• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect the sequence of machine instructions for a basic block.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
15 
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/ilist.h"
18 #include "llvm/ADT/ilist_node.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/ADT/simple_ilist.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/BranchProbability.h"
27 #include "llvm/Support/Printable.h"
28 #include <cassert>
29 #include <cstdint>
30 #include <functional>
31 #include <iterator>
32 #include <string>
33 #include <vector>
34 
35 namespace llvm {
36 
37 class BasicBlock;
38 class MachineFunction;
39 class MCSymbol;
40 class ModuleSlotTracker;
41 class Pass;
42 class SlotIndexes;
43 class StringRef;
44 class raw_ostream;
45 class TargetRegisterClass;
46 class TargetRegisterInfo;
47 
48 template <> struct ilist_traits<MachineInstr> {
49 private:
50   friend class MachineBasicBlock; // Set by the owning MachineBasicBlock.
51 
52   MachineBasicBlock *Parent;
53 
54   using instr_iterator =
55       simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator;
56 
57 public:
58   void addNodeToList(MachineInstr *N);
59   void removeNodeFromList(MachineInstr *N);
60   void transferNodesFromList(ilist_traits &FromList, instr_iterator First,
61                              instr_iterator Last);
62   void deleteNode(MachineInstr *MI);
63 };
64 
65 class MachineBasicBlock
66     : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> {
67 public:
68   /// Pair of physical register and lane mask.
69   /// This is not simply a std::pair typedef because the members should be named
70   /// clearly as they both have an integer type.
71   struct RegisterMaskPair {
72   public:
73     MCPhysReg PhysReg;
74     LaneBitmask LaneMask;
75 
76     RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask)
77         : PhysReg(PhysReg), LaneMask(LaneMask) {}
78   };
79 
80 private:
81   using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>;
82 
83   Instructions Insts;
84   const BasicBlock *BB;
85   int Number;
86   MachineFunction *xParent;
87 
88   /// Keep track of the predecessor / successor basic blocks.
89   std::vector<MachineBasicBlock *> Predecessors;
90   std::vector<MachineBasicBlock *> Successors;
91 
92   /// Keep track of the probabilities to the successors. This vector has the
93   /// same order as Successors, or it is empty if we don't use it (disable
94   /// optimization).
95   std::vector<BranchProbability> Probs;
96   using probability_iterator = std::vector<BranchProbability>::iterator;
97   using const_probability_iterator =
98       std::vector<BranchProbability>::const_iterator;
99 
100   Optional<uint64_t> IrrLoopHeaderWeight;
101 
102   /// Keep track of the physical registers that are livein of the basicblock.
103   using LiveInVector = std::vector<RegisterMaskPair>;
104   LiveInVector LiveIns;
105 
106   /// Alignment of the basic block. One if the basic block does not need to be
107   /// aligned.
108   Align Alignment;
109 
110   /// Indicate that this basic block is entered via an exception handler.
111   bool IsEHPad = false;
112 
113   /// Indicate that this basic block is potentially the target of an indirect
114   /// branch.
115   bool AddressTaken = false;
116 
117   /// Indicate that this basic block needs its symbol be emitted regardless of
118   /// whether the flow just falls-through to it.
119   bool LabelMustBeEmitted = false;
120 
121   /// Indicate that this basic block is the entry block of an EH scope, i.e.,
122   /// the block that used to have a catchpad or cleanuppad instruction in the
123   /// LLVM IR.
124   bool IsEHScopeEntry = false;
125 
126   /// Indicate that this basic block is the entry block of an EH funclet.
127   bool IsEHFuncletEntry = false;
128 
129   /// Indicate that this basic block is the entry block of a cleanup funclet.
130   bool IsCleanupFuncletEntry = false;
131 
132   /// since getSymbol is a relatively heavy-weight operation, the symbol
133   /// is only computed once and is cached.
134   mutable MCSymbol *CachedMCSymbol = nullptr;
135 
136   // Intrusive list support
137   MachineBasicBlock() = default;
138 
139   explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB);
140 
141   ~MachineBasicBlock();
142 
143   // MachineBasicBlocks are allocated and owned by MachineFunction.
144   friend class MachineFunction;
145 
146 public:
147   /// Return the LLVM basic block that this instance corresponded to originally.
148   /// Note that this may be NULL if this instance does not correspond directly
149   /// to an LLVM basic block.
150   const BasicBlock *getBasicBlock() const { return BB; }
151 
152   /// Return the name of the corresponding LLVM basic block, or an empty string.
153   StringRef getName() const;
154 
155   /// Return a formatted string to identify this block and its parent function.
156   std::string getFullName() const;
157 
158   /// Test whether this block is potentially the target of an indirect branch.
159   bool hasAddressTaken() const { return AddressTaken; }
160 
161   /// Set this block to reflect that it potentially is the target of an indirect
162   /// branch.
163   void setHasAddressTaken() { AddressTaken = true; }
164 
165   /// Test whether this block must have its label emitted.
166   bool hasLabelMustBeEmitted() const { return LabelMustBeEmitted; }
167 
168   /// Set this block to reflect that, regardless how we flow to it, we need
169   /// its label be emitted.
170   void setLabelMustBeEmitted() { LabelMustBeEmitted = true; }
171 
172   /// Return the MachineFunction containing this basic block.
173   const MachineFunction *getParent() const { return xParent; }
174   MachineFunction *getParent() { return xParent; }
175 
176   using instr_iterator = Instructions::iterator;
177   using const_instr_iterator = Instructions::const_iterator;
178   using reverse_instr_iterator = Instructions::reverse_iterator;
179   using const_reverse_instr_iterator = Instructions::const_reverse_iterator;
180 
181   using iterator = MachineInstrBundleIterator<MachineInstr>;
182   using const_iterator = MachineInstrBundleIterator<const MachineInstr>;
183   using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>;
184   using const_reverse_iterator =
185       MachineInstrBundleIterator<const MachineInstr, true>;
186 
187   unsigned size() const { return (unsigned)Insts.size(); }
188   bool empty() const { return Insts.empty(); }
189 
190   MachineInstr       &instr_front()       { return Insts.front(); }
191   MachineInstr       &instr_back()        { return Insts.back();  }
192   const MachineInstr &instr_front() const { return Insts.front(); }
193   const MachineInstr &instr_back()  const { return Insts.back();  }
194 
195   MachineInstr       &front()             { return Insts.front(); }
196   MachineInstr       &back()              { return *--end();      }
197   const MachineInstr &front()       const { return Insts.front(); }
198   const MachineInstr &back()        const { return *--end();      }
199 
200   instr_iterator                instr_begin()       { return Insts.begin();  }
201   const_instr_iterator          instr_begin() const { return Insts.begin();  }
202   instr_iterator                  instr_end()       { return Insts.end();    }
203   const_instr_iterator            instr_end() const { return Insts.end();    }
204   reverse_instr_iterator       instr_rbegin()       { return Insts.rbegin(); }
205   const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); }
206   reverse_instr_iterator       instr_rend  ()       { return Insts.rend();   }
207   const_reverse_instr_iterator instr_rend  () const { return Insts.rend();   }
208 
209   using instr_range = iterator_range<instr_iterator>;
210   using const_instr_range = iterator_range<const_instr_iterator>;
211   instr_range instrs() { return instr_range(instr_begin(), instr_end()); }
212   const_instr_range instrs() const {
213     return const_instr_range(instr_begin(), instr_end());
214   }
215 
216   iterator                begin()       { return instr_begin();  }
217   const_iterator          begin() const { return instr_begin();  }
218   iterator                end  ()       { return instr_end();    }
219   const_iterator          end  () const { return instr_end();    }
220   reverse_iterator rbegin() {
221     return reverse_iterator::getAtBundleBegin(instr_rbegin());
222   }
223   const_reverse_iterator rbegin() const {
224     return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
225   }
226   reverse_iterator rend() { return reverse_iterator(instr_rend()); }
227   const_reverse_iterator rend() const {
228     return const_reverse_iterator(instr_rend());
229   }
230 
231   /// Support for MachineInstr::getNextNode().
232   static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) {
233     return &MachineBasicBlock::Insts;
234   }
235 
236   inline iterator_range<iterator> terminators() {
237     return make_range(getFirstTerminator(), end());
238   }
239   inline iterator_range<const_iterator> terminators() const {
240     return make_range(getFirstTerminator(), end());
241   }
242 
243   /// Returns a range that iterates over the phis in the basic block.
244   inline iterator_range<iterator> phis() {
245     return make_range(begin(), getFirstNonPHI());
246   }
247   inline iterator_range<const_iterator> phis() const {
248     return const_cast<MachineBasicBlock *>(this)->phis();
249   }
250 
251   // Machine-CFG iterators
252   using pred_iterator = std::vector<MachineBasicBlock *>::iterator;
253   using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator;
254   using succ_iterator = std::vector<MachineBasicBlock *>::iterator;
255   using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator;
256   using pred_reverse_iterator =
257       std::vector<MachineBasicBlock *>::reverse_iterator;
258   using const_pred_reverse_iterator =
259       std::vector<MachineBasicBlock *>::const_reverse_iterator;
260   using succ_reverse_iterator =
261       std::vector<MachineBasicBlock *>::reverse_iterator;
262   using const_succ_reverse_iterator =
263       std::vector<MachineBasicBlock *>::const_reverse_iterator;
264   pred_iterator        pred_begin()       { return Predecessors.begin(); }
265   const_pred_iterator  pred_begin() const { return Predecessors.begin(); }
266   pred_iterator        pred_end()         { return Predecessors.end();   }
267   const_pred_iterator  pred_end()   const { return Predecessors.end();   }
268   pred_reverse_iterator        pred_rbegin()
269                                           { return Predecessors.rbegin();}
270   const_pred_reverse_iterator  pred_rbegin() const
271                                           { return Predecessors.rbegin();}
272   pred_reverse_iterator        pred_rend()
273                                           { return Predecessors.rend();  }
274   const_pred_reverse_iterator  pred_rend()   const
275                                           { return Predecessors.rend();  }
276   unsigned             pred_size()  const {
277     return (unsigned)Predecessors.size();
278   }
279   bool                 pred_empty() const { return Predecessors.empty(); }
280   succ_iterator        succ_begin()       { return Successors.begin();   }
281   const_succ_iterator  succ_begin() const { return Successors.begin();   }
282   succ_iterator        succ_end()         { return Successors.end();     }
283   const_succ_iterator  succ_end()   const { return Successors.end();     }
284   succ_reverse_iterator        succ_rbegin()
285                                           { return Successors.rbegin();  }
286   const_succ_reverse_iterator  succ_rbegin() const
287                                           { return Successors.rbegin();  }
288   succ_reverse_iterator        succ_rend()
289                                           { return Successors.rend();    }
290   const_succ_reverse_iterator  succ_rend()   const
291                                           { return Successors.rend();    }
292   unsigned             succ_size()  const {
293     return (unsigned)Successors.size();
294   }
295   bool                 succ_empty() const { return Successors.empty();   }
296 
297   inline iterator_range<pred_iterator> predecessors() {
298     return make_range(pred_begin(), pred_end());
299   }
300   inline iterator_range<const_pred_iterator> predecessors() const {
301     return make_range(pred_begin(), pred_end());
302   }
303   inline iterator_range<succ_iterator> successors() {
304     return make_range(succ_begin(), succ_end());
305   }
306   inline iterator_range<const_succ_iterator> successors() const {
307     return make_range(succ_begin(), succ_end());
308   }
309 
310   // LiveIn management methods.
311 
312   /// Adds the specified register as a live in. Note that it is an error to add
313   /// the same register to the same set more than once unless the intention is
314   /// to call sortUniqueLiveIns after all registers are added.
315   void addLiveIn(MCRegister PhysReg,
316                  LaneBitmask LaneMask = LaneBitmask::getAll()) {
317     LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask));
318   }
319   void addLiveIn(const RegisterMaskPair &RegMaskPair) {
320     LiveIns.push_back(RegMaskPair);
321   }
322 
323   /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
324   /// this than repeatedly calling isLiveIn before calling addLiveIn for every
325   /// LiveIn insertion.
326   void sortUniqueLiveIns();
327 
328   /// Clear live in list.
329   void clearLiveIns();
330 
331   /// Add PhysReg as live in to this block, and ensure that there is a copy of
332   /// PhysReg to a virtual register of class RC. Return the virtual register
333   /// that is a copy of the live in PhysReg.
334   unsigned addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC);
335 
336   /// Remove the specified register from the live in set.
337   void removeLiveIn(MCPhysReg Reg,
338                     LaneBitmask LaneMask = LaneBitmask::getAll());
339 
340   /// Return true if the specified register is in the live in set.
341   bool isLiveIn(MCPhysReg Reg,
342                 LaneBitmask LaneMask = LaneBitmask::getAll()) const;
343 
344   // Iteration support for live in sets.  These sets are kept in sorted
345   // order by their register number.
346   using livein_iterator = LiveInVector::const_iterator;
347 #ifndef NDEBUG
348   /// Unlike livein_begin, this method does not check that the liveness
349   /// information is accurate. Still for debug purposes it may be useful
350   /// to have iterators that won't assert if the liveness information
351   /// is not current.
352   livein_iterator livein_begin_dbg() const { return LiveIns.begin(); }
353   iterator_range<livein_iterator> liveins_dbg() const {
354     return make_range(livein_begin_dbg(), livein_end());
355   }
356 #endif
357   livein_iterator livein_begin() const;
358   livein_iterator livein_end()   const { return LiveIns.end(); }
359   bool            livein_empty() const { return LiveIns.empty(); }
360   iterator_range<livein_iterator> liveins() const {
361     return make_range(livein_begin(), livein_end());
362   }
363 
364   /// Remove entry from the livein set and return iterator to the next.
365   livein_iterator removeLiveIn(livein_iterator I);
366 
367   /// Get the clobber mask for the start of this basic block. Funclets use this
368   /// to prevent register allocation across funclet transitions.
369   const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const;
370 
371   /// Get the clobber mask for the end of the basic block.
372   /// \see getBeginClobberMask()
373   const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const;
374 
375   /// Return alignment of the basic block.
376   Align getAlignment() const { return Alignment; }
377 
378   /// Set alignment of the basic block.
379   void setAlignment(Align A) { Alignment = A; }
380 
381   /// Returns true if the block is a landing pad. That is this basic block is
382   /// entered via an exception handler.
383   bool isEHPad() const { return IsEHPad; }
384 
385   /// Indicates the block is a landing pad.  That is this basic block is entered
386   /// via an exception handler.
387   void setIsEHPad(bool V = true) { IsEHPad = V; }
388 
389   bool hasEHPadSuccessor() const;
390 
391   /// Returns true if this is the entry block of an EH scope, i.e., the block
392   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
393   bool isEHScopeEntry() const { return IsEHScopeEntry; }
394 
395   /// Indicates if this is the entry block of an EH scope, i.e., the block that
396   /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
397   void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; }
398 
399   /// Returns true if this is the entry block of an EH funclet.
400   bool isEHFuncletEntry() const { return IsEHFuncletEntry; }
401 
402   /// Indicates if this is the entry block of an EH funclet.
403   void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; }
404 
405   /// Returns true if this is the entry block of a cleanup funclet.
406   bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; }
407 
408   /// Indicates if this is the entry block of a cleanup funclet.
409   void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; }
410 
411   /// Returns true if it is legal to hoist instructions into this block.
412   bool isLegalToHoistInto() const;
413 
414   // Code Layout methods.
415 
416   /// Move 'this' block before or after the specified block.  This only moves
417   /// the block, it does not modify the CFG or adjust potential fall-throughs at
418   /// the end of the block.
419   void moveBefore(MachineBasicBlock *NewAfter);
420   void moveAfter(MachineBasicBlock *NewBefore);
421 
422   /// Update the terminator instructions in block to account for changes to the
423   /// layout. If the block previously used a fallthrough, it may now need a
424   /// branch, and if it previously used branching it may now be able to use a
425   /// fallthrough.
426   void updateTerminator();
427 
428   // Machine-CFG mutators
429 
430   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
431   /// of Succ is automatically updated. PROB parameter is stored in
432   /// Probabilities list. The default probability is set as unknown. Mixing
433   /// known and unknown probabilities in successor list is not allowed. When all
434   /// successors have unknown probabilities, 1 / N is returned as the
435   /// probability for each successor, where N is the number of successors.
436   ///
437   /// Note that duplicate Machine CFG edges are not allowed.
438   void addSuccessor(MachineBasicBlock *Succ,
439                     BranchProbability Prob = BranchProbability::getUnknown());
440 
441   /// Add Succ as a successor of this MachineBasicBlock.  The Predecessors list
442   /// of Succ is automatically updated. The probability is not provided because
443   /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
444   /// won't be used. Using this interface can save some space.
445   void addSuccessorWithoutProb(MachineBasicBlock *Succ);
446 
447   /// Set successor probability of a given iterator.
448   void setSuccProbability(succ_iterator I, BranchProbability Prob);
449 
450   /// Normalize probabilities of all successors so that the sum of them becomes
451   /// one. This is usually done when the current update on this MBB is done, and
452   /// the sum of its successors' probabilities is not guaranteed to be one. The
453   /// user is responsible for the correct use of this function.
454   /// MBB::removeSuccessor() has an option to do this automatically.
455   void normalizeSuccProbs() {
456     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
457   }
458 
459   /// Validate successors' probabilities and check if the sum of them is
460   /// approximate one. This only works in DEBUG mode.
461   void validateSuccProbs() const;
462 
463   /// Remove successor from the successors list of this MachineBasicBlock. The
464   /// Predecessors list of Succ is automatically updated.
465   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
466   /// after the successor is removed.
467   void removeSuccessor(MachineBasicBlock *Succ,
468                        bool NormalizeSuccProbs = false);
469 
470   /// Remove specified successor from the successors list of this
471   /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
472   /// If NormalizeSuccProbs is true, then normalize successors' probabilities
473   /// after the successor is removed.
474   /// Return the iterator to the element after the one removed.
475   succ_iterator removeSuccessor(succ_iterator I,
476                                 bool NormalizeSuccProbs = false);
477 
478   /// Replace successor OLD with NEW and update probability info.
479   void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New);
480 
481   /// Copy a successor (and any probability info) from original block to this
482   /// block's. Uses an iterator into the original blocks successors.
483   ///
484   /// This is useful when doing a partial clone of successors. Afterward, the
485   /// probabilities may need to be normalized.
486   void copySuccessor(MachineBasicBlock *Orig, succ_iterator I);
487 
488   /// Split the old successor into old plus new and updates the probability
489   /// info.
490   void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New,
491                       bool NormalizeSuccProbs = false);
492 
493   /// Transfers all the successors from MBB to this machine basic block (i.e.,
494   /// copies all the successors FromMBB and remove all the successors from
495   /// FromMBB).
496   void transferSuccessors(MachineBasicBlock *FromMBB);
497 
498   /// Transfers all the successors, as in transferSuccessors, and update PHI
499   /// operands in the successor blocks which refer to FromMBB to refer to this.
500   void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB);
501 
502   /// Return true if any of the successors have probabilities attached to them.
503   bool hasSuccessorProbabilities() const { return !Probs.empty(); }
504 
505   /// Return true if the specified MBB is a predecessor of this block.
506   bool isPredecessor(const MachineBasicBlock *MBB) const;
507 
508   /// Return true if the specified MBB is a successor of this block.
509   bool isSuccessor(const MachineBasicBlock *MBB) const;
510 
511   /// Return true if the specified MBB will be emitted immediately after this
512   /// block, such that if this block exits by falling through, control will
513   /// transfer to the specified MBB. Note that MBB need not be a successor at
514   /// all, for example if this block ends with an unconditional branch to some
515   /// other block.
516   bool isLayoutSuccessor(const MachineBasicBlock *MBB) const;
517 
518   /// Return the fallthrough block if the block can implicitly
519   /// transfer control to the block after it by falling off the end of
520   /// it.  This should return null if it can reach the block after
521   /// it, but it uses an explicit branch to do so (e.g., a table
522   /// jump).  Non-null return  is a conservative answer.
523   MachineBasicBlock *getFallThrough();
524 
525   /// Return true if the block can implicitly transfer control to the
526   /// block after it by falling off the end of it.  This should return
527   /// false if it can reach the block after it, but it uses an
528   /// explicit branch to do so (e.g., a table jump).  True is a
529   /// conservative answer.
530   bool canFallThrough();
531 
532   /// Returns a pointer to the first instruction in this block that is not a
533   /// PHINode instruction. When adding instructions to the beginning of the
534   /// basic block, they should be added before the returned value, not before
535   /// the first instruction, which might be PHI.
536   /// Returns end() is there's no non-PHI instruction.
537   iterator getFirstNonPHI();
538 
539   /// Return the first instruction in MBB after I that is not a PHI or a label.
540   /// This is the correct point to insert lowered copies at the beginning of a
541   /// basic block that must be before any debugging information.
542   iterator SkipPHIsAndLabels(iterator I);
543 
544   /// Return the first instruction in MBB after I that is not a PHI, label or
545   /// debug.  This is the correct point to insert copies at the beginning of a
546   /// basic block.
547   iterator SkipPHIsLabelsAndDebug(iterator I);
548 
549   /// Returns an iterator to the first terminator instruction of this basic
550   /// block. If a terminator does not exist, it returns end().
551   iterator getFirstTerminator();
552   const_iterator getFirstTerminator() const {
553     return const_cast<MachineBasicBlock *>(this)->getFirstTerminator();
554   }
555 
556   /// Same getFirstTerminator but it ignores bundles and return an
557   /// instr_iterator instead.
558   instr_iterator getFirstInstrTerminator();
559 
560   /// Returns an iterator to the first non-debug instruction in the basic block,
561   /// or end().
562   iterator getFirstNonDebugInstr();
563   const_iterator getFirstNonDebugInstr() const {
564     return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr();
565   }
566 
567   /// Returns an iterator to the last non-debug instruction in the basic block,
568   /// or end().
569   iterator getLastNonDebugInstr();
570   const_iterator getLastNonDebugInstr() const {
571     return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr();
572   }
573 
574   /// Convenience function that returns true if the block ends in a return
575   /// instruction.
576   bool isReturnBlock() const {
577     return !empty() && back().isReturn();
578   }
579 
580   /// Convenience function that returns true if the bock ends in a EH scope
581   /// return instruction.
582   bool isEHScopeReturnBlock() const {
583     return !empty() && back().isEHScopeReturn();
584   }
585 
586   /// Split the critical edge from this block to the given successor block, and
587   /// return the newly created block, or null if splitting is not possible.
588   ///
589   /// This function updates LiveVariables, MachineDominatorTree, and
590   /// MachineLoopInfo, as applicable.
591   MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P);
592 
593   /// Check if the edge between this block and the given successor \p
594   /// Succ, can be split. If this returns true a subsequent call to
595   /// SplitCriticalEdge is guaranteed to return a valid basic block if
596   /// no changes occurred in the meantime.
597   bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const;
598 
599   void pop_front() { Insts.pop_front(); }
600   void pop_back() { Insts.pop_back(); }
601   void push_back(MachineInstr *MI) { Insts.push_back(MI); }
602 
603   /// Insert MI into the instruction list before I, possibly inside a bundle.
604   ///
605   /// If the insertion point is inside a bundle, MI will be added to the bundle,
606   /// otherwise MI will not be added to any bundle. That means this function
607   /// alone can't be used to prepend or append instructions to bundles. See
608   /// MIBundleBuilder::insert() for a more reliable way of doing that.
609   instr_iterator insert(instr_iterator I, MachineInstr *M);
610 
611   /// Insert a range of instructions into the instruction list before I.
612   template<typename IT>
613   void insert(iterator I, IT S, IT E) {
614     assert((I == end() || I->getParent() == this) &&
615            "iterator points outside of basic block");
616     Insts.insert(I.getInstrIterator(), S, E);
617   }
618 
619   /// Insert MI into the instruction list before I.
620   iterator insert(iterator I, MachineInstr *MI) {
621     assert((I == end() || I->getParent() == this) &&
622            "iterator points outside of basic block");
623     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
624            "Cannot insert instruction with bundle flags");
625     return Insts.insert(I.getInstrIterator(), MI);
626   }
627 
628   /// Insert MI into the instruction list after I.
629   iterator insertAfter(iterator I, MachineInstr *MI) {
630     assert((I == end() || I->getParent() == this) &&
631            "iterator points outside of basic block");
632     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
633            "Cannot insert instruction with bundle flags");
634     return Insts.insertAfter(I.getInstrIterator(), MI);
635   }
636 
637   /// If I is bundled then insert MI into the instruction list after the end of
638   /// the bundle, otherwise insert MI immediately after I.
639   instr_iterator insertAfterBundle(instr_iterator I, MachineInstr *MI) {
640     assert((I == instr_end() || I->getParent() == this) &&
641            "iterator points outside of basic block");
642     assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
643            "Cannot insert instruction with bundle flags");
644     while (I->isBundledWithSucc())
645       ++I;
646     return Insts.insertAfter(I, MI);
647   }
648 
649   /// Remove an instruction from the instruction list and delete it.
650   ///
651   /// If the instruction is part of a bundle, the other instructions in the
652   /// bundle will still be bundled after removing the single instruction.
653   instr_iterator erase(instr_iterator I);
654 
655   /// Remove an instruction from the instruction list and delete it.
656   ///
657   /// If the instruction is part of a bundle, the other instructions in the
658   /// bundle will still be bundled after removing the single instruction.
659   instr_iterator erase_instr(MachineInstr *I) {
660     return erase(instr_iterator(I));
661   }
662 
663   /// Remove a range of instructions from the instruction list and delete them.
664   iterator erase(iterator I, iterator E) {
665     return Insts.erase(I.getInstrIterator(), E.getInstrIterator());
666   }
667 
668   /// Remove an instruction or bundle from the instruction list and delete it.
669   ///
670   /// If I points to a bundle of instructions, they are all erased.
671   iterator erase(iterator I) {
672     return erase(I, std::next(I));
673   }
674 
675   /// Remove an instruction from the instruction list and delete it.
676   ///
677   /// If I is the head of a bundle of instructions, the whole bundle will be
678   /// erased.
679   iterator erase(MachineInstr *I) {
680     return erase(iterator(I));
681   }
682 
683   /// Remove the unbundled instruction from the instruction list without
684   /// deleting it.
685   ///
686   /// This function can not be used to remove bundled instructions, use
687   /// remove_instr to remove individual instructions from a bundle.
688   MachineInstr *remove(MachineInstr *I) {
689     assert(!I->isBundled() && "Cannot remove bundled instructions");
690     return Insts.remove(instr_iterator(I));
691   }
692 
693   /// Remove the possibly bundled instruction from the instruction list
694   /// without deleting it.
695   ///
696   /// If the instruction is part of a bundle, the other instructions in the
697   /// bundle will still be bundled after removing the single instruction.
698   MachineInstr *remove_instr(MachineInstr *I);
699 
700   void clear() {
701     Insts.clear();
702   }
703 
704   /// Take an instruction from MBB 'Other' at the position From, and insert it
705   /// into this MBB right before 'Where'.
706   ///
707   /// If From points to a bundle of instructions, the whole bundle is moved.
708   void splice(iterator Where, MachineBasicBlock *Other, iterator From) {
709     // The range splice() doesn't allow noop moves, but this one does.
710     if (Where != From)
711       splice(Where, Other, From, std::next(From));
712   }
713 
714   /// Take a block of instructions from MBB 'Other' in the range [From, To),
715   /// and insert them into this MBB right before 'Where'.
716   ///
717   /// The instruction at 'Where' must not be included in the range of
718   /// instructions to move.
719   void splice(iterator Where, MachineBasicBlock *Other,
720               iterator From, iterator To) {
721     Insts.splice(Where.getInstrIterator(), Other->Insts,
722                  From.getInstrIterator(), To.getInstrIterator());
723   }
724 
725   /// This method unlinks 'this' from the containing function, and returns it,
726   /// but does not delete it.
727   MachineBasicBlock *removeFromParent();
728 
729   /// This method unlinks 'this' from the containing function and deletes it.
730   void eraseFromParent();
731 
732   /// Given a machine basic block that branched to 'Old', change the code and
733   /// CFG so that it branches to 'New' instead.
734   void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New);
735 
736   /// Update all phi nodes in this basic block to refer to basic block \p New
737   /// instead of basic block \p Old.
738   void replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New);
739 
740   /// Various pieces of code can cause excess edges in the CFG to be inserted.
741   /// If we have proven that MBB can only branch to DestA and DestB, remove any
742   /// other MBB successors from the CFG. DestA and DestB can be null. Besides
743   /// DestA and DestB, retain other edges leading to LandingPads (currently
744   /// there can be only one; we don't check or require that here). Note it is
745   /// possible that DestA and/or DestB are LandingPads.
746   bool CorrectExtraCFGEdges(MachineBasicBlock *DestA,
747                             MachineBasicBlock *DestB,
748                             bool IsCond);
749 
750   /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
751   /// and DBG_LABEL instructions.  Return UnknownLoc if there is none.
752   DebugLoc findDebugLoc(instr_iterator MBBI);
753   DebugLoc findDebugLoc(iterator MBBI) {
754     return findDebugLoc(MBBI.getInstrIterator());
755   }
756 
757   /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
758   /// instructions.  Return UnknownLoc if there is none.
759   DebugLoc findPrevDebugLoc(instr_iterator MBBI);
760   DebugLoc findPrevDebugLoc(iterator MBBI) {
761     return findPrevDebugLoc(MBBI.getInstrIterator());
762   }
763 
764   /// Find and return the merged DebugLoc of the branch instructions of the
765   /// block. Return UnknownLoc if there is none.
766   DebugLoc findBranchDebugLoc();
767 
768   /// Possible outcome of a register liveness query to computeRegisterLiveness()
769   enum LivenessQueryResult {
770     LQR_Live,   ///< Register is known to be (at least partially) live.
771     LQR_Dead,   ///< Register is known to be fully dead.
772     LQR_Unknown ///< Register liveness not decidable from local neighborhood.
773   };
774 
775   /// Return whether (physical) register \p Reg has been defined and not
776   /// killed as of just before \p Before.
777   ///
778   /// Search is localised to a neighborhood of \p Neighborhood instructions
779   /// before (searching for defs or kills) and \p Neighborhood instructions
780   /// after (searching just for defs) \p Before.
781   ///
782   /// \p Reg must be a physical register.
783   LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI,
784                                               unsigned Reg,
785                                               const_iterator Before,
786                                               unsigned Neighborhood = 10) const;
787 
788   // Debugging methods.
789   void dump() const;
790   void print(raw_ostream &OS, const SlotIndexes * = nullptr,
791              bool IsStandalone = true) const;
792   void print(raw_ostream &OS, ModuleSlotTracker &MST,
793              const SlotIndexes * = nullptr, bool IsStandalone = true) const;
794 
795   // Printing method used by LoopInfo.
796   void printAsOperand(raw_ostream &OS, bool PrintType = true) const;
797 
798   /// MachineBasicBlocks are uniquely numbered at the function level, unless
799   /// they're not in a MachineFunction yet, in which case this will return -1.
800   int getNumber() const { return Number; }
801   void setNumber(int N) { Number = N; }
802 
803   /// Return the MCSymbol for this basic block.
804   MCSymbol *getSymbol() const;
805 
806   Optional<uint64_t> getIrrLoopHeaderWeight() const {
807     return IrrLoopHeaderWeight;
808   }
809 
810   void setIrrLoopHeaderWeight(uint64_t Weight) {
811     IrrLoopHeaderWeight = Weight;
812   }
813 
814 private:
815   /// Return probability iterator corresponding to the I successor iterator.
816   probability_iterator getProbabilityIterator(succ_iterator I);
817   const_probability_iterator
818   getProbabilityIterator(const_succ_iterator I) const;
819 
820   friend class MachineBranchProbabilityInfo;
821   friend class MIPrinter;
822 
823   /// Return probability of the edge from this block to MBB. This method should
824   /// NOT be called directly, but by using getEdgeProbability method from
825   /// MachineBranchProbabilityInfo class.
826   BranchProbability getSuccProbability(const_succ_iterator Succ) const;
827 
828   // Methods used to maintain doubly linked list of blocks...
829   friend struct ilist_callback_traits<MachineBasicBlock>;
830 
831   // Machine-CFG mutators
832 
833   /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
834   /// unless you know what you're doing, because it doesn't update Pred's
835   /// successors list. Use Pred->addSuccessor instead.
836   void addPredecessor(MachineBasicBlock *Pred);
837 
838   /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
839   /// unless you know what you're doing, because it doesn't update Pred's
840   /// successors list. Use Pred->removeSuccessor instead.
841   void removePredecessor(MachineBasicBlock *Pred);
842 };
843 
844 raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB);
845 
846 /// Prints a machine basic block reference.
847 ///
848 /// The format is:
849 ///   %bb.5           - a machine basic block with MBB.getNumber() == 5.
850 ///
851 /// Usage: OS << printMBBReference(MBB) << '\n';
852 Printable printMBBReference(const MachineBasicBlock &MBB);
853 
854 // This is useful when building IndexedMaps keyed on basic block pointers.
855 struct MBB2NumberFunctor {
856   using argument_type = const MachineBasicBlock *;
857   unsigned operator()(const MachineBasicBlock *MBB) const {
858     return MBB->getNumber();
859   }
860 };
861 
862 //===--------------------------------------------------------------------===//
863 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
864 //===--------------------------------------------------------------------===//
865 
866 // Provide specializations of GraphTraits to be able to treat a
867 // MachineFunction as a graph of MachineBasicBlocks.
868 //
869 
870 template <> struct GraphTraits<MachineBasicBlock *> {
871   using NodeRef = MachineBasicBlock *;
872   using ChildIteratorType = MachineBasicBlock::succ_iterator;
873 
874   static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; }
875   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
876   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
877 };
878 
879 template <> struct GraphTraits<const MachineBasicBlock *> {
880   using NodeRef = const MachineBasicBlock *;
881   using ChildIteratorType = MachineBasicBlock::const_succ_iterator;
882 
883   static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; }
884   static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); }
885   static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); }
886 };
887 
888 // Provide specializations of GraphTraits to be able to treat a
889 // MachineFunction as a graph of MachineBasicBlocks and to walk it
890 // in inverse order.  Inverse order for a function is considered
891 // to be when traversing the predecessor edges of a MBB
892 // instead of the successor edges.
893 //
894 template <> struct GraphTraits<Inverse<MachineBasicBlock*>> {
895   using NodeRef = MachineBasicBlock *;
896   using ChildIteratorType = MachineBasicBlock::pred_iterator;
897 
898   static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) {
899     return G.Graph;
900   }
901 
902   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
903   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
904 };
905 
906 template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> {
907   using NodeRef = const MachineBasicBlock *;
908   using ChildIteratorType = MachineBasicBlock::const_pred_iterator;
909 
910   static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) {
911     return G.Graph;
912   }
913 
914   static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); }
915   static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); }
916 };
917 
918 /// MachineInstrSpan provides an interface to get an iteration range
919 /// containing the instruction it was initialized with, along with all
920 /// those instructions inserted prior to or following that instruction
921 /// at some point after the MachineInstrSpan is constructed.
922 class MachineInstrSpan {
923   MachineBasicBlock &MBB;
924   MachineBasicBlock::iterator I, B, E;
925 
926 public:
927   MachineInstrSpan(MachineBasicBlock::iterator I, MachineBasicBlock *BB)
928       : MBB(*BB), I(I), B(I == MBB.begin() ? MBB.end() : std::prev(I)),
929         E(std::next(I)) {
930     assert(I == BB->end() || I->getParent() == BB);
931   }
932 
933   MachineBasicBlock::iterator begin() {
934     return B == MBB.end() ? MBB.begin() : std::next(B);
935   }
936   MachineBasicBlock::iterator end() { return E; }
937   bool empty() { return begin() == end(); }
938 
939   MachineBasicBlock::iterator getInitial() { return I; }
940 };
941 
942 /// Increment \p It until it points to a non-debug instruction or to \p End
943 /// and return the resulting iterator. This function should only be used
944 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
945 /// const_instr_iterator} and the respective reverse iterators.
946 template<typename IterT>
947 inline IterT skipDebugInstructionsForward(IterT It, IterT End) {
948   while (It != End && It->isDebugInstr())
949     It++;
950   return It;
951 }
952 
953 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
954 /// and return the resulting iterator. This function should only be used
955 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
956 /// const_instr_iterator} and the respective reverse iterators.
957 template<class IterT>
958 inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) {
959   while (It != Begin && It->isDebugInstr())
960     It--;
961   return It;
962 }
963 
964 } // end namespace llvm
965 
966 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H
967