• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2017 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrCCCubicShader.h"
9 
10 #include "glsl/GrGLSLFragmentShaderBuilder.h"
11 #include "glsl/GrGLSLProgramBuilder.h"
12 #include "glsl/GrGLSLVertexGeoBuilder.h"
13 
14 using Shader = GrCCCoverageProcessor::Shader;
15 
emitSetupCode(GrGLSLVertexGeoBuilder * s,const char * pts,const char * wind,const char **) const16 void GrCCCubicShader::emitSetupCode(GrGLSLVertexGeoBuilder* s, const char* pts,
17                                     const char* wind, const char** /*outHull4*/) const {
18     // Find the cubic's power basis coefficients.
19     s->codeAppendf("float2x4 C = float4x4(-1,  3, -3,  1, "
20                                          " 3, -6,  3,  0, "
21                                          "-3,  3,  0,  0, "
22                                          " 1,  0,  0,  0) * transpose(%s);", pts);
23 
24     // Find the cubic's inflection function.
25     s->codeAppend ("float D3 = +determinant(float2x2(C[0].yz, C[1].yz));");
26     s->codeAppend ("float D2 = -determinant(float2x2(C[0].xz, C[1].xz));");
27     s->codeAppend ("float D1 = +determinant(float2x2(C));");
28 
29     // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
30     // from overflow while solving for roots and KLM functionals.
31     s->codeAppend ("float Dmax = max(max(abs(D1), abs(D2)), abs(D3));");
32     s->codeAppend ("float norm;");
33     if (s->getProgramBuilder()->shaderCaps()->fpManipulationSupport()) {
34         s->codeAppend ("int exp;");
35         s->codeAppend ("frexp(Dmax, exp);");
36         s->codeAppend ("norm = ldexp(1, 1 - exp);");
37     } else {
38         s->codeAppend ("norm = 1/Dmax;"); // Dmax will not be 0 because we cull line cubics on CPU.
39     }
40     s->codeAppend ("D3 *= norm;");
41     s->codeAppend ("D2 *= norm;");
42     s->codeAppend ("D1 *= norm;");
43 
44     // Calculate the KLM matrix.
45     s->declareGlobal(fKLMMatrix);
46     s->codeAppend ("float discr = 3*D2*D2 - 4*D1*D3;");
47     s->codeAppend ("float x = discr >= 0 ? 3 : 1;");
48     s->codeAppend ("float q = sqrt(x * abs(discr));");
49     s->codeAppend ("q = x*D2 + (D2 >= 0 ? q : -q);");
50 
51     s->codeAppend ("float2 l, m;");
52     s->codeAppend ("l.ts = float2(q, 2*x * D1);");
53     s->codeAppend ("m.ts = float2(2, q) * (discr >= 0 ? float2(D3, 1) "
54                                                      ": float2(D2*D2 - D3*D1, D1));");
55 
56     s->codeAppend ("float4 K;");
57     s->codeAppend ("float4 lm = l.sstt * m.stst;");
58     s->codeAppend ("K = float4(0, lm.x, -lm.y - lm.z, lm.w);");
59 
60     s->codeAppend ("float4 L, M;");
61     s->codeAppend ("lm.yz += 2*lm.zy;");
62     s->codeAppend ("L = float4(-1,x,-x,1) * l.sstt * (discr >= 0 ? l.ssst * l.sttt : lm);");
63     s->codeAppend ("M = float4(-1,x,-x,1) * m.sstt * (discr >= 0 ? m.ssst * m.sttt : lm.xzyw);");
64 
65     s->codeAppend ("int middlerow = abs(D2) > abs(D1) ? 2 : 1;");
66     s->codeAppend ("float3x3 CI = inverse(float3x3(C[0][0], C[0][middlerow], C[0][3], "
67                                                   "C[1][0], C[1][middlerow], C[1][3], "
68                                                   "      0,               0,       1));");
69     s->codeAppendf("%s = CI * float3x3(K[0], K[middlerow], K[3], "
70                                       "L[0], L[middlerow], L[3], "
71                                       "M[0], M[middlerow], M[3]);", fKLMMatrix.c_str());
72 
73     // Evaluate the cubic at T=.5 for a mid-ish point.
74     s->codeAppendf("float2 midpoint = %s * float4(.125, .375, .375, .125);", pts);
75 
76     // Orient the KLM matrix so L & M are both positive on the side of the curve we wish to fill.
77     s->codeAppendf("float2 orientation = sign(float3(midpoint, 1) * float2x3(%s[1], %s[2]));",
78                    fKLMMatrix.c_str(), fKLMMatrix.c_str());
79     s->codeAppendf("%s *= float3x3(orientation[0] * orientation[1], 0, 0, "
80                                   "0, orientation[0], 0, "
81                                   "0, 0, orientation[1]);", fKLMMatrix.c_str());
82 
83     // Determine the amount of additional coverage to subtract out for the flat edge (P3 -> P0).
84     s->declareGlobal(fEdgeDistanceEquation);
85     s->codeAppendf("int edgeidx0 = %s > 0 ? 3 : 0;", wind);
86     s->codeAppendf("float2 edgept0 = %s[edgeidx0];", pts);
87     s->codeAppendf("float2 edgept1 = %s[3 - edgeidx0];", pts);
88     Shader::EmitEdgeDistanceEquation(s, "edgept0", "edgept1", fEdgeDistanceEquation.c_str());
89 }
90 
onEmitVaryings(GrGLSLVaryingHandler * varyingHandler,GrGLSLVarying::Scope scope,SkString * code,const char * position,const char * coverage,const char * cornerCoverage)91 void GrCCCubicShader::onEmitVaryings(GrGLSLVaryingHandler* varyingHandler,
92                                      GrGLSLVarying::Scope scope, SkString* code,
93                                      const char* position, const char* coverage,
94                                      const char* cornerCoverage) {
95     fKLM_fEdge.reset(kFloat4_GrSLType, scope);
96     varyingHandler->addVarying("klm_and_edge", &fKLM_fEdge);
97     code->appendf("float3 klm = float3(%s, 1) * %s;", position, fKLMMatrix.c_str());
98     // We give L & M both the same sign as wind, in order to pass this value to the fragment shader.
99     // (Cubics are pre-chopped such that L & M do not change sign within any individual segment.)
100     code->appendf("%s.xyz = klm * float3(1, %s, %s);",
101                   OutName(fKLM_fEdge), coverage, coverage); // coverage == wind on curves.
102     code->appendf("%s.w = dot(float3(%s, 1), %s);", // Flat edge opposite the curve.
103                   OutName(fKLM_fEdge), position, fEdgeDistanceEquation.c_str());
104 
105     fGradMatrix.reset(kFloat4_GrSLType, scope);
106     varyingHandler->addVarying("grad_matrix", &fGradMatrix);
107     code->appendf("%s.xy = 2*bloat * 3 * klm[0] * %s[0].xy;",
108                   OutName(fGradMatrix), fKLMMatrix.c_str());
109     code->appendf("%s.zw = -2*bloat * (klm[1] * %s[2].xy + klm[2] * %s[1].xy);",
110                     OutName(fGradMatrix), fKLMMatrix.c_str(), fKLMMatrix.c_str());
111 
112     if (cornerCoverage) {
113         code->appendf("half hull_coverage; {");
114         this->calcHullCoverage(code, OutName(fKLM_fEdge), OutName(fGradMatrix), "hull_coverage");
115         code->appendf("}");
116         fCornerCoverage.reset(kHalf2_GrSLType, scope);
117         varyingHandler->addVarying("corner_coverage", &fCornerCoverage);
118         code->appendf("%s = half2(hull_coverage, 1) * %s;",
119                       OutName(fCornerCoverage), cornerCoverage);
120     }
121 }
122 
onEmitFragmentCode(GrGLSLFPFragmentBuilder * f,const char * outputCoverage) const123 void GrCCCubicShader::onEmitFragmentCode(GrGLSLFPFragmentBuilder* f,
124                                          const char* outputCoverage) const {
125     this->calcHullCoverage(&AccessCodeString(f), fKLM_fEdge.fsIn(), fGradMatrix.fsIn(),
126                            outputCoverage);
127 
128     // Wind is the sign of both L and/or M. Take the sign of whichever has the larger magnitude.
129     // (In reality, either would be fine because we chop cubics with more than a half pixel of
130     // padding around the L & M lines, so neither should approach zero.)
131     f->codeAppend ("half wind = sign(l + m);");
132     f->codeAppendf("%s *= wind;", outputCoverage);
133 
134     if (fCornerCoverage.fsIn()) {
135         f->codeAppendf("%s = %s.x * %s.y + %s;", // Attenuated corner coverage.
136                        outputCoverage, fCornerCoverage.fsIn(), fCornerCoverage.fsIn(),
137                        outputCoverage);
138     }
139 }
140 
calcHullCoverage(SkString * code,const char * klmAndEdge,const char * gradMatrix,const char * outputCoverage) const141 void GrCCCubicShader::calcHullCoverage(SkString* code, const char* klmAndEdge,
142                                        const char* gradMatrix, const char* outputCoverage) const {
143     code->appendf("float k = %s.x, l = %s.y, m = %s.z;", klmAndEdge, klmAndEdge, klmAndEdge);
144     code->append ("float f = k*k*k - l*m;");
145     code->appendf("float2 grad = %s.xy * k + %s.zw;", gradMatrix, gradMatrix);
146     code->append ("float fwidth = abs(grad.x) + abs(grad.y);");
147     code->appendf("%s = min(0.5 - f/fwidth, 1);", outputCoverage); // Curve coverage.
148     code->appendf("half d = min(%s.w, 0);", klmAndEdge); // Flat edge opposite the curve.
149     code->appendf("%s = max(%s + d, 0);", outputCoverage, outputCoverage); // Total hull coverage.
150 }
151