• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2018 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "GrGradientShader.h"
9 
10 #include "GrClampedGradientEffect.h"
11 #include "GrTiledGradientEffect.h"
12 
13 #include "GrLinearGradientLayout.h"
14 #include "GrRadialGradientLayout.h"
15 #include "GrSweepGradientLayout.h"
16 #include "GrTwoPointConicalGradientLayout.h"
17 
18 #include "GrDualIntervalGradientColorizer.h"
19 #include "GrSingleIntervalGradientColorizer.h"
20 #include "GrTextureGradientColorizer.h"
21 #include "GrUnrolledBinaryGradientColorizer.h"
22 #include "GrGradientBitmapCache.h"
23 
24 #include "SkGr.h"
25 #include "GrColor.h"
26 #include "GrContext.h"
27 #include "GrContextPriv.h"
28 
29 // Intervals smaller than this (that aren't hard stops) on low-precision-only devices force us to
30 // use the textured gradient
31 static const SkScalar kLowPrecisionIntervalLimit = 0.01f;
32 
33 // Each cache entry costs 1K or 2K of RAM. Each bitmap will be 1x256 at either 32bpp or 64bpp.
34 static const int kMaxNumCachedGradientBitmaps = 32;
35 static const int kGradientTextureSize = 256;
36 
37 // NOTE: signature takes raw pointers to the color/pos arrays and a count to make it easy for
38 // MakeColorizer to transparently take care of hard stops at the end points of the gradient.
make_textured_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool premul,const GrFPArgs & args)39 static std::unique_ptr<GrFragmentProcessor> make_textured_colorizer(const SkPMColor4f* colors,
40         const SkScalar* positions, int count, bool premul, const GrFPArgs& args) {
41     static GrGradientBitmapCache gCache(kMaxNumCachedGradientBitmaps, kGradientTextureSize);
42 
43     // Use 8888 or F16, depending on the destination config.
44     // TODO: Use 1010102 for opaque gradients, at least if destination is 1010102?
45     SkColorType colorType = kRGBA_8888_SkColorType;
46     if (kLow_GrSLPrecision != GrSLSamplerPrecision(args.fDstColorSpaceInfo->config()) &&
47         args.fContext->contextPriv().caps()->isConfigTexturable(kRGBA_half_GrPixelConfig)) {
48         colorType = kRGBA_F16_SkColorType;
49     }
50     SkAlphaType alphaType = premul ? kPremul_SkAlphaType : kUnpremul_SkAlphaType;
51 
52     SkBitmap bitmap;
53     gCache.getGradient(colors, positions, count, colorType, alphaType, &bitmap);
54     SkASSERT(1 == bitmap.height() && SkIsPow2(bitmap.width()));
55     SkASSERT(bitmap.isImmutable());
56 
57     sk_sp<GrTextureProxy> proxy = GrMakeCachedBitmapProxy(
58             args.fContext->contextPriv().proxyProvider(), bitmap);
59     if (proxy == nullptr) {
60         SkDebugf("Gradient won't draw. Could not create texture.");
61         return nullptr;
62     }
63 
64     return GrTextureGradientColorizer::Make(std::move(proxy));
65 }
66 
67 // Analyze the shader's color stops and positions and chooses an appropriate colorizer to represent
68 // the gradient.
make_colorizer(const SkPMColor4f * colors,const SkScalar * positions,int count,bool premul,const GrFPArgs & args)69 static std::unique_ptr<GrFragmentProcessor> make_colorizer(const SkPMColor4f* colors,
70         const SkScalar* positions, int count, bool premul, const GrFPArgs& args) {
71     // If there are hard stops at the beginning or end, the first and/or last color should be
72     // ignored by the colorizer since it should only be used in a clamped border color. By detecting
73     // and removing these stops at the beginning, it makes optimizing the remaining color stops
74     // simpler.
75 
76     // SkGradientShaderBase guarantees that pos[0] == 0 by adding a dummy
77     bool bottomHardStop = SkScalarNearlyEqual(positions[0], positions[1]);
78     // The same is true for pos[end] == 1
79     bool topHardStop = SkScalarNearlyEqual(positions[count - 2], positions[count - 1]);
80 
81     int offset = 0;
82     if (bottomHardStop) {
83         offset += 1;
84         count--;
85     }
86     if (topHardStop) {
87         count--;
88     }
89 
90     // Two remaining colors means a single interval from 0 to 1
91     // (but it may have originally been a 3 or 4 color gradient with 1-2 hard stops at the ends)
92     if (count == 2) {
93         return GrSingleIntervalGradientColorizer::Make(colors[offset], colors[offset + 1]);
94     }
95 
96     // Do an early test for the texture fallback to skip all of the other tests for specific
97     // analytic support of the gradient (and compatibility with the hardware), when it's definitely
98     // impossible to use an analytic solution.
99     bool tryAnalyticColorizer = count <= GrUnrolledBinaryGradientColorizer::kMaxColorCount;
100 
101     // The remaining analytic colorizers use scale*t+bias, and the scale/bias values can become
102     // quite large when thresholds are close (but still outside the hardstop limit). If float isn't
103     // 32-bit, output can be incorrect if the thresholds are too close together. However, the
104     // analytic shaders are higher quality, so they can be used with lower precision hardware when
105     // the thresholds are not ill-conditioned.
106     const GrShaderCaps* caps = args.fContext->contextPriv().caps()->shaderCaps();
107     if (!caps->floatIs32Bits() && tryAnalyticColorizer) {
108         // Could run into problems, check if thresholds are close together (with a limit of .01, so
109         // that scales will be less than 100, which leaves 4 decimals of precision on 16-bit).
110         for (int i = offset; i < count - 1; i++) {
111             SkScalar dt = SkScalarAbs(positions[i] - positions[i + 1]);
112             if (dt <= kLowPrecisionIntervalLimit && dt > SK_ScalarNearlyZero) {
113                 tryAnalyticColorizer = false;
114                 break;
115             }
116         }
117     }
118 
119     if (tryAnalyticColorizer) {
120         if (count == 3) {
121             // Must be a dual interval gradient, where the middle point is at offset+1 and the two
122             // intervals share the middle color stop.
123             return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1],
124                                                          colors[offset + 1], colors[offset + 2],
125                                                          positions[offset + 1]);
126         } else if (count == 4 && SkScalarNearlyEqual(positions[offset + 1],
127                                                      positions[offset + 2])) {
128             // Two separate intervals that join at the same threshold position
129             return GrDualIntervalGradientColorizer::Make(colors[offset], colors[offset + 1],
130                                                          colors[offset + 2], colors[offset + 3],
131                                                          positions[offset + 1]);
132         }
133 
134         // The single and dual intervals are a specialized case of the unrolled binary search
135         // colorizer which can analytically render gradients of up to 8 intervals (up to 9 or 16
136         // colors depending on how many hard stops are inserted).
137         std::unique_ptr<GrFragmentProcessor> unrolled = GrUnrolledBinaryGradientColorizer::Make(
138                 colors + offset, positions + offset, count);
139         if (unrolled) {
140             return unrolled;
141         }
142     }
143 
144     // Otherwise fall back to a rasterized gradient sampled by a texture, which can handle
145     // arbitrary gradients (the only downside being sampling resolution).
146     return make_textured_colorizer(colors + offset, positions + offset, count, premul, args);
147 }
148 
149 // Combines the colorizer and layout with an appropriately configured master effect based on the
150 // gradient's tile mode
make_gradient(const SkGradientShaderBase & shader,const GrFPArgs & args,std::unique_ptr<GrFragmentProcessor> layout)151 static std::unique_ptr<GrFragmentProcessor> make_gradient(const SkGradientShaderBase& shader,
152         const GrFPArgs& args, std::unique_ptr<GrFragmentProcessor> layout) {
153     // No shader is possible if a layout couldn't be created, e.g. a layout-specific Make() returned
154     // null.
155     if (layout == nullptr) {
156         return nullptr;
157     }
158 
159     // Convert all colors into destination space and into SkPMColor4fs, and handle
160     // premul issues depending on the interpolation mode
161     bool inputPremul = shader.getGradFlags() & SkGradientShader::kInterpolateColorsInPremul_Flag;
162     bool allOpaque = true;
163     SkAutoSTMalloc<4, SkPMColor4f> colors(shader.fColorCount);
164     SkColor4fXformer xformedColors(shader.fOrigColors4f, shader.fColorCount,
165             shader.fColorSpace.get(), args.fDstColorSpaceInfo->colorSpace());
166     for (int i = 0; i < shader.fColorCount; i++) {
167         const SkColor4f& upmColor = xformedColors.fColors[i];
168         colors[i] = inputPremul ? upmColor.premul()
169                                 : SkPMColor4f{ upmColor.fR, upmColor.fG, upmColor.fB, upmColor.fA };
170         if (allOpaque && !SkScalarNearlyEqual(colors[i].fA, 1.0)) {
171             allOpaque = false;
172         }
173     }
174 
175     // SkGradientShader stores positions implicitly when they are evenly spaced, but the getPos()
176     // implementation performs a branch for every position index. Since the shader conversion
177     // requires lots of position tests, calculate all of the positions up front if needed.
178     SkTArray<SkScalar, true> implicitPos;
179     SkScalar* positions;
180     if (shader.fOrigPos) {
181         positions = shader.fOrigPos;
182     } else {
183         implicitPos.reserve(shader.fColorCount);
184         SkScalar posScale = SK_Scalar1 / (shader.fColorCount - 1);
185         for (int i = 0 ; i < shader.fColorCount; i++) {
186             implicitPos.push_back(SkIntToScalar(i) * posScale);
187         }
188         positions = implicitPos.begin();
189     }
190 
191     // All gradients are colorized the same way, regardless of layout
192     std::unique_ptr<GrFragmentProcessor> colorizer = make_colorizer(
193             colors.get(), positions, shader.fColorCount, inputPremul, args);
194     if (colorizer == nullptr) {
195         return nullptr;
196     }
197 
198     // The master effect has to export premul colors, but under certain conditions it doesn't need
199     // to do anything to achieve that: i.e. its interpolating already premul colors (inputPremul)
200     // or all the colors have a = 1, in which case premul is a no op. Note that this allOpaque
201     // check is more permissive than SkGradientShaderBase's isOpaque(), since we can optimize away
202     // the make-premul op for two point conical gradients (which report false for isOpaque).
203     bool makePremul = !inputPremul && !allOpaque;
204 
205     // All tile modes are supported (unless something was added to SkShader)
206     std::unique_ptr<GrFragmentProcessor> master;
207     switch(shader.getTileMode()) {
208         case SkShader::kRepeat_TileMode:
209             master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout),
210                                                  /* mirror */ false, makePremul, allOpaque);
211             break;
212         case SkShader::kMirror_TileMode:
213             master = GrTiledGradientEffect::Make(std::move(colorizer), std::move(layout),
214                                                  /* mirror */ true, makePremul, allOpaque);
215             break;
216         case SkShader::kClamp_TileMode:
217             // For the clamped mode, the border colors are the first and last colors, corresponding
218             // to t=0 and t=1, because SkGradientShaderBase enforces that by adding color stops as
219             // appropriate. If there is a hard stop, this grabs the expected outer colors for the
220             // border.
221             master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout),
222                     colors[0], colors[shader.fColorCount - 1], makePremul, allOpaque);
223             break;
224         case SkShader::kDecal_TileMode:
225             // Even if the gradient colors are opaque, the decal borders are transparent so
226             // disable that optimization
227             master = GrClampedGradientEffect::Make(std::move(colorizer), std::move(layout),
228                     SK_PMColor4fTRANSPARENT, SK_PMColor4fTRANSPARENT,
229                     makePremul, /* colorsAreOpaque */ false);
230             break;
231     }
232 
233     if (master == nullptr) {
234         // Unexpected tile mode
235         return nullptr;
236     }
237 
238     return GrFragmentProcessor::MulChildByInputAlpha(std::move(master));
239 }
240 
241 namespace GrGradientShader {
242 
MakeLinear(const SkLinearGradient & shader,const GrFPArgs & args)243 std::unique_ptr<GrFragmentProcessor> MakeLinear(const SkLinearGradient& shader,
244                                                 const GrFPArgs& args) {
245     return make_gradient(shader, args, GrLinearGradientLayout::Make(shader, args));
246 }
247 
MakeRadial(const SkRadialGradient & shader,const GrFPArgs & args)248 std::unique_ptr<GrFragmentProcessor> MakeRadial(const SkRadialGradient& shader,
249                                                 const GrFPArgs& args) {
250     return make_gradient(shader,args, GrRadialGradientLayout::Make(shader, args));
251 }
252 
MakeSweep(const SkSweepGradient & shader,const GrFPArgs & args)253 std::unique_ptr<GrFragmentProcessor> MakeSweep(const SkSweepGradient& shader,
254                                                const GrFPArgs& args) {
255     return make_gradient(shader,args, GrSweepGradientLayout::Make(shader, args));
256 }
257 
MakeConical(const SkTwoPointConicalGradient & shader,const GrFPArgs & args)258 std::unique_ptr<GrFragmentProcessor> MakeConical(const SkTwoPointConicalGradient& shader,
259                                                  const GrFPArgs& args) {
260     return make_gradient(shader, args, GrTwoPointConicalGradientLayout::Make(shader, args));
261 }
262 
263 #if GR_TEST_UTILS
RandomParams(SkRandom * random)264 RandomParams::RandomParams(SkRandom* random) {
265     // Set color count to min of 2 so that we don't trigger the const color optimization and make
266     // a non-gradient processor.
267     fColorCount = random->nextRangeU(2, kMaxRandomGradientColors);
268     fUseColors4f = random->nextBool();
269 
270     // if one color, omit stops, otherwise randomly decide whether or not to
271     if (fColorCount == 1 || (fColorCount >= 2 && random->nextBool())) {
272         fStops = nullptr;
273     } else {
274         fStops = fStopStorage;
275     }
276 
277     // if using SkColor4f, attach a random (possibly null) color space (with linear gamma)
278     if (fUseColors4f) {
279         fColorSpace = GrTest::TestColorSpace(random);
280     }
281 
282     SkScalar stop = 0.f;
283     for (int i = 0; i < fColorCount; ++i) {
284         if (fUseColors4f) {
285             fColors4f[i].fR = random->nextUScalar1();
286             fColors4f[i].fG = random->nextUScalar1();
287             fColors4f[i].fB = random->nextUScalar1();
288             fColors4f[i].fA = random->nextUScalar1();
289         } else {
290             fColors[i] = random->nextU();
291         }
292         if (fStops) {
293             fStops[i] = stop;
294             stop = i < fColorCount - 1 ? stop + random->nextUScalar1() * (1.f - stop) : 1.f;
295         }
296     }
297     fTileMode = static_cast<SkShader::TileMode>(random->nextULessThan(SkShader::kTileModeCount));
298 }
299 #endif
300 
301 }
302