instantiation>\n", i);
380 } else {
381 SkDebugf("%d: %s\n", i, fOpChains[i].head()->name());
382 SkRect bounds = fOpChains[i].bounds();
383 SkDebugf("ClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
384 bounds.fTop, bounds.fRight, bounds.fBottom);
385 for (const auto& op : GrOp::ChainRange<>(fOpChains[i].head())) {
386 SkString info = SkTabString(op.dumpInfo(), 1);
387 SkDebugf("%s\n", info.c_str());
388 bounds = op.bounds();
389 SkDebugf("\tClippedBounds: [L: %.2f, T: %.2f, R: %.2f, B: %.2f]\n", bounds.fLeft,
390 bounds.fTop, bounds.fRight, bounds.fBottom);
391 }
392 }
393 }
394 }
395
visitProxies_debugOnly(const GrOp::VisitProxyFunc & func) const396 void GrRenderTargetOpList::visitProxies_debugOnly(const GrOp::VisitProxyFunc& func) const {
397 for (const OpChain& chain : fOpChains) {
398 chain.visitProxies(func, GrOp::VisitorType::kOther);
399 }
400 }
401
402 #endif
403
onPrepare(GrOpFlushState * flushState)404 void GrRenderTargetOpList::onPrepare(GrOpFlushState* flushState) {
405 SkASSERT(fTarget.get()->peekRenderTarget());
406 SkASSERT(this->isClosed());
407 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
408 TRACE_EVENT0("skia", TRACE_FUNC);
409 #endif
410
411 // Loop over the ops that haven't yet been prepared.
412 for (const auto& chain : fOpChains) {
413 if (chain.head()) {
414 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
415 TRACE_EVENT0("skia", chain.head()->name());
416 #endif
417 GrOpFlushState::OpArgs opArgs = {
418 chain.head(),
419 fTarget.get()->asRenderTargetProxy(),
420 chain.appliedClip(),
421 chain.dstProxy()
422 };
423 flushState->setOpArgs(&opArgs);
424 chain.head()->prepare(flushState);
425 flushState->setOpArgs(nullptr);
426 }
427 }
428 }
429
create_command_buffer(GrGpu * gpu,GrRenderTarget * rt,GrSurfaceOrigin origin,const SkRect & bounds,GrLoadOp colorLoadOp,const SkPMColor4f & loadClearColor,GrLoadOp stencilLoadOp)430 static GrGpuRTCommandBuffer* create_command_buffer(GrGpu* gpu,
431 GrRenderTarget* rt,
432 GrSurfaceOrigin origin,
433 const SkRect& bounds,
434 GrLoadOp colorLoadOp,
435 const SkPMColor4f& loadClearColor,
436 GrLoadOp stencilLoadOp) {
437 const GrGpuRTCommandBuffer::LoadAndStoreInfo kColorLoadStoreInfo {
438 colorLoadOp,
439 GrStoreOp::kStore,
440 loadClearColor
441 };
442
443 // TODO:
444 // We would like to (at this level) only ever clear & discard. We would need
445 // to stop splitting up higher level opLists for copyOps to achieve that.
446 // Note: we would still need SB loads and stores but they would happen at a
447 // lower level (inside the VK command buffer).
448 const GrGpuRTCommandBuffer::StencilLoadAndStoreInfo stencilLoadAndStoreInfo {
449 stencilLoadOp,
450 GrStoreOp::kStore,
451 };
452
453 return gpu->getCommandBuffer(rt, origin, bounds, kColorLoadStoreInfo, stencilLoadAndStoreInfo);
454 }
455
456 // TODO: this is where GrOp::renderTarget is used (which is fine since it
457 // is at flush time). However, we need to store the RenderTargetProxy in the
458 // Ops and instantiate them here.
onExecute(GrOpFlushState * flushState)459 bool GrRenderTargetOpList::onExecute(GrOpFlushState* flushState) {
460 // TODO: Forcing the execution of the discard here isn't ideal since it will cause us to do a
461 // discard and then store the data back in memory so that the load op on future draws doesn't
462 // think the memory is unitialized. Ideally we would want a system where we are tracking whether
463 // the proxy itself has valid data or not, and then use that as a signal on whether we should be
464 // loading or discarding. In that world we wouldni;t need to worry about executing oplists with
465 // no ops just to do a discard.
466 if (fOpChains.empty() && GrLoadOp::kClear != fColorLoadOp &&
467 GrLoadOp::kDiscard != fColorLoadOp) {
468 return false;
469 }
470
471 SkASSERT(fTarget.get()->peekRenderTarget());
472 TRACE_EVENT0("skia", TRACE_FUNC);
473
474 // TODO: at the very least, we want the stencil store op to always be discard (at this
475 // level). In Vulkan, sub-command buffers would still need to load & store the stencil buffer.
476
477 // Make sure load ops are not kClear if the GPU needs to use draws for clears
478 SkASSERT(fColorLoadOp != GrLoadOp::kClear ||
479 !flushState->gpu()->caps()->performColorClearsAsDraws());
480 SkASSERT(fStencilLoadOp != GrLoadOp::kClear ||
481 !flushState->gpu()->caps()->performStencilClearsAsDraws());
482 GrGpuRTCommandBuffer* commandBuffer = create_command_buffer(
483 flushState->gpu(),
484 fTarget.get()->peekRenderTarget(),
485 fTarget.get()->origin(),
486 fTarget.get()->getBoundsRect(),
487 fColorLoadOp,
488 fLoadClearColor,
489 fStencilLoadOp);
490 flushState->setCommandBuffer(commandBuffer);
491 commandBuffer->begin();
492
493 // Draw all the generated geometry.
494 for (const auto& chain : fOpChains) {
495 if (!chain.head()) {
496 continue;
497 }
498 #ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
499 TRACE_EVENT0("skia", chain.head()->name());
500 #endif
501
502 GrOpFlushState::OpArgs opArgs {
503 chain.head(),
504 fTarget.get()->asRenderTargetProxy(),
505 chain.appliedClip(),
506 chain.dstProxy()
507 };
508
509 flushState->setOpArgs(&opArgs);
510 chain.head()->execute(flushState, chain.bounds());
511 flushState->setOpArgs(nullptr);
512 }
513
514 commandBuffer->end();
515 flushState->gpu()->submit(commandBuffer);
516 flushState->setCommandBuffer(nullptr);
517
518 return true;
519 }
520
endFlush()521 void GrRenderTargetOpList::endFlush() {
522 fLastClipStackGenID = SK_InvalidUniqueID;
523 this->deleteOps();
524 fClipAllocator.reset();
525 INHERITED::endFlush();
526 }
527
discard()528 void GrRenderTargetOpList::discard() {
529 // Discard calls to in-progress opLists are ignored. Calls at the start update the
530 // opLists' color & stencil load ops.
531 if (this->isEmpty()) {
532 fColorLoadOp = GrLoadOp::kDiscard;
533 fStencilLoadOp = GrLoadOp::kDiscard;
534 }
535 }
536
setStencilLoadOp(GrLoadOp op)537 void GrRenderTargetOpList::setStencilLoadOp(GrLoadOp op) {
538 fStencilLoadOp = op;
539 }
540
setColorLoadOp(GrLoadOp op,const SkPMColor4f & color)541 void GrRenderTargetOpList::setColorLoadOp(GrLoadOp op, const SkPMColor4f& color) {
542 fColorLoadOp = op;
543 fLoadClearColor = color;
544 }
545
resetForFullscreenClear()546 bool GrRenderTargetOpList::resetForFullscreenClear() {
547 // Mark the color load op as discard (this may be followed by a clearColorOnLoad call to make
548 // the load op kClear, or it may be followed by an explicit op). In the event of an absClear()
549 // after a regular clear(), we could end up with a clear load op and a real clear op in the list
550 // if the load op were not reset here.
551 fColorLoadOp = GrLoadOp::kDiscard;
552
553 // Regardless of how the clear is implemented (native clear or a fullscreen quad), all prior ops
554 // would be overwritten, so discard them entirely. The one exception is if the opList is marked
555 // as needing a stencil buffer then there may be a prior op that writes to the stencil buffer.
556 // Although the clear will ignore the stencil buffer, following draw ops may not so we can't get
557 // rid of all the preceding ops. Beware! If we ever add any ops that have a side effect beyond
558 // modifying the stencil buffer we will need a more elaborate tracking system (skbug.com/7002).
559 if (this->isEmpty() || !fTarget.get()->asRenderTargetProxy()->needsStencil()) {
560 this->deleteOps();
561 fDeferredProxies.reset();
562
563 // If the opList is using a render target which wraps a vulkan command buffer, we can't do a
564 // clear load since we cannot change the render pass that we are using. Thus we fall back to
565 // making a clear op in this case.
566 return !fTarget.get()->asRenderTargetProxy()->wrapsVkSecondaryCB();
567 }
568
569 // Could not empty the list, so an op must be added to handle the clear
570 return false;
571 }
572
573 ////////////////////////////////////////////////////////////////////////////////
574
575 // This closely parallels GrTextureOpList::copySurface but renderTargetOpLists
576 // also store the applied clip and dest proxy with the op
copySurface(GrContext * context,GrSurfaceProxy * dst,GrSurfaceProxy * src,const SkIRect & srcRect,const SkIPoint & dstPoint)577 bool GrRenderTargetOpList::copySurface(GrContext* context,
578 GrSurfaceProxy* dst,
579 GrSurfaceProxy* src,
580 const SkIRect& srcRect,
581 const SkIPoint& dstPoint) {
582 SkASSERT(dst->asRenderTargetProxy() == fTarget.get());
583 std::unique_ptr<GrOp> op = GrCopySurfaceOp::Make(context, dst, src, srcRect, dstPoint);
584 if (!op) {
585 return false;
586 }
587
588 this->addOp(std::move(op), *context->contextPriv().caps());
589 return true;
590 }
591
purgeOpsWithUninstantiatedProxies()592 void GrRenderTargetOpList::purgeOpsWithUninstantiatedProxies() {
593 bool hasUninstantiatedProxy = false;
594 auto checkInstantiation = [&hasUninstantiatedProxy](GrSurfaceProxy* p) {
595 if (!p->isInstantiated()) {
596 hasUninstantiatedProxy = true;
597 }
598 };
599 for (OpChain& recordedOp : fOpChains) {
600 hasUninstantiatedProxy = false;
601 recordedOp.visitProxies(checkInstantiation, GrOp::VisitorType::kOther);
602 if (hasUninstantiatedProxy) {
603 // When instantiation of the proxy fails we drop the Op
604 recordedOp.deleteOps(fOpMemoryPool.get());
605 }
606 }
607 }
608
gatherProxyIntervals(GrResourceAllocator * alloc) const609 void GrRenderTargetOpList::gatherProxyIntervals(GrResourceAllocator* alloc) const {
610 unsigned int cur = alloc->numOps();
611
612 for (int i = 0; i < fDeferredProxies.count(); ++i) {
613 SkASSERT(!fDeferredProxies[i]->isInstantiated());
614 // We give all the deferred proxies a write usage at the very start of flushing. This
615 // locks them out of being reused for the entire flush until they are read - and then
616 // they can be recycled. This is a bit unfortunate because a flush can proceed in waves
617 // with sub-flushes. The deferred proxies only need to be pinned from the start of
618 // the sub-flush in which they appear.
619 alloc->addInterval(fDeferredProxies[i], 0, 0);
620 }
621
622 // Add the interval for all the writes to this opList's target
623 if (fOpChains.count()) {
624 alloc->addInterval(fTarget.get(), cur, cur + fOpChains.count() - 1);
625 } else {
626 // This can happen if there is a loadOp (e.g., a clear) but no other draws. In this case we
627 // still need to add an interval for the destination so we create a fake op# for
628 // the missing clear op.
629 alloc->addInterval(fTarget.get());
630 alloc->incOps();
631 }
632
633 auto gather = [ alloc SkDEBUGCODE(, this) ] (GrSurfaceProxy* p) {
634 alloc->addInterval(p SkDEBUGCODE(, fTarget.get() == p));
635 };
636 for (const OpChain& recordedOp : fOpChains) {
637 // only diff from the GrTextureOpList version
638 recordedOp.visitProxies(gather, GrOp::VisitorType::kAllocatorGather);
639
640 // Even though the op may have been moved we still need to increment the op count to
641 // keep all the math consistent.
642 alloc->incOps();
643 }
644 }
645
recordOp(std::unique_ptr<GrOp> op,GrProcessorSet::Analysis processorAnalysis,GrAppliedClip * clip,const DstProxy * dstProxy,const GrCaps & caps)646 void GrRenderTargetOpList::recordOp(
647 std::unique_ptr<GrOp> op, GrProcessorSet::Analysis processorAnalysis, GrAppliedClip* clip,
648 const DstProxy* dstProxy, const GrCaps& caps) {
649 SkDEBUGCODE(op->validate();)
650 SkASSERT(processorAnalysis.requiresDstTexture() == (dstProxy && dstProxy->proxy()));
651 SkASSERT(fTarget.get());
652
653 // A closed GrOpList should never receive new/more ops
654 SkASSERT(!this->isClosed());
655 if (!op->bounds().isFinite()) {
656 fOpMemoryPool->release(std::move(op));
657 return;
658 }
659
660 // Check if there is an op we can combine with by linearly searching back until we either
661 // 1) check every op
662 // 2) intersect with something
663 // 3) find a 'blocker'
664 GR_AUDIT_TRAIL_ADD_OP(fAuditTrail, op.get(), fTarget.get()->uniqueID());
665 GrOP_INFO("opList: %d Recording (%s, opID: %u)\n"
666 "\tBounds [L: %.2f, T: %.2f R: %.2f B: %.2f]\n",
667 this->uniqueID(),
668 op->name(),
669 op->uniqueID(),
670 op->bounds().fLeft, op->bounds().fTop,
671 op->bounds().fRight, op->bounds().fBottom);
672 GrOP_INFO(SkTabString(op->dumpInfo(), 1).c_str());
673 GrOP_INFO("\tOutcome:\n");
674 int maxCandidates = SkTMin(kMaxOpChainDistance, fOpChains.count());
675 if (maxCandidates) {
676 int i = 0;
677 while (true) {
678 OpChain& candidate = fOpChains.fromBack(i);
679 op = candidate.appendOp(std::move(op), processorAnalysis, dstProxy, clip, caps,
680 fOpMemoryPool.get(), fAuditTrail);
681 if (!op) {
682 return;
683 }
684 // Stop going backwards if we would cause a painter's order violation.
685 if (!can_reorder(candidate.bounds(), op->bounds())) {
686 GrOP_INFO("\t\tBackward: Intersects with chain (%s, head opID: %u)\n",
687 candidate.head()->name(), candidate.head()->uniqueID());
688 break;
689 }
690 if (++i == maxCandidates) {
691 GrOP_INFO("\t\tBackward: Reached max lookback or beginning of op array %d\n", i);
692 break;
693 }
694 }
695 } else {
696 GrOP_INFO("\t\tBackward: FirstOp\n");
697 }
698 if (clip) {
699 clip = fClipAllocator.make<GrAppliedClip>(std::move(*clip));
700 SkDEBUGCODE(fNumClips++;)
701 }
702 fOpChains.emplace_back(std::move(op), processorAnalysis, clip, dstProxy);
703 }
704
forwardCombine(const GrCaps & caps)705 void GrRenderTargetOpList::forwardCombine(const GrCaps& caps) {
706 SkASSERT(!this->isClosed());
707 GrOP_INFO("opList: %d ForwardCombine %d ops:\n", this->uniqueID(), fOpChains.count());
708
709 for (int i = 0; i < fOpChains.count() - 1; ++i) {
710 OpChain& chain = fOpChains[i];
711 int maxCandidateIdx = SkTMin(i + kMaxOpChainDistance, fOpChains.count() - 1);
712 int j = i + 1;
713 while (true) {
714 OpChain& candidate = fOpChains[j];
715 if (candidate.prependChain(&chain, caps, fOpMemoryPool.get(), fAuditTrail)) {
716 break;
717 }
718 // Stop traversing if we would cause a painter's order violation.
719 if (!can_reorder(chain.bounds(), candidate.bounds())) {
720 GrOP_INFO(
721 "\t\t%d: chain (%s head opID: %u) -> "
722 "Intersects with chain (%s, head opID: %u)\n",
723 i, chain.head()->name(), chain.head()->uniqueID(), candidate.head()->name(),
724 candidate.head()->uniqueID());
725 break;
726 }
727 if (++j > maxCandidateIdx) {
728 GrOP_INFO("\t\t%d: chain (%s opID: %u) -> Reached max lookahead or end of array\n",
729 i, chain.head()->name(), chain.head()->uniqueID());
730 break;
731 }
732 }
733 }
734 }
735
736