1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "branch-prob"
50
51 static cl::opt<bool> PrintBranchProb(
52 "print-bpi", cl::init(false), cl::Hidden,
53 cl::desc("Print the branch probability info."));
54
55 cl::opt<std::string> PrintBranchProbFuncName(
56 "print-bpi-func-name", cl::Hidden,
57 cl::desc("The option to specify the name of the function "
58 "whose branch probability info is printed."));
59
60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
61 "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
65 "Branch Probability Analysis", false, true)
66
67 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
68 : FunctionPass(ID) {
69 initializeBranchProbabilityInfoWrapperPassPass(
70 *PassRegistry::getPassRegistry());
71 }
72
73 char BranchProbabilityInfoWrapperPass::ID = 0;
74
75 // Weights are for internal use only. They are used by heuristics to help to
76 // estimate edges' probability. Example:
77 //
78 // Using "Loop Branch Heuristics" we predict weights of edges for the
79 // block BB2.
80 // ...
81 // |
82 // V
83 // BB1<-+
84 // | |
85 // | | (Weight = 124)
86 // V |
87 // BB2--+
88 // |
89 // | (Weight = 4)
90 // V
91 // BB3
92 //
93 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
94 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
95 static const uint32_t LBH_TAKEN_WEIGHT = 124;
96 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
97 // Unlikely edges within a loop are half as likely as other edges
98 static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
99
100 /// Unreachable-terminating branch taken probability.
101 ///
102 /// This is the probability for a branch being taken to a block that terminates
103 /// (eventually) in unreachable. These are predicted as unlikely as possible.
104 /// All reachable probability will equally share the remaining part.
105 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
106
107 /// Weight for a branch taken going into a cold block.
108 ///
109 /// This is the weight for a branch taken toward a block marked
110 /// cold. A block is marked cold if it's postdominated by a
111 /// block containing a call to a cold function. Cold functions
112 /// are those marked with attribute 'cold'.
113 static const uint32_t CC_TAKEN_WEIGHT = 4;
114
115 /// Weight for a branch not-taken into a cold block.
116 ///
117 /// This is the weight for a branch not taken toward a block marked
118 /// cold.
119 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
120
121 static const uint32_t PH_TAKEN_WEIGHT = 20;
122 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
123
124 static const uint32_t ZH_TAKEN_WEIGHT = 20;
125 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
126
127 static const uint32_t FPH_TAKEN_WEIGHT = 20;
128 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
129
130 /// This is the probability for an ordered floating point comparison.
131 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
132 /// This is the probability for an unordered floating point comparison, it means
133 /// one or two of the operands are NaN. Usually it is used to test for an
134 /// exceptional case, so the result is unlikely.
135 static const uint32_t FPH_UNO_WEIGHT = 1;
136
137 /// Invoke-terminating normal branch taken weight
138 ///
139 /// This is the weight for branching to the normal destination of an invoke
140 /// instruction. We expect this to happen most of the time. Set the weight to an
141 /// absurdly high value so that nested loops subsume it.
142 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
143
144 /// Invoke-terminating normal branch not-taken weight.
145 ///
146 /// This is the weight for branching to the unwind destination of an invoke
147 /// instruction. This is essentially never taken.
148 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
149
UpdatePDTWorklist(const BasicBlock * BB,PostDominatorTree * PDT,SmallVectorImpl<const BasicBlock * > & WorkList,SmallPtrSetImpl<const BasicBlock * > & TargetSet)150 static void UpdatePDTWorklist(const BasicBlock *BB, PostDominatorTree *PDT,
151 SmallVectorImpl<const BasicBlock *> &WorkList,
152 SmallPtrSetImpl<const BasicBlock *> &TargetSet) {
153 SmallVector<BasicBlock *, 8> Descendants;
154 SmallPtrSet<const BasicBlock *, 16> NewItems;
155
156 PDT->getDescendants(const_cast<BasicBlock *>(BB), Descendants);
157 for (auto *BB : Descendants)
158 if (TargetSet.insert(BB).second)
159 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
160 if (!TargetSet.count(*PI))
161 NewItems.insert(*PI);
162 WorkList.insert(WorkList.end(), NewItems.begin(), NewItems.end());
163 }
164
165 /// Compute a set of basic blocks that are post-dominated by unreachables.
computePostDominatedByUnreachable(const Function & F,PostDominatorTree * PDT)166 void BranchProbabilityInfo::computePostDominatedByUnreachable(
167 const Function &F, PostDominatorTree *PDT) {
168 SmallVector<const BasicBlock *, 8> WorkList;
169 for (auto &BB : F) {
170 const Instruction *TI = BB.getTerminator();
171 if (TI->getNumSuccessors() == 0) {
172 if (isa<UnreachableInst>(TI) ||
173 // If this block is terminated by a call to
174 // @llvm.experimental.deoptimize then treat it like an unreachable
175 // since the @llvm.experimental.deoptimize call is expected to
176 // practically never execute.
177 BB.getTerminatingDeoptimizeCall())
178 UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByUnreachable);
179 }
180 }
181
182 while (!WorkList.empty()) {
183 const BasicBlock *BB = WorkList.pop_back_val();
184 if (PostDominatedByUnreachable.count(BB))
185 continue;
186 // If the terminator is an InvokeInst, check only the normal destination
187 // block as the unwind edge of InvokeInst is also very unlikely taken.
188 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
189 if (PostDominatedByUnreachable.count(II->getNormalDest()))
190 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
191 }
192 // If all the successors are unreachable, BB is unreachable as well.
193 else if (!successors(BB).empty() &&
194 llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
195 return PostDominatedByUnreachable.count(Succ);
196 }))
197 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
198 }
199 }
200
201 /// compute a set of basic blocks that are post-dominated by ColdCalls.
computePostDominatedByColdCall(const Function & F,PostDominatorTree * PDT)202 void BranchProbabilityInfo::computePostDominatedByColdCall(
203 const Function &F, PostDominatorTree *PDT) {
204 SmallVector<const BasicBlock *, 8> WorkList;
205 for (auto &BB : F)
206 for (auto &I : BB)
207 if (const CallInst *CI = dyn_cast<CallInst>(&I))
208 if (CI->hasFnAttr(Attribute::Cold))
209 UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByColdCall);
210
211 while (!WorkList.empty()) {
212 const BasicBlock *BB = WorkList.pop_back_val();
213
214 // If the terminator is an InvokeInst, check only the normal destination
215 // block as the unwind edge of InvokeInst is also very unlikely taken.
216 if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
217 if (PostDominatedByColdCall.count(II->getNormalDest()))
218 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
219 }
220 // If all of successor are post dominated then BB is also done.
221 else if (!successors(BB).empty() &&
222 llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
223 return PostDominatedByColdCall.count(Succ);
224 }))
225 UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
226 }
227 }
228
229 /// Calculate edge weights for successors lead to unreachable.
230 ///
231 /// Predict that a successor which leads necessarily to an
232 /// unreachable-terminated block as extremely unlikely.
calcUnreachableHeuristics(const BasicBlock * BB)233 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
234 const Instruction *TI = BB->getTerminator();
235 (void) TI;
236 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
237 assert(!isa<InvokeInst>(TI) &&
238 "Invokes should have already been handled by calcInvokeHeuristics");
239
240 SmallVector<unsigned, 4> UnreachableEdges;
241 SmallVector<unsigned, 4> ReachableEdges;
242
243 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
244 if (PostDominatedByUnreachable.count(*I))
245 UnreachableEdges.push_back(I.getSuccessorIndex());
246 else
247 ReachableEdges.push_back(I.getSuccessorIndex());
248
249 // Skip probabilities if all were reachable.
250 if (UnreachableEdges.empty())
251 return false;
252
253 if (ReachableEdges.empty()) {
254 BranchProbability Prob(1, UnreachableEdges.size());
255 for (unsigned SuccIdx : UnreachableEdges)
256 setEdgeProbability(BB, SuccIdx, Prob);
257 return true;
258 }
259
260 auto UnreachableProb = UR_TAKEN_PROB;
261 auto ReachableProb =
262 (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
263 ReachableEdges.size();
264
265 for (unsigned SuccIdx : UnreachableEdges)
266 setEdgeProbability(BB, SuccIdx, UnreachableProb);
267 for (unsigned SuccIdx : ReachableEdges)
268 setEdgeProbability(BB, SuccIdx, ReachableProb);
269
270 return true;
271 }
272
273 // Propagate existing explicit probabilities from either profile data or
274 // 'expect' intrinsic processing. Examine metadata against unreachable
275 // heuristic. The probability of the edge coming to unreachable block is
276 // set to min of metadata and unreachable heuristic.
calcMetadataWeights(const BasicBlock * BB)277 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
278 const Instruction *TI = BB->getTerminator();
279 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
280 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
281 return false;
282
283 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
284 if (!WeightsNode)
285 return false;
286
287 // Check that the number of successors is manageable.
288 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
289
290 // Ensure there are weights for all of the successors. Note that the first
291 // operand to the metadata node is a name, not a weight.
292 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
293 return false;
294
295 // Build up the final weights that will be used in a temporary buffer.
296 // Compute the sum of all weights to later decide whether they need to
297 // be scaled to fit in 32 bits.
298 uint64_t WeightSum = 0;
299 SmallVector<uint32_t, 2> Weights;
300 SmallVector<unsigned, 2> UnreachableIdxs;
301 SmallVector<unsigned, 2> ReachableIdxs;
302 Weights.reserve(TI->getNumSuccessors());
303 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
304 ConstantInt *Weight =
305 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
306 if (!Weight)
307 return false;
308 assert(Weight->getValue().getActiveBits() <= 32 &&
309 "Too many bits for uint32_t");
310 Weights.push_back(Weight->getZExtValue());
311 WeightSum += Weights.back();
312 if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
313 UnreachableIdxs.push_back(i - 1);
314 else
315 ReachableIdxs.push_back(i - 1);
316 }
317 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
318
319 // If the sum of weights does not fit in 32 bits, scale every weight down
320 // accordingly.
321 uint64_t ScalingFactor =
322 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
323
324 if (ScalingFactor > 1) {
325 WeightSum = 0;
326 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
327 Weights[i] /= ScalingFactor;
328 WeightSum += Weights[i];
329 }
330 }
331 assert(WeightSum <= UINT32_MAX &&
332 "Expected weights to scale down to 32 bits");
333
334 if (WeightSum == 0 || ReachableIdxs.size() == 0) {
335 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
336 Weights[i] = 1;
337 WeightSum = TI->getNumSuccessors();
338 }
339
340 // Set the probability.
341 SmallVector<BranchProbability, 2> BP;
342 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
343 BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });
344
345 // Examine the metadata against unreachable heuristic.
346 // If the unreachable heuristic is more strong then we use it for this edge.
347 if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
348 auto ToDistribute = BranchProbability::getZero();
349 auto UnreachableProb = UR_TAKEN_PROB;
350 for (auto i : UnreachableIdxs)
351 if (UnreachableProb < BP[i]) {
352 ToDistribute += BP[i] - UnreachableProb;
353 BP[i] = UnreachableProb;
354 }
355
356 // If we modified the probability of some edges then we must distribute
357 // the difference between reachable blocks.
358 if (ToDistribute > BranchProbability::getZero()) {
359 BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
360 for (auto i : ReachableIdxs)
361 BP[i] += PerEdge;
362 }
363 }
364
365 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
366 setEdgeProbability(BB, i, BP[i]);
367
368 return true;
369 }
370
371 /// Calculate edge weights for edges leading to cold blocks.
372 ///
373 /// A cold block is one post-dominated by a block with a call to a
374 /// cold function. Those edges are unlikely to be taken, so we give
375 /// them relatively low weight.
376 ///
377 /// Return true if we could compute the weights for cold edges.
378 /// Return false, otherwise.
calcColdCallHeuristics(const BasicBlock * BB)379 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
380 const Instruction *TI = BB->getTerminator();
381 (void) TI;
382 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
383 assert(!isa<InvokeInst>(TI) &&
384 "Invokes should have already been handled by calcInvokeHeuristics");
385
386 // Determine which successors are post-dominated by a cold block.
387 SmallVector<unsigned, 4> ColdEdges;
388 SmallVector<unsigned, 4> NormalEdges;
389 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
390 if (PostDominatedByColdCall.count(*I))
391 ColdEdges.push_back(I.getSuccessorIndex());
392 else
393 NormalEdges.push_back(I.getSuccessorIndex());
394
395 // Skip probabilities if no cold edges.
396 if (ColdEdges.empty())
397 return false;
398
399 if (NormalEdges.empty()) {
400 BranchProbability Prob(1, ColdEdges.size());
401 for (unsigned SuccIdx : ColdEdges)
402 setEdgeProbability(BB, SuccIdx, Prob);
403 return true;
404 }
405
406 auto ColdProb = BranchProbability::getBranchProbability(
407 CC_TAKEN_WEIGHT,
408 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
409 auto NormalProb = BranchProbability::getBranchProbability(
410 CC_NONTAKEN_WEIGHT,
411 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
412
413 for (unsigned SuccIdx : ColdEdges)
414 setEdgeProbability(BB, SuccIdx, ColdProb);
415 for (unsigned SuccIdx : NormalEdges)
416 setEdgeProbability(BB, SuccIdx, NormalProb);
417
418 return true;
419 }
420
421 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
422 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(const BasicBlock * BB)423 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
424 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
425 if (!BI || !BI->isConditional())
426 return false;
427
428 Value *Cond = BI->getCondition();
429 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
430 if (!CI || !CI->isEquality())
431 return false;
432
433 Value *LHS = CI->getOperand(0);
434
435 if (!LHS->getType()->isPointerTy())
436 return false;
437
438 assert(CI->getOperand(1)->getType()->isPointerTy());
439
440 // p != 0 -> isProb = true
441 // p == 0 -> isProb = false
442 // p != q -> isProb = true
443 // p == q -> isProb = false;
444 unsigned TakenIdx = 0, NonTakenIdx = 1;
445 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
446 if (!isProb)
447 std::swap(TakenIdx, NonTakenIdx);
448
449 BranchProbability TakenProb(PH_TAKEN_WEIGHT,
450 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
451 setEdgeProbability(BB, TakenIdx, TakenProb);
452 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
453 return true;
454 }
455
getSCCNum(const BasicBlock * BB,const BranchProbabilityInfo::SccInfo & SccI)456 static int getSCCNum(const BasicBlock *BB,
457 const BranchProbabilityInfo::SccInfo &SccI) {
458 auto SccIt = SccI.SccNums.find(BB);
459 if (SccIt == SccI.SccNums.end())
460 return -1;
461 return SccIt->second;
462 }
463
464 // Consider any block that is an entry point to the SCC as a header.
isSCCHeader(const BasicBlock * BB,int SccNum,BranchProbabilityInfo::SccInfo & SccI)465 static bool isSCCHeader(const BasicBlock *BB, int SccNum,
466 BranchProbabilityInfo::SccInfo &SccI) {
467 assert(getSCCNum(BB, SccI) == SccNum);
468
469 // Lazily compute the set of headers for a given SCC and cache the results
470 // in the SccHeaderMap.
471 if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
472 SccI.SccHeaders.resize(SccNum + 1);
473 auto &HeaderMap = SccI.SccHeaders[SccNum];
474 bool Inserted;
475 BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
476 std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
477 if (Inserted) {
478 bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
479 [&](const BasicBlock *Pred) {
480 return getSCCNum(Pred, SccI) != SccNum;
481 });
482 HeaderMapIt->second = IsHeader;
483 return IsHeader;
484 } else
485 return HeaderMapIt->second;
486 }
487
488 // Compute the unlikely successors to the block BB in the loop L, specifically
489 // those that are unlikely because this is a loop, and add them to the
490 // UnlikelyBlocks set.
491 static void
computeUnlikelySuccessors(const BasicBlock * BB,Loop * L,SmallPtrSetImpl<const BasicBlock * > & UnlikelyBlocks)492 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
493 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
494 // Sometimes in a loop we have a branch whose condition is made false by
495 // taking it. This is typically something like
496 // int n = 0;
497 // while (...) {
498 // if (++n >= MAX) {
499 // n = 0;
500 // }
501 // }
502 // In this sort of situation taking the branch means that at the very least it
503 // won't be taken again in the next iteration of the loop, so we should
504 // consider it less likely than a typical branch.
505 //
506 // We detect this by looking back through the graph of PHI nodes that sets the
507 // value that the condition depends on, and seeing if we can reach a successor
508 // block which can be determined to make the condition false.
509 //
510 // FIXME: We currently consider unlikely blocks to be half as likely as other
511 // blocks, but if we consider the example above the likelyhood is actually
512 // 1/MAX. We could therefore be more precise in how unlikely we consider
513 // blocks to be, but it would require more careful examination of the form
514 // of the comparison expression.
515 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
516 if (!BI || !BI->isConditional())
517 return;
518
519 // Check if the branch is based on an instruction compared with a constant
520 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
521 if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
522 !isa<Constant>(CI->getOperand(1)))
523 return;
524
525 // Either the instruction must be a PHI, or a chain of operations involving
526 // constants that ends in a PHI which we can then collapse into a single value
527 // if the PHI value is known.
528 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
529 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
530 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
531 // Collect the instructions until we hit a PHI
532 SmallVector<BinaryOperator *, 1> InstChain;
533 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
534 isa<Constant>(CmpLHS->getOperand(1))) {
535 // Stop if the chain extends outside of the loop
536 if (!L->contains(CmpLHS))
537 return;
538 InstChain.push_back(cast<BinaryOperator>(CmpLHS));
539 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
540 if (CmpLHS)
541 CmpPHI = dyn_cast<PHINode>(CmpLHS);
542 }
543 if (!CmpPHI || !L->contains(CmpPHI))
544 return;
545
546 // Trace the phi node to find all values that come from successors of BB
547 SmallPtrSet<PHINode*, 8> VisitedInsts;
548 SmallVector<PHINode*, 8> WorkList;
549 WorkList.push_back(CmpPHI);
550 VisitedInsts.insert(CmpPHI);
551 while (!WorkList.empty()) {
552 PHINode *P = WorkList.back();
553 WorkList.pop_back();
554 for (BasicBlock *B : P->blocks()) {
555 // Skip blocks that aren't part of the loop
556 if (!L->contains(B))
557 continue;
558 Value *V = P->getIncomingValueForBlock(B);
559 // If the source is a PHI add it to the work list if we haven't
560 // already visited it.
561 if (PHINode *PN = dyn_cast<PHINode>(V)) {
562 if (VisitedInsts.insert(PN).second)
563 WorkList.push_back(PN);
564 continue;
565 }
566 // If this incoming value is a constant and B is a successor of BB, then
567 // we can constant-evaluate the compare to see if it makes the branch be
568 // taken or not.
569 Constant *CmpLHSConst = dyn_cast<Constant>(V);
570 if (!CmpLHSConst ||
571 std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB))
572 continue;
573 // First collapse InstChain
574 for (Instruction *I : llvm::reverse(InstChain)) {
575 CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
576 cast<Constant>(I->getOperand(1)), true);
577 if (!CmpLHSConst)
578 break;
579 }
580 if (!CmpLHSConst)
581 continue;
582 // Now constant-evaluate the compare
583 Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
584 CmpLHSConst, CmpConst, true);
585 // If the result means we don't branch to the block then that block is
586 // unlikely.
587 if (Result &&
588 ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
589 (Result->isOneValue() && B == BI->getSuccessor(1))))
590 UnlikelyBlocks.insert(B);
591 }
592 }
593 }
594
595 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
596 // as taken, exiting edges as not-taken.
calcLoopBranchHeuristics(const BasicBlock * BB,const LoopInfo & LI,SccInfo & SccI)597 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
598 const LoopInfo &LI,
599 SccInfo &SccI) {
600 int SccNum;
601 Loop *L = LI.getLoopFor(BB);
602 if (!L) {
603 SccNum = getSCCNum(BB, SccI);
604 if (SccNum < 0)
605 return false;
606 }
607
608 SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
609 if (L)
610 computeUnlikelySuccessors(BB, L, UnlikelyBlocks);
611
612 SmallVector<unsigned, 8> BackEdges;
613 SmallVector<unsigned, 8> ExitingEdges;
614 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
615 SmallVector<unsigned, 8> UnlikelyEdges;
616
617 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
618 // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
619 // irreducible loops.
620 if (L) {
621 if (UnlikelyBlocks.count(*I) != 0)
622 UnlikelyEdges.push_back(I.getSuccessorIndex());
623 else if (!L->contains(*I))
624 ExitingEdges.push_back(I.getSuccessorIndex());
625 else if (L->getHeader() == *I)
626 BackEdges.push_back(I.getSuccessorIndex());
627 else
628 InEdges.push_back(I.getSuccessorIndex());
629 } else {
630 if (getSCCNum(*I, SccI) != SccNum)
631 ExitingEdges.push_back(I.getSuccessorIndex());
632 else if (isSCCHeader(*I, SccNum, SccI))
633 BackEdges.push_back(I.getSuccessorIndex());
634 else
635 InEdges.push_back(I.getSuccessorIndex());
636 }
637 }
638
639 if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
640 return false;
641
642 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
643 // normalize them so that they sum up to one.
644 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
645 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
646 (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
647 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
648
649 if (uint32_t numBackEdges = BackEdges.size()) {
650 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
651 auto Prob = TakenProb / numBackEdges;
652 for (unsigned SuccIdx : BackEdges)
653 setEdgeProbability(BB, SuccIdx, Prob);
654 }
655
656 if (uint32_t numInEdges = InEdges.size()) {
657 BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
658 auto Prob = TakenProb / numInEdges;
659 for (unsigned SuccIdx : InEdges)
660 setEdgeProbability(BB, SuccIdx, Prob);
661 }
662
663 if (uint32_t numExitingEdges = ExitingEdges.size()) {
664 BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
665 Denom);
666 auto Prob = NotTakenProb / numExitingEdges;
667 for (unsigned SuccIdx : ExitingEdges)
668 setEdgeProbability(BB, SuccIdx, Prob);
669 }
670
671 if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
672 BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
673 Denom);
674 auto Prob = UnlikelyProb / numUnlikelyEdges;
675 for (unsigned SuccIdx : UnlikelyEdges)
676 setEdgeProbability(BB, SuccIdx, Prob);
677 }
678
679 return true;
680 }
681
calcZeroHeuristics(const BasicBlock * BB,const TargetLibraryInfo * TLI)682 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
683 const TargetLibraryInfo *TLI) {
684 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
685 if (!BI || !BI->isConditional())
686 return false;
687
688 Value *Cond = BI->getCondition();
689 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
690 if (!CI)
691 return false;
692
693 auto GetConstantInt = [](Value *V) {
694 if (auto *I = dyn_cast<BitCastInst>(V))
695 return dyn_cast<ConstantInt>(I->getOperand(0));
696 return dyn_cast<ConstantInt>(V);
697 };
698
699 Value *RHS = CI->getOperand(1);
700 ConstantInt *CV = GetConstantInt(RHS);
701 if (!CV)
702 return false;
703
704 // If the LHS is the result of AND'ing a value with a single bit bitmask,
705 // we don't have information about probabilities.
706 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
707 if (LHS->getOpcode() == Instruction::And)
708 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
709 if (AndRHS->getValue().isPowerOf2())
710 return false;
711
712 // Check if the LHS is the return value of a library function
713 LibFunc Func = NumLibFuncs;
714 if (TLI)
715 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
716 if (Function *CalledFn = Call->getCalledFunction())
717 TLI->getLibFunc(*CalledFn, Func);
718
719 bool isProb;
720 if (Func == LibFunc_strcasecmp ||
721 Func == LibFunc_strcmp ||
722 Func == LibFunc_strncasecmp ||
723 Func == LibFunc_strncmp ||
724 Func == LibFunc_memcmp) {
725 // strcmp and similar functions return zero, negative, or positive, if the
726 // first string is equal, less, or greater than the second. We consider it
727 // likely that the strings are not equal, so a comparison with zero is
728 // probably false, but also a comparison with any other number is also
729 // probably false given that what exactly is returned for nonzero values is
730 // not specified. Any kind of comparison other than equality we know
731 // nothing about.
732 switch (CI->getPredicate()) {
733 case CmpInst::ICMP_EQ:
734 isProb = false;
735 break;
736 case CmpInst::ICMP_NE:
737 isProb = true;
738 break;
739 default:
740 return false;
741 }
742 } else if (CV->isZero()) {
743 switch (CI->getPredicate()) {
744 case CmpInst::ICMP_EQ:
745 // X == 0 -> Unlikely
746 isProb = false;
747 break;
748 case CmpInst::ICMP_NE:
749 // X != 0 -> Likely
750 isProb = true;
751 break;
752 case CmpInst::ICMP_SLT:
753 // X < 0 -> Unlikely
754 isProb = false;
755 break;
756 case CmpInst::ICMP_SGT:
757 // X > 0 -> Likely
758 isProb = true;
759 break;
760 default:
761 return false;
762 }
763 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
764 // InstCombine canonicalizes X <= 0 into X < 1.
765 // X <= 0 -> Unlikely
766 isProb = false;
767 } else if (CV->isMinusOne()) {
768 switch (CI->getPredicate()) {
769 case CmpInst::ICMP_EQ:
770 // X == -1 -> Unlikely
771 isProb = false;
772 break;
773 case CmpInst::ICMP_NE:
774 // X != -1 -> Likely
775 isProb = true;
776 break;
777 case CmpInst::ICMP_SGT:
778 // InstCombine canonicalizes X >= 0 into X > -1.
779 // X >= 0 -> Likely
780 isProb = true;
781 break;
782 default:
783 return false;
784 }
785 } else {
786 return false;
787 }
788
789 unsigned TakenIdx = 0, NonTakenIdx = 1;
790
791 if (!isProb)
792 std::swap(TakenIdx, NonTakenIdx);
793
794 BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
795 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
796 setEdgeProbability(BB, TakenIdx, TakenProb);
797 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
798 return true;
799 }
800
calcFloatingPointHeuristics(const BasicBlock * BB)801 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
802 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
803 if (!BI || !BI->isConditional())
804 return false;
805
806 Value *Cond = BI->getCondition();
807 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
808 if (!FCmp)
809 return false;
810
811 uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
812 uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
813 bool isProb;
814 if (FCmp->isEquality()) {
815 // f1 == f2 -> Unlikely
816 // f1 != f2 -> Likely
817 isProb = !FCmp->isTrueWhenEqual();
818 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
819 // !isnan -> Likely
820 isProb = true;
821 TakenWeight = FPH_ORD_WEIGHT;
822 NontakenWeight = FPH_UNO_WEIGHT;
823 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
824 // isnan -> Unlikely
825 isProb = false;
826 TakenWeight = FPH_ORD_WEIGHT;
827 NontakenWeight = FPH_UNO_WEIGHT;
828 } else {
829 return false;
830 }
831
832 unsigned TakenIdx = 0, NonTakenIdx = 1;
833
834 if (!isProb)
835 std::swap(TakenIdx, NonTakenIdx);
836
837 BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
838 setEdgeProbability(BB, TakenIdx, TakenProb);
839 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
840 return true;
841 }
842
calcInvokeHeuristics(const BasicBlock * BB)843 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
844 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
845 if (!II)
846 return false;
847
848 BranchProbability TakenProb(IH_TAKEN_WEIGHT,
849 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
850 setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
851 setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
852 return true;
853 }
854
releaseMemory()855 void BranchProbabilityInfo::releaseMemory() {
856 Probs.clear();
857 }
858
print(raw_ostream & OS) const859 void BranchProbabilityInfo::print(raw_ostream &OS) const {
860 OS << "---- Branch Probabilities ----\n";
861 // We print the probabilities from the last function the analysis ran over,
862 // or the function it is currently running over.
863 assert(LastF && "Cannot print prior to running over a function");
864 for (const auto &BI : *LastF) {
865 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
866 ++SI) {
867 printEdgeProbability(OS << " ", &BI, *SI);
868 }
869 }
870 }
871
872 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const873 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
874 // Hot probability is at least 4/5 = 80%
875 // FIXME: Compare against a static "hot" BranchProbability.
876 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
877 }
878
879 const BasicBlock *
getHotSucc(const BasicBlock * BB) const880 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
881 auto MaxProb = BranchProbability::getZero();
882 const BasicBlock *MaxSucc = nullptr;
883
884 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
885 const BasicBlock *Succ = *I;
886 auto Prob = getEdgeProbability(BB, Succ);
887 if (Prob > MaxProb) {
888 MaxProb = Prob;
889 MaxSucc = Succ;
890 }
891 }
892
893 // Hot probability is at least 4/5 = 80%
894 if (MaxProb > BranchProbability(4, 5))
895 return MaxSucc;
896
897 return nullptr;
898 }
899
900 /// Get the raw edge probability for the edge. If can't find it, return a
901 /// default probability 1/N where N is the number of successors. Here an edge is
902 /// specified using PredBlock and an
903 /// index to the successors.
904 BranchProbability
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const905 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
906 unsigned IndexInSuccessors) const {
907 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
908
909 if (I != Probs.end())
910 return I->second;
911
912 return {1, static_cast<uint32_t>(succ_size(Src))};
913 }
914
915 BranchProbability
getEdgeProbability(const BasicBlock * Src,succ_const_iterator Dst) const916 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
917 succ_const_iterator Dst) const {
918 return getEdgeProbability(Src, Dst.getSuccessorIndex());
919 }
920
921 /// Get the raw edge probability calculated for the block pair. This returns the
922 /// sum of all raw edge probabilities from Src to Dst.
923 BranchProbability
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const924 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
925 const BasicBlock *Dst) const {
926 auto Prob = BranchProbability::getZero();
927 bool FoundProb = false;
928 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
929 if (*I == Dst) {
930 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
931 if (MapI != Probs.end()) {
932 FoundProb = true;
933 Prob += MapI->second;
934 }
935 }
936 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
937 return FoundProb ? Prob : BranchProbability(1, succ_num);
938 }
939
940 /// Set the edge probability for a given edge specified by PredBlock and an
941 /// index to the successors.
setEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors,BranchProbability Prob)942 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
943 unsigned IndexInSuccessors,
944 BranchProbability Prob) {
945 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
946 Handles.insert(BasicBlockCallbackVH(Src, this));
947 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
948 << IndexInSuccessors << " successor probability to " << Prob
949 << "\n");
950 }
951
952 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const953 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
954 const BasicBlock *Src,
955 const BasicBlock *Dst) const {
956 const BranchProbability Prob = getEdgeProbability(Src, Dst);
957 OS << "edge " << Src->getName() << " -> " << Dst->getName()
958 << " probability is " << Prob
959 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
960
961 return OS;
962 }
963
eraseBlock(const BasicBlock * BB)964 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
965 for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
966 auto Key = I->first;
967 if (Key.first == BB)
968 Probs.erase(Key);
969 }
970 }
971
calculate(const Function & F,const LoopInfo & LI,const TargetLibraryInfo * TLI)972 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
973 const TargetLibraryInfo *TLI) {
974 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
975 << " ----\n\n");
976 LastF = &F; // Store the last function we ran on for printing.
977 assert(PostDominatedByUnreachable.empty());
978 assert(PostDominatedByColdCall.empty());
979
980 // Record SCC numbers of blocks in the CFG to identify irreducible loops.
981 // FIXME: We could only calculate this if the CFG is known to be irreducible
982 // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
983 int SccNum = 0;
984 SccInfo SccI;
985 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
986 ++It, ++SccNum) {
987 // Ignore single-block SCCs since they either aren't loops or LoopInfo will
988 // catch them.
989 const std::vector<const BasicBlock *> &Scc = *It;
990 if (Scc.size() == 1)
991 continue;
992
993 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
994 for (auto *BB : Scc) {
995 LLVM_DEBUG(dbgs() << " " << BB->getName());
996 SccI.SccNums[BB] = SccNum;
997 }
998 LLVM_DEBUG(dbgs() << "\n");
999 }
1000
1001 std::unique_ptr<PostDominatorTree> PDT =
1002 std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1003 computePostDominatedByUnreachable(F, PDT.get());
1004 computePostDominatedByColdCall(F, PDT.get());
1005
1006 // Walk the basic blocks in post-order so that we can build up state about
1007 // the successors of a block iteratively.
1008 for (auto BB : post_order(&F.getEntryBlock())) {
1009 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1010 << "\n");
1011 // If there is no at least two successors, no sense to set probability.
1012 if (BB->getTerminator()->getNumSuccessors() < 2)
1013 continue;
1014 if (calcMetadataWeights(BB))
1015 continue;
1016 if (calcInvokeHeuristics(BB))
1017 continue;
1018 if (calcUnreachableHeuristics(BB))
1019 continue;
1020 if (calcColdCallHeuristics(BB))
1021 continue;
1022 if (calcLoopBranchHeuristics(BB, LI, SccI))
1023 continue;
1024 if (calcPointerHeuristics(BB))
1025 continue;
1026 if (calcZeroHeuristics(BB, TLI))
1027 continue;
1028 if (calcFloatingPointHeuristics(BB))
1029 continue;
1030 }
1031
1032 PostDominatedByUnreachable.clear();
1033 PostDominatedByColdCall.clear();
1034
1035 if (PrintBranchProb &&
1036 (PrintBranchProbFuncName.empty() ||
1037 F.getName().equals(PrintBranchProbFuncName))) {
1038 print(dbgs());
1039 }
1040 }
1041
getAnalysisUsage(AnalysisUsage & AU) const1042 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1043 AnalysisUsage &AU) const {
1044 // We require DT so it's available when LI is available. The LI updating code
1045 // asserts that DT is also present so if we don't make sure that we have DT
1046 // here, that assert will trigger.
1047 AU.addRequired<DominatorTreeWrapperPass>();
1048 AU.addRequired<LoopInfoWrapperPass>();
1049 AU.addRequired<TargetLibraryInfoWrapperPass>();
1050 AU.setPreservesAll();
1051 }
1052
runOnFunction(Function & F)1053 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1054 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1055 const TargetLibraryInfo &TLI =
1056 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1057 BPI.calculate(F, LI, &TLI);
1058 return false;
1059 }
1060
releaseMemory()1061 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1062
print(raw_ostream & OS,const Module *) const1063 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1064 const Module *) const {
1065 BPI.print(OS);
1066 }
1067
1068 AnalysisKey BranchProbabilityAnalysis::Key;
1069 BranchProbabilityInfo
run(Function & F,FunctionAnalysisManager & AM)1070 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1071 BranchProbabilityInfo BPI;
1072 BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
1073 return BPI;
1074 }
1075
1076 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1077 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1078 OS << "Printing analysis results of BPI for function "
1079 << "'" << F.getName() << "':"
1080 << "\n";
1081 AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1082 return PreservedAnalyses::all();
1083 }
1084