• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2012 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 #include "SkGeometry.h"
8 #include "SkLineParameters.h"
9 #include "SkPathOpsConic.h"
10 #include "SkPathOpsCubic.h"
11 #include "SkPathOpsCurve.h"
12 #include "SkPathOpsLine.h"
13 #include "SkPathOpsQuad.h"
14 #include "SkPathOpsRect.h"
15 #include "SkTSort.h"
16 
17 const int SkDCubic::gPrecisionUnit = 256;  // FIXME: test different values in test framework
18 
align(int endIndex,int ctrlIndex,SkDPoint * dstPt) const19 void SkDCubic::align(int endIndex, int ctrlIndex, SkDPoint* dstPt) const {
20     if (fPts[endIndex].fX == fPts[ctrlIndex].fX) {
21         dstPt->fX = fPts[endIndex].fX;
22     }
23     if (fPts[endIndex].fY == fPts[ctrlIndex].fY) {
24         dstPt->fY = fPts[endIndex].fY;
25     }
26 }
27 
28 // give up when changing t no longer moves point
29 // also, copy point rather than recompute it when it does change
binarySearch(double min,double max,double axisIntercept,SearchAxis xAxis) const30 double SkDCubic::binarySearch(double min, double max, double axisIntercept,
31         SearchAxis xAxis) const {
32     double t = (min + max) / 2;
33     double step = (t - min) / 2;
34     SkDPoint cubicAtT = ptAtT(t);
35     double calcPos = (&cubicAtT.fX)[xAxis];
36     double calcDist = calcPos - axisIntercept;
37     do {
38         double priorT = std::max(min, t - step);
39         SkDPoint lessPt = ptAtT(priorT);
40         if (approximately_equal_half(lessPt.fX, cubicAtT.fX)
41                 && approximately_equal_half(lessPt.fY, cubicAtT.fY)) {
42             return -1;  // binary search found no point at this axis intercept
43         }
44         double lessDist = (&lessPt.fX)[xAxis] - axisIntercept;
45 #if DEBUG_CUBIC_BINARY_SEARCH
46         SkDebugf("t=%1.9g calc=%1.9g dist=%1.9g step=%1.9g less=%1.9g\n", t, calcPos, calcDist,
47                 step, lessDist);
48 #endif
49         double lastStep = step;
50         step /= 2;
51         if (calcDist > 0 ? calcDist > lessDist : calcDist < lessDist) {
52             t = priorT;
53         } else {
54             double nextT = t + lastStep;
55             if (nextT > max) {
56                 return -1;
57             }
58             SkDPoint morePt = ptAtT(nextT);
59             if (approximately_equal_half(morePt.fX, cubicAtT.fX)
60                     && approximately_equal_half(morePt.fY, cubicAtT.fY)) {
61                 return -1;  // binary search found no point at this axis intercept
62             }
63             double moreDist = (&morePt.fX)[xAxis] - axisIntercept;
64             if (calcDist > 0 ? calcDist <= moreDist : calcDist >= moreDist) {
65                 continue;
66             }
67             t = nextT;
68         }
69         SkDPoint testAtT = ptAtT(t);
70         cubicAtT = testAtT;
71         calcPos = (&cubicAtT.fX)[xAxis];
72         calcDist = calcPos - axisIntercept;
73     } while (!approximately_equal(calcPos, axisIntercept));
74     return t;
75 }
76 
77 // get the rough scale of the cubic; used to determine if curvature is extreme
calcPrecision() const78 double SkDCubic::calcPrecision() const {
79     return ((fPts[1] - fPts[0]).length()
80             + (fPts[2] - fPts[1]).length()
81             + (fPts[3] - fPts[2]).length()) / gPrecisionUnit;
82 }
83 
84 /* classic one t subdivision */
interp_cubic_coords(const double * src,double * dst,double t)85 static void interp_cubic_coords(const double* src, double* dst, double t) {
86     double ab = SkDInterp(src[0], src[2], t);
87     double bc = SkDInterp(src[2], src[4], t);
88     double cd = SkDInterp(src[4], src[6], t);
89     double abc = SkDInterp(ab, bc, t);
90     double bcd = SkDInterp(bc, cd, t);
91     double abcd = SkDInterp(abc, bcd, t);
92 
93     dst[0] = src[0];
94     dst[2] = ab;
95     dst[4] = abc;
96     dst[6] = abcd;
97     dst[8] = bcd;
98     dst[10] = cd;
99     dst[12] = src[6];
100 }
101 
chopAt(double t) const102 SkDCubicPair SkDCubic::chopAt(double t) const {
103     SkDCubicPair dst;
104     if (t == 0.5) {
105         dst.pts[0] = fPts[0];
106         dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2;
107         dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2;
108         dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4;
109         dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4;
110         dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8;
111         dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8;
112         dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4;
113         dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4;
114         dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2;
115         dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2;
116         dst.pts[6] = fPts[3];
117         return dst;
118     }
119     interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t);
120     interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t);
121     return dst;
122 }
123 
Coefficients(const double * src,double * A,double * B,double * C,double * D)124 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) {
125     *A = src[6];  // d
126     *B = src[4] * 3;  // 3*c
127     *C = src[2] * 3;  // 3*b
128     *D = src[0];  // a
129     *A -= *D - *C + *B;     // A =   -a + 3*b - 3*c + d
130     *B += 3 * *D - 2 * *C;  // B =  3*a - 6*b + 3*c
131     *C -= 3 * *D;           // C = -3*a + 3*b
132 }
133 
endsAreExtremaInXOrY() const134 bool SkDCubic::endsAreExtremaInXOrY() const {
135     return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
136             && between(fPts[0].fX, fPts[2].fX, fPts[3].fX))
137             || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
138             && between(fPts[0].fY, fPts[2].fY, fPts[3].fY));
139 }
140 
141 // Do a quick reject by rotating all points relative to a line formed by
142 // a pair of one cubic's points. If the 2nd cubic's points
143 // are on the line or on the opposite side from the 1st cubic's 'odd man', the
144 // curves at most intersect at the endpoints.
145 /* if returning true, check contains true if cubic's hull collapsed, making the cubic linear
146    if returning false, check contains true if the the cubic pair have only the end point in common
147 */
hullIntersects(const SkDPoint * pts,int ptCount,bool * isLinear) const148 bool SkDCubic::hullIntersects(const SkDPoint* pts, int ptCount, bool* isLinear) const {
149     bool linear = true;
150     char hullOrder[4];
151     int hullCount = convexHull(hullOrder);
152     int end1 = hullOrder[0];
153     int hullIndex = 0;
154     const SkDPoint* endPt[2];
155     endPt[0] = &fPts[end1];
156     do {
157         hullIndex = (hullIndex + 1) % hullCount;
158         int end2 = hullOrder[hullIndex];
159         endPt[1] = &fPts[end2];
160         double origX = endPt[0]->fX;
161         double origY = endPt[0]->fY;
162         double adj = endPt[1]->fX - origX;
163         double opp = endPt[1]->fY - origY;
164         int oddManMask = other_two(end1, end2);
165         int oddMan = end1 ^ oddManMask;
166         double sign = (fPts[oddMan].fY - origY) * adj - (fPts[oddMan].fX - origX) * opp;
167         int oddMan2 = end2 ^ oddManMask;
168         double sign2 = (fPts[oddMan2].fY - origY) * adj - (fPts[oddMan2].fX - origX) * opp;
169         if (sign * sign2 < 0) {
170             continue;
171         }
172         if (approximately_zero(sign)) {
173             sign = sign2;
174             if (approximately_zero(sign)) {
175                 continue;
176             }
177         }
178         linear = false;
179         bool foundOutlier = false;
180         for (int n = 0; n < ptCount; ++n) {
181             double test = (pts[n].fY - origY) * adj - (pts[n].fX - origX) * opp;
182             if (test * sign > 0 && !precisely_zero(test)) {
183                 foundOutlier = true;
184                 break;
185             }
186         }
187         if (!foundOutlier) {
188             return false;
189         }
190         endPt[0] = endPt[1];
191         end1 = end2;
192     } while (hullIndex);
193     *isLinear = linear;
194     return true;
195 }
196 
hullIntersects(const SkDCubic & c2,bool * isLinear) const197 bool SkDCubic::hullIntersects(const SkDCubic& c2, bool* isLinear) const {
198     return hullIntersects(c2.fPts, c2.kPointCount, isLinear);
199 }
200 
hullIntersects(const SkDQuad & quad,bool * isLinear) const201 bool SkDCubic::hullIntersects(const SkDQuad& quad, bool* isLinear) const {
202     return hullIntersects(quad.fPts, quad.kPointCount, isLinear);
203 }
204 
hullIntersects(const SkDConic & conic,bool * isLinear) const205 bool SkDCubic::hullIntersects(const SkDConic& conic, bool* isLinear) const {
206 
207     return hullIntersects(conic.fPts, isLinear);
208 }
209 
isLinear(int startIndex,int endIndex) const210 bool SkDCubic::isLinear(int startIndex, int endIndex) const {
211     if (fPts[0].approximatelyDEqual(fPts[3]))  {
212         return ((const SkDQuad *) this)->isLinear(0, 2);
213     }
214     SkLineParameters lineParameters;
215     lineParameters.cubicEndPoints(*this, startIndex, endIndex);
216     // FIXME: maybe it's possible to avoid this and compare non-normalized
217     lineParameters.normalize();
218     double tiniest = SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(SkTMin(fPts[0].fX, fPts[0].fY),
219             fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
220     double largest = SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(SkTMax(fPts[0].fX, fPts[0].fY),
221             fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPts[3].fY);
222     largest = SkTMax(largest, -tiniest);
223     double distance = lineParameters.controlPtDistance(*this, 1);
224     if (!approximately_zero_when_compared_to(distance, largest)) {
225         return false;
226     }
227     distance = lineParameters.controlPtDistance(*this, 2);
228     return approximately_zero_when_compared_to(distance, largest);
229 }
230 
231 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
232 // c(t)  = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
233 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
234 //       = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
derivative_at_t(const double * src,double t)235 static double derivative_at_t(const double* src, double t) {
236     double one_t = 1 - t;
237     double a = src[0];
238     double b = src[2];
239     double c = src[4];
240     double d = src[6];
241     return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
242 }
243 
ComplexBreak(const SkPoint pointsPtr[4],SkScalar * t)244 int SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) {
245     SkDCubic cubic;
246     cubic.set(pointsPtr);
247     if (cubic.monotonicInX() && cubic.monotonicInY()) {
248         return 0;
249     }
250     double tt[2], ss[2];
251     SkCubicType cubicType = SkClassifyCubic(pointsPtr, tt, ss);
252     switch (cubicType) {
253         case SkCubicType::kLoop: {
254             const double &td = tt[0], &te = tt[1], &sd = ss[0], &se = ss[1];
255             if (roughly_between(0, td, sd) && roughly_between(0, te, se)) {
256                 t[0] = static_cast<SkScalar>((td * se + te * sd) / (2 * sd * se));
257                 return (int) (t[0] > 0 && t[0] < 1);
258             }
259         }
260         // fall through if no t value found
261         case SkCubicType::kSerpentine:
262         case SkCubicType::kLocalCusp:
263         case SkCubicType::kCuspAtInfinity: {
264             double inflectionTs[2];
265             int infTCount = cubic.findInflections(inflectionTs);
266             double maxCurvature[3];
267             int roots = cubic.findMaxCurvature(maxCurvature);
268     #if DEBUG_CUBIC_SPLIT
269             SkDebugf("%s\n", __FUNCTION__);
270             cubic.dump();
271             for (int index = 0; index < infTCount; ++index) {
272                 SkDebugf("inflectionsTs[%d]=%1.9g ", index, inflectionTs[index]);
273                 SkDPoint pt = cubic.ptAtT(inflectionTs[index]);
274                 SkDVector dPt = cubic.dxdyAtT(inflectionTs[index]);
275                 SkDLine perp = {{pt - dPt, pt + dPt}};
276                 perp.dump();
277             }
278             for (int index = 0; index < roots; ++index) {
279                 SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]);
280                 SkDPoint pt = cubic.ptAtT(maxCurvature[index]);
281                 SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]);
282                 SkDLine perp = {{pt - dPt, pt + dPt}};
283                 perp.dump();
284             }
285     #endif
286             if (infTCount == 2) {
287                 for (int index = 0; index < roots; ++index) {
288                     if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1])) {
289                         t[0] = maxCurvature[index];
290                         return (int) (t[0] > 0 && t[0] < 1);
291                     }
292                 }
293             } else {
294                 int resultCount = 0;
295                 // FIXME: constant found through experimentation -- maybe there's a better way....
296                 double precision = cubic.calcPrecision() * 2;
297                 for (int index = 0; index < roots; ++index) {
298                     double testT = maxCurvature[index];
299                     if (0 >= testT || testT >= 1) {
300                         continue;
301                     }
302                     // don't call dxdyAtT since we want (0,0) results
303                     SkDVector dPt = { derivative_at_t(&cubic.fPts[0].fX, testT),
304                             derivative_at_t(&cubic.fPts[0].fY, testT) };
305                     double dPtLen = dPt.length();
306                     if (dPtLen < precision) {
307                         t[resultCount++] = testT;
308                     }
309                 }
310                 if (!resultCount && infTCount == 1) {
311                     t[0] = inflectionTs[0];
312                     resultCount = (int) (t[0] > 0 && t[0] < 1);
313                 }
314                 return resultCount;
315             }
316         }
317         default:
318             ;
319     }
320     return 0;
321 }
322 
monotonicInX() const323 bool SkDCubic::monotonicInX() const {
324     return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX)
325             && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX);
326 }
327 
monotonicInY() const328 bool SkDCubic::monotonicInY() const {
329     return precisely_between(fPts[0].fY, fPts[1].fY, fPts[3].fY)
330             && precisely_between(fPts[0].fY, fPts[2].fY, fPts[3].fY);
331 }
332 
otherPts(int index,const SkDPoint * o1Pts[kPointCount-1]) const333 void SkDCubic::otherPts(int index, const SkDPoint* o1Pts[kPointCount - 1]) const {
334     int offset = (int) !SkToBool(index);
335     o1Pts[0] = &fPts[offset];
336     o1Pts[1] = &fPts[++offset];
337     o1Pts[2] = &fPts[++offset];
338 }
339 
searchRoots(double extremeTs[6],int extrema,double axisIntercept,SearchAxis xAxis,double * validRoots) const340 int SkDCubic::searchRoots(double extremeTs[6], int extrema, double axisIntercept,
341         SearchAxis xAxis, double* validRoots) const {
342     extrema += findInflections(&extremeTs[extrema]);
343     extremeTs[extrema++] = 0;
344     extremeTs[extrema] = 1;
345     SkASSERT(extrema < 6);
346     SkTQSort(extremeTs, extremeTs + extrema);
347     int validCount = 0;
348     for (int index = 0; index < extrema; ) {
349         double min = extremeTs[index];
350         double max = extremeTs[++index];
351         if (min == max) {
352             continue;
353         }
354         double newT = binarySearch(min, max, axisIntercept, xAxis);
355         if (newT >= 0) {
356             if (validCount >= 3) {
357                 return 0;
358             }
359             validRoots[validCount++] = newT;
360         }
361     }
362     return validCount;
363 }
364 
365 // cubic roots
366 
367 static const double PI = 3.141592653589793;
368 
369 // from SkGeometry.cpp (and Numeric Solutions, 5.6)
RootsValidT(double A,double B,double C,double D,double t[3])370 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) {
371     double s[3];
372     int realRoots = RootsReal(A, B, C, D, s);
373     int foundRoots = SkDQuad::AddValidTs(s, realRoots, t);
374     for (int index = 0; index < realRoots; ++index) {
375         double tValue = s[index];
376         if (!approximately_one_or_less(tValue) && between(1, tValue, 1.00005)) {
377             for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
378                 if (approximately_equal(t[idx2], 1)) {
379                     goto nextRoot;
380                 }
381             }
382             SkASSERT(foundRoots < 3);
383             t[foundRoots++] = 1;
384         } else if (!approximately_zero_or_more(tValue) && between(-0.00005, tValue, 0)) {
385             for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
386                 if (approximately_equal(t[idx2], 0)) {
387                     goto nextRoot;
388                 }
389             }
390             SkASSERT(foundRoots < 3);
391             t[foundRoots++] = 0;
392         }
393 nextRoot:
394         ;
395     }
396     return foundRoots;
397 }
398 
RootsReal(double A,double B,double C,double D,double s[3])399 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) {
400 #ifdef SK_DEBUG
401     // create a string mathematica understands
402     // GDB set print repe 15 # if repeated digits is a bother
403     //     set print elements 400 # if line doesn't fit
404     char str[1024];
405     sk_bzero(str, sizeof(str));
406     SK_SNPRINTF(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
407             A, B, C, D);
408     SkPathOpsDebug::MathematicaIze(str, sizeof(str));
409 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
410     SkDebugf("%s\n", str);
411 #endif
412 #endif
413     if (approximately_zero(A)
414             && approximately_zero_when_compared_to(A, B)
415             && approximately_zero_when_compared_to(A, C)
416             && approximately_zero_when_compared_to(A, D)) {  // we're just a quadratic
417         return SkDQuad::RootsReal(B, C, D, s);
418     }
419     if (approximately_zero_when_compared_to(D, A)
420             && approximately_zero_when_compared_to(D, B)
421             && approximately_zero_when_compared_to(D, C)) {  // 0 is one root
422         int num = SkDQuad::RootsReal(A, B, C, s);
423         for (int i = 0; i < num; ++i) {
424             if (approximately_zero(s[i])) {
425                 return num;
426             }
427         }
428         s[num++] = 0;
429         return num;
430     }
431     if (approximately_zero(A + B + C + D)) {  // 1 is one root
432         int num = SkDQuad::RootsReal(A, A + B, -D, s);
433         for (int i = 0; i < num; ++i) {
434             if (AlmostDequalUlps(s[i], 1)) {
435                 return num;
436             }
437         }
438         s[num++] = 1;
439         return num;
440     }
441     double a, b, c;
442     {
443         double invA = 1 / A;
444         a = B * invA;
445         b = C * invA;
446         c = D * invA;
447     }
448     double a2 = a * a;
449     double Q = (a2 - b * 3) / 9;
450     double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
451     double R2 = R * R;
452     double Q3 = Q * Q * Q;
453     double R2MinusQ3 = R2 - Q3;
454     double adiv3 = a / 3;
455     double r;
456     double* roots = s;
457     if (R2MinusQ3 < 0) {   // we have 3 real roots
458         // the divide/root can, due to finite precisions, be slightly outside of -1...1
459         double theta = acos(SkTPin(R / sqrt(Q3), -1., 1.));
460         double neg2RootQ = -2 * sqrt(Q);
461 
462         r = neg2RootQ * cos(theta / 3) - adiv3;
463         *roots++ = r;
464 
465         r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
466         if (!AlmostDequalUlps(s[0], r)) {
467             *roots++ = r;
468         }
469         r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
470         if (!AlmostDequalUlps(s[0], r) && (roots - s == 1 || !AlmostDequalUlps(s[1], r))) {
471             *roots++ = r;
472         }
473     } else {  // we have 1 real root
474         double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
475         double A = fabs(R) + sqrtR2MinusQ3;
476         A = SkDCubeRoot(A);
477         if (R > 0) {
478             A = -A;
479         }
480         if (A != 0) {
481             A += Q / A;
482         }
483         r = A - adiv3;
484         *roots++ = r;
485         if (AlmostDequalUlps((double) R2, (double) Q3)) {
486             r = -A / 2 - adiv3;
487             if (!AlmostDequalUlps(s[0], r)) {
488                 *roots++ = r;
489             }
490         }
491     }
492     return static_cast<int>(roots - s);
493 }
494 
495 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
dxdyAtT(double t) const496 SkDVector SkDCubic::dxdyAtT(double t) const {
497     SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) };
498     if (result.fX == 0 && result.fY == 0) {
499         if (t == 0) {
500             result = fPts[2] - fPts[0];
501         } else if (t == 1) {
502             result = fPts[3] - fPts[1];
503         } else {
504             // incomplete
505             SkDebugf("!c");
506         }
507         if (result.fX == 0 && result.fY == 0 && zero_or_one(t)) {
508             result = fPts[3] - fPts[0];
509         }
510     }
511     return result;
512 }
513 
514 // OPTIMIZE? share code with formulate_F1DotF2
findInflections(double tValues[]) const515 int SkDCubic::findInflections(double tValues[]) const {
516     double Ax = fPts[1].fX - fPts[0].fX;
517     double Ay = fPts[1].fY - fPts[0].fY;
518     double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX;
519     double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY;
520     double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX;
521     double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY;
522     return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues);
523 }
524 
formulate_F1DotF2(const double src[],double coeff[4])525 static void formulate_F1DotF2(const double src[], double coeff[4]) {
526     double a = src[2] - src[0];
527     double b = src[4] - 2 * src[2] + src[0];
528     double c = src[6] + 3 * (src[2] - src[4]) - src[0];
529     coeff[0] = c * c;
530     coeff[1] = 3 * b * c;
531     coeff[2] = 2 * b * b + c * a;
532     coeff[3] = a * b;
533 }
534 
535 /** SkDCubic'(t) = At^2 + Bt + C, where
536     A = 3(-a + 3(b - c) + d)
537     B = 6(a - 2b + c)
538     C = 3(b - a)
539     Solve for t, keeping only those that fit between 0 < t < 1
540 */
FindExtrema(const double src[],double tValues[2])541 int SkDCubic::FindExtrema(const double src[], double tValues[2]) {
542     // we divide A,B,C by 3 to simplify
543     double a = src[0];
544     double b = src[2];
545     double c = src[4];
546     double d = src[6];
547     double A = d - a + 3 * (b - c);
548     double B = 2 * (a - b - b + c);
549     double C = b - a;
550 
551     return SkDQuad::RootsValidT(A, B, C, tValues);
552 }
553 
554 /*  from SkGeometry.cpp
555     Looking for F' dot F'' == 0
556 
557     A = b - a
558     B = c - 2b + a
559     C = d - 3c + 3b - a
560 
561     F' = 3Ct^2 + 6Bt + 3A
562     F'' = 6Ct + 6B
563 
564     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
565 */
findMaxCurvature(double tValues[]) const566 int SkDCubic::findMaxCurvature(double tValues[]) const {
567     double coeffX[4], coeffY[4];
568     int i;
569     formulate_F1DotF2(&fPts[0].fX, coeffX);
570     formulate_F1DotF2(&fPts[0].fY, coeffY);
571     for (i = 0; i < 4; i++) {
572         coeffX[i] = coeffX[i] + coeffY[i];
573     }
574     return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues);
575 }
576 
ptAtT(double t) const577 SkDPoint SkDCubic::ptAtT(double t) const {
578     if (0 == t) {
579         return fPts[0];
580     }
581     if (1 == t) {
582         return fPts[3];
583     }
584     double one_t = 1 - t;
585     double one_t2 = one_t * one_t;
586     double a = one_t2 * one_t;
587     double b = 3 * one_t2 * t;
588     double t2 = t * t;
589     double c = 3 * one_t * t2;
590     double d = t2 * t;
591     SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX,
592             a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY};
593     return result;
594 }
595 
596 /*
597  Given a cubic c, t1, and t2, find a small cubic segment.
598 
599  The new cubic is defined as points A, B, C, and D, where
600  s1 = 1 - t1
601  s2 = 1 - t2
602  A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
603  D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
604 
605  We don't have B or C. So We define two equations to isolate them.
606  First, compute two reference T values 1/3 and 2/3 from t1 to t2:
607 
608  c(at (2*t1 + t2)/3) == E
609  c(at (t1 + 2*t2)/3) == F
610 
611  Next, compute where those values must be if we know the values of B and C:
612 
613  _12   =  A*2/3 + B*1/3
614  12_   =  A*1/3 + B*2/3
615  _23   =  B*2/3 + C*1/3
616  23_   =  B*1/3 + C*2/3
617  _34   =  C*2/3 + D*1/3
618  34_   =  C*1/3 + D*2/3
619  _123  = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
620  123_  = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
621  _234  = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
622  234_  = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
623  _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
624        =  A*8/27 + B*12/27 + C*6/27 + D*1/27
625        =  E
626  1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
627        =  A*1/27 + B*6/27 + C*12/27 + D*8/27
628        =  F
629  E*27  =  A*8    + B*12   + C*6     + D
630  F*27  =  A      + B*6    + C*12    + D*8
631 
632 Group the known values on one side:
633 
634  M       = E*27 - A*8 - D     = B*12 + C* 6
635  N       = F*27 - A   - D*8   = B* 6 + C*12
636  M*2 - N = B*18
637  N*2 - M = C*18
638  B       = (M*2 - N)/18
639  C       = (N*2 - M)/18
640  */
641 
interp_cubic_coords(const double * src,double t)642 static double interp_cubic_coords(const double* src, double t) {
643     double ab = SkDInterp(src[0], src[2], t);
644     double bc = SkDInterp(src[2], src[4], t);
645     double cd = SkDInterp(src[4], src[6], t);
646     double abc = SkDInterp(ab, bc, t);
647     double bcd = SkDInterp(bc, cd, t);
648     double abcd = SkDInterp(abc, bcd, t);
649     return abcd;
650 }
651 
subDivide(double t1,double t2) const652 SkDCubic SkDCubic::subDivide(double t1, double t2) const {
653     if (t1 == 0 || t2 == 1) {
654         if (t1 == 0 && t2 == 1) {
655             return *this;
656         }
657         SkDCubicPair pair = chopAt(t1 == 0 ? t2 : t1);
658         SkDCubic dst = t1 == 0 ? pair.first() : pair.second();
659         return dst;
660     }
661     SkDCubic dst;
662     double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1);
663     double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1);
664     double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3);
665     double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3);
666     double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3);
667     double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3);
668     double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2);
669     double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2);
670     double mx = ex * 27 - ax * 8 - dx;
671     double my = ey * 27 - ay * 8 - dy;
672     double nx = fx * 27 - ax - dx * 8;
673     double ny = fy * 27 - ay - dy * 8;
674     /* bx = */ dst[1].fX = (mx * 2 - nx) / 18;
675     /* by = */ dst[1].fY = (my * 2 - ny) / 18;
676     /* cx = */ dst[2].fX = (nx * 2 - mx) / 18;
677     /* cy = */ dst[2].fY = (ny * 2 - my) / 18;
678     // FIXME: call align() ?
679     return dst;
680 }
681 
subDivide(const SkDPoint & a,const SkDPoint & d,double t1,double t2,SkDPoint dst[2]) const682 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d,
683                          double t1, double t2, SkDPoint dst[2]) const {
684     SkASSERT(t1 != t2);
685     // this approach assumes that the control points computed directly are accurate enough
686     SkDCubic sub = subDivide(t1, t2);
687     dst[0] = sub[1] + (a - sub[0]);
688     dst[1] = sub[2] + (d - sub[3]);
689     if (t1 == 0 || t2 == 0) {
690         align(0, 1, t1 == 0 ? &dst[0] : &dst[1]);
691     }
692     if (t1 == 1 || t2 == 1) {
693         align(3, 2, t1 == 1 ? &dst[0] : &dst[1]);
694     }
695     if (AlmostBequalUlps(dst[0].fX, a.fX)) {
696         dst[0].fX = a.fX;
697     }
698     if (AlmostBequalUlps(dst[0].fY, a.fY)) {
699         dst[0].fY = a.fY;
700     }
701     if (AlmostBequalUlps(dst[1].fX, d.fX)) {
702         dst[1].fX = d.fX;
703     }
704     if (AlmostBequalUlps(dst[1].fY, d.fY)) {
705         dst[1].fY = d.fY;
706     }
707 }
708 
toFloatPoints(SkPoint * pts) const709 bool SkDCubic::toFloatPoints(SkPoint* pts) const {
710     const double* dCubic = &fPts[0].fX;
711     SkScalar* cubic = &pts[0].fX;
712     for (int index = 0; index < kPointCount * 2; ++index) {
713         cubic[index] = SkDoubleToScalar(dCubic[index]);
714         if (SkScalarAbs(cubic[index]) < FLT_EPSILON_ORDERABLE_ERR) {
715             cubic[index] = 0;
716         }
717     }
718     return SkScalarsAreFinite(&pts->fX, kPointCount * 2);
719 }
720 
top(const SkDCubic & dCurve,double startT,double endT,SkDPoint * topPt) const721 double SkDCubic::top(const SkDCubic& dCurve, double startT, double endT, SkDPoint*topPt) const {
722     double extremeTs[2];
723     double topT = -1;
724     int roots = SkDCubic::FindExtrema(&fPts[0].fY, extremeTs);
725     for (int index = 0; index < roots; ++index) {
726         double t = startT + (endT - startT) * extremeTs[index];
727         SkDPoint mid = dCurve.ptAtT(t);
728         if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) {
729             topT = t;
730             *topPt = mid;
731         }
732     }
733     return topT;
734 }
735 
intersectRay(SkIntersections * i,const SkDLine & line) const736 int SkTCubic::intersectRay(SkIntersections* i, const SkDLine& line) const {
737     return i->intersectRay(fCubic, line);
738 }
739 
hullIntersects(const SkDQuad & quad,bool * isLinear) const740 bool SkTCubic::hullIntersects(const SkDQuad& quad, bool* isLinear) const {
741     return quad.hullIntersects(fCubic, isLinear);
742 }
743 
hullIntersects(const SkDConic & conic,bool * isLinear) const744 bool SkTCubic::hullIntersects(const SkDConic& conic, bool* isLinear) const  {
745     return conic.hullIntersects(fCubic, isLinear);
746 }
747 
setBounds(SkDRect * rect) const748 void SkTCubic::setBounds(SkDRect* rect) const {
749     rect->setBounds(fCubic);
750 }
751