1 // Copyright (c) 2015-2016 The Khronos Group Inc. 2 // 3 // Licensed under the Apache License, Version 2.0 (the "License"); 4 // you may not use this file except in compliance with the License. 5 // You may obtain a copy of the License at 6 // 7 // http://www.apache.org/licenses/LICENSE-2.0 8 // 9 // Unless required by applicable law or agreed to in writing, software 10 // distributed under the License is distributed on an "AS IS" BASIS, 11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 // See the License for the specific language governing permissions and 13 // limitations under the License. 14 15 #ifndef SOURCE_UTIL_HEX_FLOAT_H_ 16 #define SOURCE_UTIL_HEX_FLOAT_H_ 17 18 #include <cassert> 19 #include <cctype> 20 #include <cmath> 21 #include <cstdint> 22 #include <iomanip> 23 #include <limits> 24 #include <sstream> 25 #include <vector> 26 27 #include "source/util/bitutils.h" 28 29 #ifndef __GNUC__ 30 #define GCC_VERSION 0 31 #else 32 #define GCC_VERSION \ 33 (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) 34 #endif 35 36 namespace spvtools { 37 namespace utils { 38 39 class Float16 { 40 public: Float16(uint16_t v)41 Float16(uint16_t v) : val(v) {} 42 Float16() = default; isNan(const Float16 & val)43 static bool isNan(const Float16& val) { 44 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) != 0); 45 } 46 // Returns true if the given value is any kind of infinity. isInfinity(const Float16 & val)47 static bool isInfinity(const Float16& val) { 48 return ((val.val & 0x7C00) == 0x7C00) && ((val.val & 0x3FF) == 0); 49 } Float16(const Float16 & other)50 Float16(const Float16& other) { val = other.val; } get_value()51 uint16_t get_value() const { return val; } 52 53 // Returns the maximum normal value. max()54 static Float16 max() { return Float16(0x7bff); } 55 // Returns the lowest normal value. lowest()56 static Float16 lowest() { return Float16(0xfbff); } 57 58 private: 59 uint16_t val; 60 }; 61 62 // To specialize this type, you must override uint_type to define 63 // an unsigned integer that can fit your floating point type. 64 // You must also add a isNan function that returns true if 65 // a value is Nan. 66 template <typename T> 67 struct FloatProxyTraits { 68 using uint_type = void; 69 }; 70 71 template <> 72 struct FloatProxyTraits<float> { 73 using uint_type = uint32_t; 74 static bool isNan(float f) { return std::isnan(f); } 75 // Returns true if the given value is any kind of infinity. 76 static bool isInfinity(float f) { return std::isinf(f); } 77 // Returns the maximum normal value. 78 static float max() { return std::numeric_limits<float>::max(); } 79 // Returns the lowest normal value. 80 static float lowest() { return std::numeric_limits<float>::lowest(); } 81 // Returns the value as the native floating point format. 82 static float getAsFloat(const uint_type& t) { return BitwiseCast<float>(t); } 83 // Returns the bits from the given floating pointer number. 84 static uint_type getBitsFromFloat(const float& t) { 85 return BitwiseCast<uint_type>(t); 86 } 87 // Returns the bitwidth. 88 static uint32_t width() { return 32u; } 89 }; 90 91 template <> 92 struct FloatProxyTraits<double> { 93 using uint_type = uint64_t; 94 static bool isNan(double f) { return std::isnan(f); } 95 // Returns true if the given value is any kind of infinity. 96 static bool isInfinity(double f) { return std::isinf(f); } 97 // Returns the maximum normal value. 98 static double max() { return std::numeric_limits<double>::max(); } 99 // Returns the lowest normal value. 100 static double lowest() { return std::numeric_limits<double>::lowest(); } 101 // Returns the value as the native floating point format. 102 static double getAsFloat(const uint_type& t) { 103 return BitwiseCast<double>(t); 104 } 105 // Returns the bits from the given floating pointer number. 106 static uint_type getBitsFromFloat(const double& t) { 107 return BitwiseCast<uint_type>(t); 108 } 109 // Returns the bitwidth. 110 static uint32_t width() { return 64u; } 111 }; 112 113 template <> 114 struct FloatProxyTraits<Float16> { 115 using uint_type = uint16_t; 116 static bool isNan(Float16 f) { return Float16::isNan(f); } 117 // Returns true if the given value is any kind of infinity. 118 static bool isInfinity(Float16 f) { return Float16::isInfinity(f); } 119 // Returns the maximum normal value. 120 static Float16 max() { return Float16::max(); } 121 // Returns the lowest normal value. 122 static Float16 lowest() { return Float16::lowest(); } 123 // Returns the value as the native floating point format. 124 static Float16 getAsFloat(const uint_type& t) { return Float16(t); } 125 // Returns the bits from the given floating pointer number. 126 static uint_type getBitsFromFloat(const Float16& t) { return t.get_value(); } 127 // Returns the bitwidth. 128 static uint32_t width() { return 16u; } 129 }; 130 131 // Since copying a floating point number (especially if it is NaN) 132 // does not guarantee that bits are preserved, this class lets us 133 // store the type and use it as a float when necessary. 134 template <typename T> 135 class FloatProxy { 136 public: 137 using uint_type = typename FloatProxyTraits<T>::uint_type; 138 139 // Since this is to act similar to the normal floats, 140 // do not initialize the data by default. 141 FloatProxy() = default; 142 143 // Intentionally non-explicit. This is a proxy type so 144 // implicit conversions allow us to use it more transparently. 145 FloatProxy(T val) { data_ = FloatProxyTraits<T>::getBitsFromFloat(val); } 146 147 // Intentionally non-explicit. This is a proxy type so 148 // implicit conversions allow us to use it more transparently. 149 FloatProxy(uint_type val) { data_ = val; } 150 151 // This is helpful to have and is guaranteed not to stomp bits. 152 FloatProxy<T> operator-() const { 153 return static_cast<uint_type>(data_ ^ 154 (uint_type(0x1) << (sizeof(T) * 8 - 1))); 155 } 156 157 // Returns the data as a floating point value. 158 T getAsFloat() const { return FloatProxyTraits<T>::getAsFloat(data_); } 159 160 // Returns the raw data. 161 uint_type data() const { return data_; } 162 163 // Returns a vector of words suitable for use in an Operand. 164 std::vector<uint32_t> GetWords() const { 165 std::vector<uint32_t> words; 166 if (FloatProxyTraits<T>::width() == 64) { 167 FloatProxyTraits<double>::uint_type d = data(); 168 words.push_back(static_cast<uint32_t>(d)); 169 words.push_back(static_cast<uint32_t>(d >> 32)); 170 } else { 171 words.push_back(static_cast<uint32_t>(data())); 172 } 173 return words; 174 } 175 176 // Returns true if the value represents any type of NaN. 177 bool isNan() { return FloatProxyTraits<T>::isNan(getAsFloat()); } 178 // Returns true if the value represents any type of infinity. 179 bool isInfinity() { return FloatProxyTraits<T>::isInfinity(getAsFloat()); } 180 181 // Returns the maximum normal value. 182 static FloatProxy<T> max() { 183 return FloatProxy<T>(FloatProxyTraits<T>::max()); 184 } 185 // Returns the lowest normal value. 186 static FloatProxy<T> lowest() { 187 return FloatProxy<T>(FloatProxyTraits<T>::lowest()); 188 } 189 190 private: 191 uint_type data_; 192 }; 193 194 template <typename T> 195 bool operator==(const FloatProxy<T>& first, const FloatProxy<T>& second) { 196 return first.data() == second.data(); 197 } 198 199 // Reads a FloatProxy value as a normal float from a stream. 200 template <typename T> 201 std::istream& operator>>(std::istream& is, FloatProxy<T>& value) { 202 T float_val; 203 is >> float_val; 204 value = FloatProxy<T>(float_val); 205 return is; 206 } 207 208 // This is an example traits. It is not meant to be used in practice, but will 209 // be the default for any non-specialized type. 210 template <typename T> 211 struct HexFloatTraits { 212 // Integer type that can store this hex-float. 213 using uint_type = void; 214 // Signed integer type that can store this hex-float. 215 using int_type = void; 216 // The numerical type that this HexFloat represents. 217 using underlying_type = void; 218 // The type needed to construct the underlying type. 219 using native_type = void; 220 // The number of bits that are actually relevant in the uint_type. 221 // This allows us to deal with, for example, 24-bit values in a 32-bit 222 // integer. 223 static const uint32_t num_used_bits = 0; 224 // Number of bits that represent the exponent. 225 static const uint32_t num_exponent_bits = 0; 226 // Number of bits that represent the fractional part. 227 static const uint32_t num_fraction_bits = 0; 228 // The bias of the exponent. (How much we need to subtract from the stored 229 // value to get the correct value.) 230 static const uint32_t exponent_bias = 0; 231 }; 232 233 // Traits for IEEE float. 234 // 1 sign bit, 8 exponent bits, 23 fractional bits. 235 template <> 236 struct HexFloatTraits<FloatProxy<float>> { 237 using uint_type = uint32_t; 238 using int_type = int32_t; 239 using underlying_type = FloatProxy<float>; 240 using native_type = float; 241 static const uint_type num_used_bits = 32; 242 static const uint_type num_exponent_bits = 8; 243 static const uint_type num_fraction_bits = 23; 244 static const uint_type exponent_bias = 127; 245 }; 246 247 // Traits for IEEE double. 248 // 1 sign bit, 11 exponent bits, 52 fractional bits. 249 template <> 250 struct HexFloatTraits<FloatProxy<double>> { 251 using uint_type = uint64_t; 252 using int_type = int64_t; 253 using underlying_type = FloatProxy<double>; 254 using native_type = double; 255 static const uint_type num_used_bits = 64; 256 static const uint_type num_exponent_bits = 11; 257 static const uint_type num_fraction_bits = 52; 258 static const uint_type exponent_bias = 1023; 259 }; 260 261 // Traits for IEEE half. 262 // 1 sign bit, 5 exponent bits, 10 fractional bits. 263 template <> 264 struct HexFloatTraits<FloatProxy<Float16>> { 265 using uint_type = uint16_t; 266 using int_type = int16_t; 267 using underlying_type = uint16_t; 268 using native_type = uint16_t; 269 static const uint_type num_used_bits = 16; 270 static const uint_type num_exponent_bits = 5; 271 static const uint_type num_fraction_bits = 10; 272 static const uint_type exponent_bias = 15; 273 }; 274 275 enum class round_direction { 276 kToZero, 277 kToNearestEven, 278 kToPositiveInfinity, 279 kToNegativeInfinity, 280 max = kToNegativeInfinity 281 }; 282 283 // Template class that houses a floating pointer number. 284 // It exposes a number of constants based on the provided traits to 285 // assist in interpreting the bits of the value. 286 template <typename T, typename Traits = HexFloatTraits<T>> 287 class HexFloat { 288 public: 289 using uint_type = typename Traits::uint_type; 290 using int_type = typename Traits::int_type; 291 using underlying_type = typename Traits::underlying_type; 292 using native_type = typename Traits::native_type; 293 294 explicit HexFloat(T f) : value_(f) {} 295 296 T value() const { return value_; } 297 void set_value(T f) { value_ = f; } 298 299 // These are all written like this because it is convenient to have 300 // compile-time constants for all of these values. 301 302 // Pass-through values to save typing. 303 static const uint32_t num_used_bits = Traits::num_used_bits; 304 static const uint32_t exponent_bias = Traits::exponent_bias; 305 static const uint32_t num_exponent_bits = Traits::num_exponent_bits; 306 static const uint32_t num_fraction_bits = Traits::num_fraction_bits; 307 308 // Number of bits to shift left to set the highest relevant bit. 309 static const uint32_t top_bit_left_shift = num_used_bits - 1; 310 // How many nibbles (hex characters) the fractional part takes up. 311 static const uint32_t fraction_nibbles = (num_fraction_bits + 3) / 4; 312 // If the fractional part does not fit evenly into a hex character (4-bits) 313 // then we have to left-shift to get rid of leading 0s. This is the amount 314 // we have to shift (might be 0). 315 static const uint32_t num_overflow_bits = 316 fraction_nibbles * 4 - num_fraction_bits; 317 318 // The representation of the fraction, not the actual bits. This 319 // includes the leading bit that is usually implicit. 320 static const uint_type fraction_represent_mask = 321 SetBits<uint_type, 0, num_fraction_bits + num_overflow_bits>::get; 322 323 // The topmost bit in the nibble-aligned fraction. 324 static const uint_type fraction_top_bit = 325 uint_type(1) << (num_fraction_bits + num_overflow_bits - 1); 326 327 // The least significant bit in the exponent, which is also the bit 328 // immediately to the left of the significand. 329 static const uint_type first_exponent_bit = uint_type(1) 330 << (num_fraction_bits); 331 332 // The mask for the encoded fraction. It does not include the 333 // implicit bit. 334 static const uint_type fraction_encode_mask = 335 SetBits<uint_type, 0, num_fraction_bits>::get; 336 337 // The bit that is used as a sign. 338 static const uint_type sign_mask = uint_type(1) << top_bit_left_shift; 339 340 // The bits that represent the exponent. 341 static const uint_type exponent_mask = 342 SetBits<uint_type, num_fraction_bits, num_exponent_bits>::get; 343 344 // How far left the exponent is shifted. 345 static const uint32_t exponent_left_shift = num_fraction_bits; 346 347 // How far from the right edge the fraction is shifted. 348 static const uint32_t fraction_right_shift = 349 static_cast<uint32_t>(sizeof(uint_type) * 8) - num_fraction_bits; 350 351 // The maximum representable unbiased exponent. 352 static const int_type max_exponent = 353 (exponent_mask >> num_fraction_bits) - exponent_bias; 354 // The minimum representable exponent for normalized numbers. 355 static const int_type min_exponent = -static_cast<int_type>(exponent_bias); 356 357 // Returns the bits associated with the value. 358 uint_type getBits() const { return value_.data(); } 359 360 // Returns the bits associated with the value, without the leading sign bit. 361 uint_type getUnsignedBits() const { 362 return static_cast<uint_type>(value_.data() & ~sign_mask); 363 } 364 365 // Returns the bits associated with the exponent, shifted to start at the 366 // lsb of the type. 367 const uint_type getExponentBits() const { 368 return static_cast<uint_type>((getBits() & exponent_mask) >> 369 num_fraction_bits); 370 } 371 372 // Returns the exponent in unbiased form. This is the exponent in the 373 // human-friendly form. 374 const int_type getUnbiasedExponent() const { 375 return static_cast<int_type>(getExponentBits() - exponent_bias); 376 } 377 378 // Returns just the significand bits from the value. 379 const uint_type getSignificandBits() const { 380 return getBits() & fraction_encode_mask; 381 } 382 383 // If the number was normalized, returns the unbiased exponent. 384 // If the number was denormal, normalize the exponent first. 385 const int_type getUnbiasedNormalizedExponent() const { 386 if ((getBits() & ~sign_mask) == 0) { // special case if everything is 0 387 return 0; 388 } 389 int_type exp = getUnbiasedExponent(); 390 if (exp == min_exponent) { // We are in denorm land. 391 uint_type significand_bits = getSignificandBits(); 392 while ((significand_bits & (first_exponent_bit >> 1)) == 0) { 393 significand_bits = static_cast<uint_type>(significand_bits << 1); 394 exp = static_cast<int_type>(exp - 1); 395 } 396 significand_bits &= fraction_encode_mask; 397 } 398 return exp; 399 } 400 401 // Returns the signficand after it has been normalized. 402 const uint_type getNormalizedSignificand() const { 403 int_type unbiased_exponent = getUnbiasedNormalizedExponent(); 404 uint_type significand = getSignificandBits(); 405 for (int_type i = unbiased_exponent; i <= min_exponent; ++i) { 406 significand = static_cast<uint_type>(significand << 1); 407 } 408 significand &= fraction_encode_mask; 409 return significand; 410 } 411 412 // Returns true if this number represents a negative value. 413 bool isNegative() const { return (getBits() & sign_mask) != 0; } 414 415 // Sets this HexFloat from the individual components. 416 // Note this assumes EVERY significand is normalized, and has an implicit 417 // leading one. This means that the only way that this method will set 0, 418 // is if you set a number so denormalized that it underflows. 419 // Do not use this method with raw bits extracted from a subnormal number, 420 // since subnormals do not have an implicit leading 1 in the significand. 421 // The significand is also expected to be in the 422 // lowest-most num_fraction_bits of the uint_type. 423 // The exponent is expected to be unbiased, meaning an exponent of 424 // 0 actually means 0. 425 // If underflow_round_up is set, then on underflow, if a number is non-0 426 // and would underflow, we round up to the smallest denorm. 427 void setFromSignUnbiasedExponentAndNormalizedSignificand( 428 bool negative, int_type exponent, uint_type significand, 429 bool round_denorm_up) { 430 bool significand_is_zero = significand == 0; 431 432 if (exponent <= min_exponent) { 433 // If this was denormalized, then we have to shift the bit on, meaning 434 // the significand is not zero. 435 significand_is_zero = false; 436 significand |= first_exponent_bit; 437 significand = static_cast<uint_type>(significand >> 1); 438 } 439 440 while (exponent < min_exponent) { 441 significand = static_cast<uint_type>(significand >> 1); 442 ++exponent; 443 } 444 445 if (exponent == min_exponent) { 446 if (significand == 0 && !significand_is_zero && round_denorm_up) { 447 significand = static_cast<uint_type>(0x1); 448 } 449 } 450 451 uint_type new_value = 0; 452 if (negative) { 453 new_value = static_cast<uint_type>(new_value | sign_mask); 454 } 455 exponent = static_cast<int_type>(exponent + exponent_bias); 456 assert(exponent >= 0); 457 458 // put it all together 459 exponent = static_cast<uint_type>((exponent << exponent_left_shift) & 460 exponent_mask); 461 significand = static_cast<uint_type>(significand & fraction_encode_mask); 462 new_value = static_cast<uint_type>(new_value | (exponent | significand)); 463 value_ = T(new_value); 464 } 465 466 // Increments the significand of this number by the given amount. 467 // If this would spill the significand into the implicit bit, 468 // carry is set to true and the significand is shifted to fit into 469 // the correct location, otherwise carry is set to false. 470 // All significands and to_increment are assumed to be within the bounds 471 // for a valid significand. 472 static uint_type incrementSignificand(uint_type significand, 473 uint_type to_increment, bool* carry) { 474 significand = static_cast<uint_type>(significand + to_increment); 475 *carry = false; 476 if (significand & first_exponent_bit) { 477 *carry = true; 478 // The implicit 1-bit will have carried, so we should zero-out the 479 // top bit and shift back. 480 significand = static_cast<uint_type>(significand & ~first_exponent_bit); 481 significand = static_cast<uint_type>(significand >> 1); 482 } 483 return significand; 484 } 485 486 #if GCC_VERSION == 40801 487 // These exist because MSVC throws warnings on negative right-shifts 488 // even if they are not going to be executed. Eg: 489 // constant_number < 0? 0: constant_number 490 // These convert the negative left-shifts into right shifts. 491 template <int_type N> 492 struct negatable_left_shift { 493 static uint_type val(uint_type val) { 494 if (N > 0) { 495 return static_cast<uint_type>(val << N); 496 } else { 497 return static_cast<uint_type>(val >> N); 498 } 499 } 500 }; 501 502 template <int_type N> 503 struct negatable_right_shift { 504 static uint_type val(uint_type val) { 505 if (N > 0) { 506 return static_cast<uint_type>(val >> N); 507 } else { 508 return static_cast<uint_type>(val << N); 509 } 510 } 511 }; 512 513 #else 514 // These exist because MSVC throws warnings on negative right-shifts 515 // even if they are not going to be executed. Eg: 516 // constant_number < 0? 0: constant_number 517 // These convert the negative left-shifts into right shifts. 518 template <int_type N, typename enable = void> 519 struct negatable_left_shift { 520 static uint_type val(uint_type val) { 521 return static_cast<uint_type>(val >> -N); 522 } 523 }; 524 525 template <int_type N> 526 struct negatable_left_shift<N, typename std::enable_if<N >= 0>::type> { 527 static uint_type val(uint_type val) { 528 return static_cast<uint_type>(val << N); 529 } 530 }; 531 532 template <int_type N, typename enable = void> 533 struct negatable_right_shift { 534 static uint_type val(uint_type val) { 535 return static_cast<uint_type>(val << -N); 536 } 537 }; 538 539 template <int_type N> 540 struct negatable_right_shift<N, typename std::enable_if<N >= 0>::type> { 541 static uint_type val(uint_type val) { 542 return static_cast<uint_type>(val >> N); 543 } 544 }; 545 #endif 546 547 // Returns the significand, rounded to fit in a significand in 548 // other_T. This is shifted so that the most significant 549 // bit of the rounded number lines up with the most significant bit 550 // of the returned significand. 551 template <typename other_T> 552 typename other_T::uint_type getRoundedNormalizedSignificand( 553 round_direction dir, bool* carry_bit) { 554 using other_uint_type = typename other_T::uint_type; 555 static const int_type num_throwaway_bits = 556 static_cast<int_type>(num_fraction_bits) - 557 static_cast<int_type>(other_T::num_fraction_bits); 558 559 static const uint_type last_significant_bit = 560 (num_throwaway_bits < 0) 561 ? 0 562 : negatable_left_shift<num_throwaway_bits>::val(1u); 563 static const uint_type first_rounded_bit = 564 (num_throwaway_bits < 1) 565 ? 0 566 : negatable_left_shift<num_throwaway_bits - 1>::val(1u); 567 568 static const uint_type throwaway_mask_bits = 569 num_throwaway_bits > 0 ? num_throwaway_bits : 0; 570 static const uint_type throwaway_mask = 571 SetBits<uint_type, 0, throwaway_mask_bits>::get; 572 573 *carry_bit = false; 574 other_uint_type out_val = 0; 575 uint_type significand = getNormalizedSignificand(); 576 // If we are up-casting, then we just have to shift to the right location. 577 if (num_throwaway_bits <= 0) { 578 out_val = static_cast<other_uint_type>(significand); 579 uint_type shift_amount = static_cast<uint_type>(-num_throwaway_bits); 580 out_val = static_cast<other_uint_type>(out_val << shift_amount); 581 return out_val; 582 } 583 584 // If every non-representable bit is 0, then we don't have any casting to 585 // do. 586 if ((significand & throwaway_mask) == 0) { 587 return static_cast<other_uint_type>( 588 negatable_right_shift<num_throwaway_bits>::val(significand)); 589 } 590 591 bool round_away_from_zero = false; 592 // We actually have to narrow the significand here, so we have to follow the 593 // rounding rules. 594 switch (dir) { 595 case round_direction::kToZero: 596 break; 597 case round_direction::kToPositiveInfinity: 598 round_away_from_zero = !isNegative(); 599 break; 600 case round_direction::kToNegativeInfinity: 601 round_away_from_zero = isNegative(); 602 break; 603 case round_direction::kToNearestEven: 604 // Have to round down, round bit is 0 605 if ((first_rounded_bit & significand) == 0) { 606 break; 607 } 608 if (((significand & throwaway_mask) & ~first_rounded_bit) != 0) { 609 // If any subsequent bit of the rounded portion is non-0 then we round 610 // up. 611 round_away_from_zero = true; 612 break; 613 } 614 // We are exactly half-way between 2 numbers, pick even. 615 if ((significand & last_significant_bit) != 0) { 616 // 1 for our last bit, round up. 617 round_away_from_zero = true; 618 break; 619 } 620 break; 621 } 622 623 if (round_away_from_zero) { 624 return static_cast<other_uint_type>( 625 negatable_right_shift<num_throwaway_bits>::val(incrementSignificand( 626 significand, last_significant_bit, carry_bit))); 627 } else { 628 return static_cast<other_uint_type>( 629 negatable_right_shift<num_throwaway_bits>::val(significand)); 630 } 631 } 632 633 // Casts this value to another HexFloat. If the cast is widening, 634 // then round_dir is ignored. If the cast is narrowing, then 635 // the result is rounded in the direction specified. 636 // This number will retain Nan and Inf values. 637 // It will also saturate to Inf if the number overflows, and 638 // underflow to (0 or min depending on rounding) if the number underflows. 639 template <typename other_T> 640 void castTo(other_T& other, round_direction round_dir) { 641 other = other_T(static_cast<typename other_T::native_type>(0)); 642 bool negate = isNegative(); 643 if (getUnsignedBits() == 0) { 644 if (negate) { 645 other.set_value(-other.value()); 646 } 647 return; 648 } 649 uint_type significand = getSignificandBits(); 650 bool carried = false; 651 typename other_T::uint_type rounded_significand = 652 getRoundedNormalizedSignificand<other_T>(round_dir, &carried); 653 654 int_type exponent = getUnbiasedExponent(); 655 if (exponent == min_exponent) { 656 // If we are denormal, normalize the exponent, so that we can encode 657 // easily. 658 exponent = static_cast<int_type>(exponent + 1); 659 for (uint_type check_bit = first_exponent_bit >> 1; check_bit != 0; 660 check_bit = static_cast<uint_type>(check_bit >> 1)) { 661 exponent = static_cast<int_type>(exponent - 1); 662 if (check_bit & significand) break; 663 } 664 } 665 666 bool is_nan = 667 (getBits() & exponent_mask) == exponent_mask && significand != 0; 668 bool is_inf = 669 !is_nan && 670 ((exponent + carried) > static_cast<int_type>(other_T::exponent_bias) || 671 (significand == 0 && (getBits() & exponent_mask) == exponent_mask)); 672 673 // If we are Nan or Inf we should pass that through. 674 if (is_inf) { 675 other.set_value(typename other_T::underlying_type( 676 static_cast<typename other_T::uint_type>( 677 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask))); 678 return; 679 } 680 if (is_nan) { 681 typename other_T::uint_type shifted_significand; 682 shifted_significand = static_cast<typename other_T::uint_type>( 683 negatable_left_shift< 684 static_cast<int_type>(other_T::num_fraction_bits) - 685 static_cast<int_type>(num_fraction_bits)>::val(significand)); 686 687 // We are some sort of Nan. We try to keep the bit-pattern of the Nan 688 // as close as possible. If we had to shift off bits so we are 0, then we 689 // just set the last bit. 690 other.set_value(typename other_T::underlying_type( 691 static_cast<typename other_T::uint_type>( 692 (negate ? other_T::sign_mask : 0) | other_T::exponent_mask | 693 (shifted_significand == 0 ? 0x1 : shifted_significand)))); 694 return; 695 } 696 697 bool round_underflow_up = 698 isNegative() ? round_dir == round_direction::kToNegativeInfinity 699 : round_dir == round_direction::kToPositiveInfinity; 700 using other_int_type = typename other_T::int_type; 701 // setFromSignUnbiasedExponentAndNormalizedSignificand will 702 // zero out any underflowing value (but retain the sign). 703 other.setFromSignUnbiasedExponentAndNormalizedSignificand( 704 negate, static_cast<other_int_type>(exponent), rounded_significand, 705 round_underflow_up); 706 return; 707 } 708 709 private: 710 T value_; 711 712 static_assert(num_used_bits == 713 Traits::num_exponent_bits + Traits::num_fraction_bits + 1, 714 "The number of bits do not fit"); 715 static_assert(sizeof(T) == sizeof(uint_type), "The type sizes do not match"); 716 }; 717 718 // Returns 4 bits represented by the hex character. 719 inline uint8_t get_nibble_from_character(int character) { 720 const char* dec = "0123456789"; 721 const char* lower = "abcdef"; 722 const char* upper = "ABCDEF"; 723 const char* p = nullptr; 724 if ((p = strchr(dec, character))) { 725 return static_cast<uint8_t>(p - dec); 726 } else if ((p = strchr(lower, character))) { 727 return static_cast<uint8_t>(p - lower + 0xa); 728 } else if ((p = strchr(upper, character))) { 729 return static_cast<uint8_t>(p - upper + 0xa); 730 } 731 732 assert(false && "This was called with a non-hex character"); 733 return 0; 734 } 735 736 // Outputs the given HexFloat to the stream. 737 template <typename T, typename Traits> 738 std::ostream& operator<<(std::ostream& os, const HexFloat<T, Traits>& value) { 739 using HF = HexFloat<T, Traits>; 740 using uint_type = typename HF::uint_type; 741 using int_type = typename HF::int_type; 742 743 static_assert(HF::num_used_bits != 0, 744 "num_used_bits must be non-zero for a valid float"); 745 static_assert(HF::num_exponent_bits != 0, 746 "num_exponent_bits must be non-zero for a valid float"); 747 static_assert(HF::num_fraction_bits != 0, 748 "num_fractin_bits must be non-zero for a valid float"); 749 750 const uint_type bits = value.value().data(); 751 const char* const sign = (bits & HF::sign_mask) ? "-" : ""; 752 const uint_type exponent = static_cast<uint_type>( 753 (bits & HF::exponent_mask) >> HF::num_fraction_bits); 754 755 uint_type fraction = static_cast<uint_type>((bits & HF::fraction_encode_mask) 756 << HF::num_overflow_bits); 757 758 const bool is_zero = exponent == 0 && fraction == 0; 759 const bool is_denorm = exponent == 0 && !is_zero; 760 761 // exponent contains the biased exponent we have to convert it back into 762 // the normal range. 763 int_type int_exponent = static_cast<int_type>(exponent - HF::exponent_bias); 764 // If the number is all zeros, then we actually have to NOT shift the 765 // exponent. 766 int_exponent = is_zero ? 0 : int_exponent; 767 768 // If we are denorm, then start shifting, and decreasing the exponent until 769 // our leading bit is 1. 770 771 if (is_denorm) { 772 while ((fraction & HF::fraction_top_bit) == 0) { 773 fraction = static_cast<uint_type>(fraction << 1); 774 int_exponent = static_cast<int_type>(int_exponent - 1); 775 } 776 // Since this is denormalized, we have to consume the leading 1 since it 777 // will end up being implicit. 778 fraction = static_cast<uint_type>(fraction << 1); // eat the leading 1 779 fraction &= HF::fraction_represent_mask; 780 } 781 782 uint_type fraction_nibbles = HF::fraction_nibbles; 783 // We do not have to display any trailing 0s, since this represents the 784 // fractional part. 785 while (fraction_nibbles > 0 && (fraction & 0xF) == 0) { 786 // Shift off any trailing values; 787 fraction = static_cast<uint_type>(fraction >> 4); 788 --fraction_nibbles; 789 } 790 791 const auto saved_flags = os.flags(); 792 const auto saved_fill = os.fill(); 793 794 os << sign << "0x" << (is_zero ? '0' : '1'); 795 if (fraction_nibbles) { 796 // Make sure to keep the leading 0s in place, since this is the fractional 797 // part. 798 os << "." << std::setw(static_cast<int>(fraction_nibbles)) 799 << std::setfill('0') << std::hex << fraction; 800 } 801 os << "p" << std::dec << (int_exponent >= 0 ? "+" : "") << int_exponent; 802 803 os.flags(saved_flags); 804 os.fill(saved_fill); 805 806 return os; 807 } 808 809 // Returns true if negate_value is true and the next character on the 810 // input stream is a plus or minus sign. In that case we also set the fail bit 811 // on the stream and set the value to the zero value for its type. 812 template <typename T, typename Traits> 813 inline bool RejectParseDueToLeadingSign(std::istream& is, bool negate_value, 814 HexFloat<T, Traits>& value) { 815 if (negate_value) { 816 auto next_char = is.peek(); 817 if (next_char == '-' || next_char == '+') { 818 // Fail the parse. Emulate standard behaviour by setting the value to 819 // the zero value, and set the fail bit on the stream. 820 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); 821 is.setstate(std::ios_base::failbit); 822 return true; 823 } 824 } 825 return false; 826 } 827 828 // Parses a floating point number from the given stream and stores it into the 829 // value parameter. 830 // If negate_value is true then the number may not have a leading minus or 831 // plus, and if it successfully parses, then the number is negated before 832 // being stored into the value parameter. 833 // If the value cannot be correctly parsed or overflows the target floating 834 // point type, then set the fail bit on the stream. 835 // TODO(dneto): Promise C++11 standard behavior in how the value is set in 836 // the error case, but only after all target platforms implement it correctly. 837 // In particular, the Microsoft C++ runtime appears to be out of spec. 838 template <typename T, typename Traits> 839 inline std::istream& ParseNormalFloat(std::istream& is, bool negate_value, 840 HexFloat<T, Traits>& value) { 841 if (RejectParseDueToLeadingSign(is, negate_value, value)) { 842 return is; 843 } 844 T val; 845 is >> val; 846 if (negate_value) { 847 val = -val; 848 } 849 value.set_value(val); 850 // In the failure case, map -0.0 to 0.0. 851 if (is.fail() && value.getUnsignedBits() == 0u) { 852 value = HexFloat<T, Traits>(typename HexFloat<T, Traits>::uint_type{0}); 853 } 854 if (val.isInfinity()) { 855 // Fail the parse. Emulate standard behaviour by setting the value to 856 // the closest normal value, and set the fail bit on the stream. 857 value.set_value((value.isNegative() | negate_value) ? T::lowest() 858 : T::max()); 859 is.setstate(std::ios_base::failbit); 860 } 861 return is; 862 } 863 864 // Specialization of ParseNormalFloat for FloatProxy<Float16> values. 865 // This will parse the float as it were a 32-bit floating point number, 866 // and then round it down to fit into a Float16 value. 867 // The number is rounded towards zero. 868 // If negate_value is true then the number may not have a leading minus or 869 // plus, and if it successfully parses, then the number is negated before 870 // being stored into the value parameter. 871 // If the value cannot be correctly parsed or overflows the target floating 872 // point type, then set the fail bit on the stream. 873 // TODO(dneto): Promise C++11 standard behavior in how the value is set in 874 // the error case, but only after all target platforms implement it correctly. 875 // In particular, the Microsoft C++ runtime appears to be out of spec. 876 template <> 877 inline std::istream& 878 ParseNormalFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>( 879 std::istream& is, bool negate_value, 880 HexFloat<FloatProxy<Float16>, HexFloatTraits<FloatProxy<Float16>>>& value) { 881 // First parse as a 32-bit float. 882 HexFloat<FloatProxy<float>> float_val(0.0f); 883 ParseNormalFloat(is, negate_value, float_val); 884 885 // Then convert to 16-bit float, saturating at infinities, and 886 // rounding toward zero. 887 float_val.castTo(value, round_direction::kToZero); 888 889 // Overflow on 16-bit behaves the same as for 32- and 64-bit: set the 890 // fail bit and set the lowest or highest value. 891 if (Float16::isInfinity(value.value().getAsFloat())) { 892 value.set_value(value.isNegative() ? Float16::lowest() : Float16::max()); 893 is.setstate(std::ios_base::failbit); 894 } 895 return is; 896 } 897 898 // Reads a HexFloat from the given stream. 899 // If the float is not encoded as a hex-float then it will be parsed 900 // as a regular float. 901 // This may fail if your stream does not support at least one unget. 902 // Nan values can be encoded with "0x1.<not zero>p+exponent_bias". 903 // This would normally overflow a float and round to 904 // infinity but this special pattern is the exact representation for a NaN, 905 // and therefore is actually encoded as the correct NaN. To encode inf, 906 // either 0x0p+exponent_bias can be specified or any exponent greater than 907 // exponent_bias. 908 // Examples using IEEE 32-bit float encoding. 909 // 0x1.0p+128 (+inf) 910 // -0x1.0p-128 (-inf) 911 // 912 // 0x1.1p+128 (+Nan) 913 // -0x1.1p+128 (-Nan) 914 // 915 // 0x1p+129 (+inf) 916 // -0x1p+129 (-inf) 917 template <typename T, typename Traits> 918 std::istream& operator>>(std::istream& is, HexFloat<T, Traits>& value) { 919 using HF = HexFloat<T, Traits>; 920 using uint_type = typename HF::uint_type; 921 using int_type = typename HF::int_type; 922 923 value.set_value(static_cast<typename HF::native_type>(0.f)); 924 925 if (is.flags() & std::ios::skipws) { 926 // If the user wants to skip whitespace , then we should obey that. 927 while (std::isspace(is.peek())) { 928 is.get(); 929 } 930 } 931 932 auto next_char = is.peek(); 933 bool negate_value = false; 934 935 if (next_char != '-' && next_char != '0') { 936 return ParseNormalFloat(is, negate_value, value); 937 } 938 939 if (next_char == '-') { 940 negate_value = true; 941 is.get(); 942 next_char = is.peek(); 943 } 944 945 if (next_char == '0') { 946 is.get(); // We may have to unget this. 947 auto maybe_hex_start = is.peek(); 948 if (maybe_hex_start != 'x' && maybe_hex_start != 'X') { 949 is.unget(); 950 return ParseNormalFloat(is, negate_value, value); 951 } else { 952 is.get(); // Throw away the 'x'; 953 } 954 } else { 955 return ParseNormalFloat(is, negate_value, value); 956 } 957 958 // This "looks" like a hex-float so treat it as one. 959 bool seen_p = false; 960 bool seen_dot = false; 961 uint_type fraction_index = 0; 962 963 uint_type fraction = 0; 964 int_type exponent = HF::exponent_bias; 965 966 // Strip off leading zeros so we don't have to special-case them later. 967 while ((next_char = is.peek()) == '0') { 968 is.get(); 969 } 970 971 bool is_denorm = 972 true; // Assume denorm "representation" until we hear otherwise. 973 // NB: This does not mean the value is actually denorm, 974 // it just means that it was written 0. 975 bool bits_written = false; // Stays false until we write a bit. 976 while (!seen_p && !seen_dot) { 977 // Handle characters that are left of the fractional part. 978 if (next_char == '.') { 979 seen_dot = true; 980 } else if (next_char == 'p') { 981 seen_p = true; 982 } else if (::isxdigit(next_char)) { 983 // We know this is not denormalized since we have stripped all leading 984 // zeroes and we are not a ".". 985 is_denorm = false; 986 int number = get_nibble_from_character(next_char); 987 for (int i = 0; i < 4; ++i, number <<= 1) { 988 uint_type write_bit = (number & 0x8) ? 0x1 : 0x0; 989 if (bits_written) { 990 // If we are here the bits represented belong in the fractional 991 // part of the float, and we have to adjust the exponent accordingly. 992 fraction = static_cast<uint_type>( 993 fraction | 994 static_cast<uint_type>( 995 write_bit << (HF::top_bit_left_shift - fraction_index++))); 996 exponent = static_cast<int_type>(exponent + 1); 997 } 998 bits_written |= write_bit != 0; 999 } 1000 } else { 1001 // We have not found our exponent yet, so we have to fail. 1002 is.setstate(std::ios::failbit); 1003 return is; 1004 } 1005 is.get(); 1006 next_char = is.peek(); 1007 } 1008 bits_written = false; 1009 while (seen_dot && !seen_p) { 1010 // Handle only fractional parts now. 1011 if (next_char == 'p') { 1012 seen_p = true; 1013 } else if (::isxdigit(next_char)) { 1014 int number = get_nibble_from_character(next_char); 1015 for (int i = 0; i < 4; ++i, number <<= 1) { 1016 uint_type write_bit = (number & 0x8) ? 0x01 : 0x00; 1017 bits_written |= write_bit != 0; 1018 if (is_denorm && !bits_written) { 1019 // Handle modifying the exponent here this way we can handle 1020 // an arbitrary number of hex values without overflowing our 1021 // integer. 1022 exponent = static_cast<int_type>(exponent - 1); 1023 } else { 1024 fraction = static_cast<uint_type>( 1025 fraction | 1026 static_cast<uint_type>( 1027 write_bit << (HF::top_bit_left_shift - fraction_index++))); 1028 } 1029 } 1030 } else { 1031 // We still have not found our 'p' exponent yet, so this is not a valid 1032 // hex-float. 1033 is.setstate(std::ios::failbit); 1034 return is; 1035 } 1036 is.get(); 1037 next_char = is.peek(); 1038 } 1039 1040 bool seen_sign = false; 1041 int8_t exponent_sign = 1; 1042 int_type written_exponent = 0; 1043 while (true) { 1044 if ((next_char == '-' || next_char == '+')) { 1045 if (seen_sign) { 1046 is.setstate(std::ios::failbit); 1047 return is; 1048 } 1049 seen_sign = true; 1050 exponent_sign = (next_char == '-') ? -1 : 1; 1051 } else if (::isdigit(next_char)) { 1052 // Hex-floats express their exponent as decimal. 1053 written_exponent = static_cast<int_type>(written_exponent * 10); 1054 written_exponent = 1055 static_cast<int_type>(written_exponent + (next_char - '0')); 1056 } else { 1057 break; 1058 } 1059 is.get(); 1060 next_char = is.peek(); 1061 } 1062 1063 written_exponent = static_cast<int_type>(written_exponent * exponent_sign); 1064 exponent = static_cast<int_type>(exponent + written_exponent); 1065 1066 bool is_zero = is_denorm && (fraction == 0); 1067 if (is_denorm && !is_zero) { 1068 fraction = static_cast<uint_type>(fraction << 1); 1069 exponent = static_cast<int_type>(exponent - 1); 1070 } else if (is_zero) { 1071 exponent = 0; 1072 } 1073 1074 if (exponent <= 0 && !is_zero) { 1075 fraction = static_cast<uint_type>(fraction >> 1); 1076 fraction |= static_cast<uint_type>(1) << HF::top_bit_left_shift; 1077 } 1078 1079 fraction = (fraction >> HF::fraction_right_shift) & HF::fraction_encode_mask; 1080 1081 const int_type max_exponent = 1082 SetBits<uint_type, 0, HF::num_exponent_bits>::get; 1083 1084 // Handle actual denorm numbers 1085 while (exponent < 0 && !is_zero) { 1086 fraction = static_cast<uint_type>(fraction >> 1); 1087 exponent = static_cast<int_type>(exponent + 1); 1088 1089 fraction &= HF::fraction_encode_mask; 1090 if (fraction == 0) { 1091 // We have underflowed our fraction. We should clamp to zero. 1092 is_zero = true; 1093 exponent = 0; 1094 } 1095 } 1096 1097 // We have overflowed so we should be inf/-inf. 1098 if (exponent > max_exponent) { 1099 exponent = max_exponent; 1100 fraction = 0; 1101 } 1102 1103 uint_type output_bits = static_cast<uint_type>( 1104 static_cast<uint_type>(negate_value ? 1 : 0) << HF::top_bit_left_shift); 1105 output_bits |= fraction; 1106 1107 uint_type shifted_exponent = static_cast<uint_type>( 1108 static_cast<uint_type>(exponent << HF::exponent_left_shift) & 1109 HF::exponent_mask); 1110 output_bits |= shifted_exponent; 1111 1112 T output_float(output_bits); 1113 value.set_value(output_float); 1114 1115 return is; 1116 } 1117 1118 // Writes a FloatProxy value to a stream. 1119 // Zero and normal numbers are printed in the usual notation, but with 1120 // enough digits to fully reproduce the value. Other values (subnormal, 1121 // NaN, and infinity) are printed as a hex float. 1122 template <typename T> 1123 std::ostream& operator<<(std::ostream& os, const FloatProxy<T>& value) { 1124 auto float_val = value.getAsFloat(); 1125 switch (std::fpclassify(float_val)) { 1126 case FP_ZERO: 1127 case FP_NORMAL: { 1128 auto saved_precision = os.precision(); 1129 os.precision(std::numeric_limits<T>::max_digits10); 1130 os << float_val; 1131 os.precision(saved_precision); 1132 } break; 1133 default: 1134 os << HexFloat<FloatProxy<T>>(value); 1135 break; 1136 } 1137 return os; 1138 } 1139 1140 template <> 1141 inline std::ostream& operator<<<Float16>(std::ostream& os, 1142 const FloatProxy<Float16>& value) { 1143 os << HexFloat<FloatProxy<Float16>>(value); 1144 return os; 1145 } 1146 1147 } // namespace utils 1148 } // namespace spvtools 1149 1150 #endif // SOURCE_UTIL_HEX_FLOAT_H_ 1151