• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 2002 Jean-Marc Valin */
2 /**
3    @file math_approx.h
4    @brief Various math approximation functions for Speex
5 */
6 /*
7    Redistribution and use in source and binary forms, with or without
8    modification, are permitted provided that the following conditions
9    are met:
10 
11    - Redistributions of source code must retain the above copyright
12    notice, this list of conditions and the following disclaimer.
13 
14    - Redistributions in binary form must reproduce the above copyright
15    notice, this list of conditions and the following disclaimer in the
16    documentation and/or other materials provided with the distribution.
17 
18    - Neither the name of the Xiph.org Foundation nor the names of its
19    contributors may be used to endorse or promote products derived from
20    this software without specific prior written permission.
21 
22    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
26    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
27    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
28    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
29    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
30    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
31    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
32    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 */
34 
35 #ifndef MATH_APPROX_H
36 #define MATH_APPROX_H
37 
38 #include "arch.h"
39 
40 #ifndef FIXED_POINT
41 
42 #define spx_sqrt sqrt
43 #define spx_acos acos
44 #define spx_exp exp
45 #define spx_cos_norm(x) (cos((.5f*M_PI)*(x)))
46 #define spx_atan atan
47 
48 /** Generate a pseudo-random number */
speex_rand(spx_word16_t std,spx_int32_t * seed)49 static inline spx_word16_t speex_rand(spx_word16_t std, spx_int32_t *seed)
50 {
51    const unsigned int jflone = 0x3f800000;
52    const unsigned int jflmsk = 0x007fffff;
53    union {int i; float f;} ran;
54    *seed = 1664525 * *seed + 1013904223;
55    ran.i = jflone | (jflmsk & *seed);
56    ran.f -= 1.5;
57    return 3.4642*std*ran.f;
58 }
59 
60 
61 #endif
62 
63 
spx_ilog2(spx_uint32_t x)64 static inline spx_int16_t spx_ilog2(spx_uint32_t x)
65 {
66    int r=0;
67    if (x>=(spx_int32_t)65536)
68    {
69       x >>= 16;
70       r += 16;
71    }
72    if (x>=256)
73    {
74       x >>= 8;
75       r += 8;
76    }
77    if (x>=16)
78    {
79       x >>= 4;
80       r += 4;
81    }
82    if (x>=4)
83    {
84       x >>= 2;
85       r += 2;
86    }
87    if (x>=2)
88    {
89       r += 1;
90    }
91    return r;
92 }
93 
spx_ilog4(spx_uint32_t x)94 static inline spx_int16_t spx_ilog4(spx_uint32_t x)
95 {
96    int r=0;
97    if (x>=(spx_int32_t)65536)
98    {
99       x >>= 16;
100       r += 8;
101    }
102    if (x>=256)
103    {
104       x >>= 8;
105       r += 4;
106    }
107    if (x>=16)
108    {
109       x >>= 4;
110       r += 2;
111    }
112    if (x>=4)
113    {
114       r += 1;
115    }
116    return r;
117 }
118 
119 #ifdef FIXED_POINT
120 
121 /** Generate a pseudo-random number */
speex_rand(spx_word16_t std,spx_int32_t * seed)122 static inline spx_word16_t speex_rand(spx_word16_t std, spx_int32_t *seed)
123 {
124    spx_word32_t res;
125    *seed = 1664525 * *seed + 1013904223;
126    res = MULT16_16(EXTRACT16(SHR32(*seed,16)),std);
127    return EXTRACT16(PSHR32(SUB32(res, SHR32(res, 3)),14));
128 }
129 
130 /* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25723*x^3 (for .25 < x < 1) */
131 /*#define C0 3634
132 #define C1 21173
133 #define C2 -12627
134 #define C3 4215*/
135 
136 /* sqrt(x) ~= 0.22178 + 1.29227*x - 0.77070*x^2 + 0.25659*x^3 (for .25 < x < 1) */
137 #define C0 3634
138 #define C1 21173
139 #define C2 -12627
140 #define C3 4204
141 
spx_sqrt(spx_word32_t x)142 static inline spx_word16_t spx_sqrt(spx_word32_t x)
143 {
144    int k;
145    spx_word32_t rt;
146    k = spx_ilog4(x)-6;
147    x = VSHR32(x, (k<<1));
148    rt = ADD16(C0, MULT16_16_Q14(x, ADD16(C1, MULT16_16_Q14(x, ADD16(C2, MULT16_16_Q14(x, (C3)))))));
149    rt = VSHR32(rt,7-k);
150    return rt;
151 }
152 
153 /* log(x) ~= -2.18151 + 4.20592*x - 2.88938*x^2 + 0.86535*x^3 (for .5 < x < 1) */
154 
155 
156 #define A1 16469
157 #define A2 2242
158 #define A3 1486
159 
spx_acos(spx_word16_t x)160 static inline spx_word16_t spx_acos(spx_word16_t x)
161 {
162    int s=0;
163    spx_word16_t ret;
164    spx_word16_t sq;
165    if (x<0)
166    {
167       s=1;
168       x = NEG16(x);
169    }
170    x = SUB16(16384,x);
171 
172    x = x >> 1;
173    sq = MULT16_16_Q13(x, ADD16(A1, MULT16_16_Q13(x, ADD16(A2, MULT16_16_Q13(x, (A3))))));
174    ret = spx_sqrt(SHL32(EXTEND32(sq),13));
175 
176    /*ret = spx_sqrt(67108864*(-1.6129e-04 + 2.0104e+00*f + 2.7373e-01*f*f + 1.8136e-01*f*f*f));*/
177    if (s)
178       ret = SUB16(25736,ret);
179    return ret;
180 }
181 
182 
183 #define K1 8192
184 #define K2 -4096
185 #define K3 340
186 #define K4 -10
187 
spx_cos(spx_word16_t x)188 static inline spx_word16_t spx_cos(spx_word16_t x)
189 {
190    spx_word16_t x2;
191 
192    if (x<12868)
193    {
194       x2 = MULT16_16_P13(x,x);
195       return ADD32(K1, MULT16_16_P13(x2, ADD32(K2, MULT16_16_P13(x2, ADD32(K3, MULT16_16_P13(K4, x2))))));
196    } else {
197       x = SUB16(25736,x);
198       x2 = MULT16_16_P13(x,x);
199       return SUB32(-K1, MULT16_16_P13(x2, ADD32(K2, MULT16_16_P13(x2, ADD32(K3, MULT16_16_P13(K4, x2))))));
200    }
201 }
202 
203 #define L1 32767
204 #define L2 -7651
205 #define L3 8277
206 #define L4 -626
207 
_spx_cos_pi_2(spx_word16_t x)208 static inline spx_word16_t _spx_cos_pi_2(spx_word16_t x)
209 {
210    spx_word16_t x2;
211 
212    x2 = MULT16_16_P15(x,x);
213    return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2))))))));
214 }
215 
spx_cos_norm(spx_word32_t x)216 static inline spx_word16_t spx_cos_norm(spx_word32_t x)
217 {
218    x = x&0x0001ffff;
219    if (x>SHL32(EXTEND32(1), 16))
220       x = SUB32(SHL32(EXTEND32(1), 17),x);
221    if (x&0x00007fff)
222    {
223       if (x<SHL32(EXTEND32(1), 15))
224       {
225          return _spx_cos_pi_2(EXTRACT16(x));
226       } else {
227          return NEG32(_spx_cos_pi_2(EXTRACT16(65536-x)));
228       }
229    } else {
230       if (x&0x0000ffff)
231          return 0;
232       else if (x&0x0001ffff)
233          return -32767;
234       else
235          return 32767;
236    }
237 }
238 
239 /*
240  K0 = 1
241  K1 = log(2)
242  K2 = 3-4*log(2)
243  K3 = 3*log(2) - 2
244 */
245 #define D0 16384
246 #define D1 11356
247 #define D2 3726
248 #define D3 1301
249 /* Input in Q11 format, output in Q16 */
spx_exp2(spx_word16_t x)250 static inline spx_word32_t spx_exp2(spx_word16_t x)
251 {
252    int integer;
253    spx_word16_t frac;
254    integer = SHR16(x,11);
255    if (integer>14)
256       return 0x7fffffff;
257    else if (integer < -15)
258       return 0;
259    frac = SHL16(x-SHL16(integer,11),3);
260    frac = ADD16(D0, MULT16_16_Q14(frac, ADD16(D1, MULT16_16_Q14(frac, ADD16(D2 , MULT16_16_Q14(D3,frac))))));
261    return VSHR32(EXTEND32(frac), -integer-2);
262 }
263 
264 /* Input in Q11 format, output in Q16 */
spx_exp(spx_word16_t x)265 static inline spx_word32_t spx_exp(spx_word16_t x)
266 {
267    if (x>21290)
268       return 0x7fffffff;
269    else if (x<-21290)
270       return 0;
271    else
272       return spx_exp2(MULT16_16_P14(23637,x));
273 }
274 #define M1 32767
275 #define M2 -21
276 #define M3 -11943
277 #define M4 4936
278 
spx_atan01(spx_word16_t x)279 static inline spx_word16_t spx_atan01(spx_word16_t x)
280 {
281    return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
282 }
283 
284 #undef M1
285 #undef M2
286 #undef M3
287 #undef M4
288 
289 /* Input in Q15, output in Q14 */
spx_atan(spx_word32_t x)290 static inline spx_word16_t spx_atan(spx_word32_t x)
291 {
292    if (x <= 32767)
293    {
294       return SHR16(spx_atan01(x),1);
295    } else {
296       int e = spx_ilog2(x);
297       if (e>=29)
298          return 25736;
299       x = DIV32_16(SHL32(EXTEND32(32767),29-e), EXTRACT16(SHR32(x, e-14)));
300       return SUB16(25736, SHR16(spx_atan01(x),1));
301    }
302 }
303 #else
304 
305 #ifndef M_PI
306 #define M_PI           3.14159265358979323846  /* pi */
307 #endif
308 
309 #define C1 0.9999932946f
310 #define C2 -0.4999124376f
311 #define C3 0.0414877472f
312 #define C4 -0.0012712095f
313 
314 
315 #define SPX_PI_2 1.5707963268
spx_cos(spx_word16_t x)316 static inline spx_word16_t spx_cos(spx_word16_t x)
317 {
318    if (x<SPX_PI_2)
319    {
320       x *= x;
321       return C1 + x*(C2+x*(C3+C4*x));
322    } else {
323       x = M_PI-x;
324       x *= x;
325       return NEG16(C1 + x*(C2+x*(C3+C4*x)));
326    }
327 }
328 
329 #endif
330 
331 
332 #endif
333