1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
11 //
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
17 //
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
24 //
25 //===----------------------------------------------------------------------===//
26
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
73
74 using namespace llvm;
75
76 #define DEBUG_TYPE "block-placement"
77
78 STATISTIC(NumCondBranches, "Number of conditional branches");
79 STATISTIC(NumUncondBranches, "Number of unconditional branches");
80 STATISTIC(CondBranchTakenFreq,
81 "Potential frequency of taking conditional branches");
82 STATISTIC(UncondBranchTakenFreq,
83 "Potential frequency of taking unconditional branches");
84
85 static cl::opt<unsigned> AlignAllBlock(
86 "align-all-blocks",
87 cl::desc("Force the alignment of all blocks in the function in log2 format "
88 "(e.g 4 means align on 16B boundaries)."),
89 cl::init(0), cl::Hidden);
90
91 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
92 "align-all-nofallthru-blocks",
93 cl::desc("Force the alignment of all blocks that have no fall-through "
94 "predecessors (i.e. don't add nops that are executed). In log2 "
95 "format (e.g 4 means align on 16B boundaries)."),
96 cl::init(0), cl::Hidden);
97
98 // FIXME: Find a good default for this flag and remove the flag.
99 static cl::opt<unsigned> ExitBlockBias(
100 "block-placement-exit-block-bias",
101 cl::desc("Block frequency percentage a loop exit block needs "
102 "over the original exit to be considered the new exit."),
103 cl::init(0), cl::Hidden);
104
105 // Definition:
106 // - Outlining: placement of a basic block outside the chain or hot path.
107
108 static cl::opt<unsigned> LoopToColdBlockRatio(
109 "loop-to-cold-block-ratio",
110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
111 "(frequency of block) is greater than this ratio"),
112 cl::init(5), cl::Hidden);
113
114 static cl::opt<bool> ForceLoopColdBlock(
115 "force-loop-cold-block",
116 cl::desc("Force outlining cold blocks from loops."),
117 cl::init(false), cl::Hidden);
118
119 static cl::opt<bool>
120 PreciseRotationCost("precise-rotation-cost",
121 cl::desc("Model the cost of loop rotation more "
122 "precisely by using profile data."),
123 cl::init(false), cl::Hidden);
124
125 static cl::opt<bool>
126 ForcePreciseRotationCost("force-precise-rotation-cost",
127 cl::desc("Force the use of precise cost "
128 "loop rotation strategy."),
129 cl::init(false), cl::Hidden);
130
131 static cl::opt<unsigned> MisfetchCost(
132 "misfetch-cost",
133 cl::desc("Cost that models the probabilistic risk of an instruction "
134 "misfetch due to a jump comparing to falling through, whose cost "
135 "is zero."),
136 cl::init(1), cl::Hidden);
137
138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
139 cl::desc("Cost of jump instructions."),
140 cl::init(1), cl::Hidden);
141 static cl::opt<bool>
142 TailDupPlacement("tail-dup-placement",
143 cl::desc("Perform tail duplication during placement. "
144 "Creates more fallthrough opportunites in "
145 "outline branches."),
146 cl::init(true), cl::Hidden);
147
148 static cl::opt<bool>
149 BranchFoldPlacement("branch-fold-placement",
150 cl::desc("Perform branch folding during placement. "
151 "Reduces code size."),
152 cl::init(true), cl::Hidden);
153
154 // Heuristic for tail duplication.
155 static cl::opt<unsigned> TailDupPlacementThreshold(
156 "tail-dup-placement-threshold",
157 cl::desc("Instruction cutoff for tail duplication during layout. "
158 "Tail merging during layout is forced to have a threshold "
159 "that won't conflict."), cl::init(2),
160 cl::Hidden);
161
162 // Heuristic for aggressive tail duplication.
163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
164 "tail-dup-placement-aggressive-threshold",
165 cl::desc("Instruction cutoff for aggressive tail duplication during "
166 "layout. Used at -O3. Tail merging during layout is forced to "
167 "have a threshold that won't conflict."), cl::init(4),
168 cl::Hidden);
169
170 // Heuristic for tail duplication.
171 static cl::opt<unsigned> TailDupPlacementPenalty(
172 "tail-dup-placement-penalty",
173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
174 "Copying can increase fallthrough, but it also increases icache "
175 "pressure. This parameter controls the penalty to account for that. "
176 "Percent as integer."),
177 cl::init(2),
178 cl::Hidden);
179
180 // Heuristic for triangle chains.
181 static cl::opt<unsigned> TriangleChainCount(
182 "triangle-chain-count",
183 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
184 "triangle tail duplication heuristic to kick in. 0 to disable."),
185 cl::init(2),
186 cl::Hidden);
187
188 extern cl::opt<unsigned> StaticLikelyProb;
189 extern cl::opt<unsigned> ProfileLikelyProb;
190
191 // Internal option used to control BFI display only after MBP pass.
192 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
193 // -view-block-layout-with-bfi=
194 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
195
196 // Command line option to specify the name of the function for CFG dump
197 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
198 extern cl::opt<std::string> ViewBlockFreqFuncName;
199
200 namespace {
201
202 class BlockChain;
203
204 /// Type for our function-wide basic block -> block chain mapping.
205 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
206
207 /// A chain of blocks which will be laid out contiguously.
208 ///
209 /// This is the datastructure representing a chain of consecutive blocks that
210 /// are profitable to layout together in order to maximize fallthrough
211 /// probabilities and code locality. We also can use a block chain to represent
212 /// a sequence of basic blocks which have some external (correctness)
213 /// requirement for sequential layout.
214 ///
215 /// Chains can be built around a single basic block and can be merged to grow
216 /// them. They participate in a block-to-chain mapping, which is updated
217 /// automatically as chains are merged together.
218 class BlockChain {
219 /// The sequence of blocks belonging to this chain.
220 ///
221 /// This is the sequence of blocks for a particular chain. These will be laid
222 /// out in-order within the function.
223 SmallVector<MachineBasicBlock *, 4> Blocks;
224
225 /// A handle to the function-wide basic block to block chain mapping.
226 ///
227 /// This is retained in each block chain to simplify the computation of child
228 /// block chains for SCC-formation and iteration. We store the edges to child
229 /// basic blocks, and map them back to their associated chains using this
230 /// structure.
231 BlockToChainMapType &BlockToChain;
232
233 public:
234 /// Construct a new BlockChain.
235 ///
236 /// This builds a new block chain representing a single basic block in the
237 /// function. It also registers itself as the chain that block participates
238 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)239 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
240 : Blocks(1, BB), BlockToChain(BlockToChain) {
241 assert(BB && "Cannot create a chain with a null basic block");
242 BlockToChain[BB] = this;
243 }
244
245 /// Iterator over blocks within the chain.
246 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
247 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
248
249 /// Beginning of blocks within the chain.
begin()250 iterator begin() { return Blocks.begin(); }
begin() const251 const_iterator begin() const { return Blocks.begin(); }
252
253 /// End of blocks within the chain.
end()254 iterator end() { return Blocks.end(); }
end() const255 const_iterator end() const { return Blocks.end(); }
256
remove(MachineBasicBlock * BB)257 bool remove(MachineBasicBlock* BB) {
258 for(iterator i = begin(); i != end(); ++i) {
259 if (*i == BB) {
260 Blocks.erase(i);
261 return true;
262 }
263 }
264 return false;
265 }
266
267 /// Merge a block chain into this one.
268 ///
269 /// This routine merges a block chain into this one. It takes care of forming
270 /// a contiguous sequence of basic blocks, updating the edge list, and
271 /// updating the block -> chain mapping. It does not free or tear down the
272 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)273 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
274 assert(BB && "Can't merge a null block.");
275 assert(!Blocks.empty() && "Can't merge into an empty chain.");
276
277 // Fast path in case we don't have a chain already.
278 if (!Chain) {
279 assert(!BlockToChain[BB] &&
280 "Passed chain is null, but BB has entry in BlockToChain.");
281 Blocks.push_back(BB);
282 BlockToChain[BB] = this;
283 return;
284 }
285
286 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
287 assert(Chain->begin() != Chain->end());
288
289 // Update the incoming blocks to point to this chain, and add them to the
290 // chain structure.
291 for (MachineBasicBlock *ChainBB : *Chain) {
292 Blocks.push_back(ChainBB);
293 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
294 BlockToChain[ChainBB] = this;
295 }
296 }
297
298 #ifndef NDEBUG
299 /// Dump the blocks in this chain.
dump()300 LLVM_DUMP_METHOD void dump() {
301 for (MachineBasicBlock *MBB : *this)
302 MBB->dump();
303 }
304 #endif // NDEBUG
305
306 /// Count of predecessors of any block within the chain which have not
307 /// yet been scheduled. In general, we will delay scheduling this chain
308 /// until those predecessors are scheduled (or we find a sufficiently good
309 /// reason to override this heuristic.) Note that when forming loop chains,
310 /// blocks outside the loop are ignored and treated as if they were already
311 /// scheduled.
312 ///
313 /// Note: This field is reinitialized multiple times - once for each loop,
314 /// and then once for the function as a whole.
315 unsigned UnscheduledPredecessors = 0;
316 };
317
318 class MachineBlockPlacement : public MachineFunctionPass {
319 /// A type for a block filter set.
320 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
321
322 /// Pair struct containing basic block and taildup profitability
323 struct BlockAndTailDupResult {
324 MachineBasicBlock *BB;
325 bool ShouldTailDup;
326 };
327
328 /// Triple struct containing edge weight and the edge.
329 struct WeightedEdge {
330 BlockFrequency Weight;
331 MachineBasicBlock *Src;
332 MachineBasicBlock *Dest;
333 };
334
335 /// work lists of blocks that are ready to be laid out
336 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
337 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
338
339 /// Edges that have already been computed as optimal.
340 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
341
342 /// Machine Function
343 MachineFunction *F;
344
345 /// A handle to the branch probability pass.
346 const MachineBranchProbabilityInfo *MBPI;
347
348 /// A handle to the function-wide block frequency pass.
349 std::unique_ptr<BranchFolder::MBFIWrapper> MBFI;
350
351 /// A handle to the loop info.
352 MachineLoopInfo *MLI;
353
354 /// Preferred loop exit.
355 /// Member variable for convenience. It may be removed by duplication deep
356 /// in the call stack.
357 MachineBasicBlock *PreferredLoopExit;
358
359 /// A handle to the target's instruction info.
360 const TargetInstrInfo *TII;
361
362 /// A handle to the target's lowering info.
363 const TargetLoweringBase *TLI;
364
365 /// A handle to the post dominator tree.
366 MachinePostDominatorTree *MPDT;
367
368 ProfileSummaryInfo *PSI;
369
370 /// Duplicator used to duplicate tails during placement.
371 ///
372 /// Placement decisions can open up new tail duplication opportunities, but
373 /// since tail duplication affects placement decisions of later blocks, it
374 /// must be done inline.
375 TailDuplicator TailDup;
376
377 /// Allocator and owner of BlockChain structures.
378 ///
379 /// We build BlockChains lazily while processing the loop structure of
380 /// a function. To reduce malloc traffic, we allocate them using this
381 /// slab-like allocator, and destroy them after the pass completes. An
382 /// important guarantee is that this allocator produces stable pointers to
383 /// the chains.
384 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
385
386 /// Function wide BasicBlock to BlockChain mapping.
387 ///
388 /// This mapping allows efficiently moving from any given basic block to the
389 /// BlockChain it participates in, if any. We use it to, among other things,
390 /// allow implicitly defining edges between chains as the existing edges
391 /// between basic blocks.
392 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
393
394 #ifndef NDEBUG
395 /// The set of basic blocks that have terminators that cannot be fully
396 /// analyzed. These basic blocks cannot be re-ordered safely by
397 /// MachineBlockPlacement, and we must preserve physical layout of these
398 /// blocks and their successors through the pass.
399 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
400 #endif
401
402 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
403 /// if the count goes to 0, add them to the appropriate work list.
404 void markChainSuccessors(
405 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
406 const BlockFilterSet *BlockFilter = nullptr);
407
408 /// Decrease the UnscheduledPredecessors count for a single block, and
409 /// if the count goes to 0, add them to the appropriate work list.
410 void markBlockSuccessors(
411 const BlockChain &Chain, const MachineBasicBlock *BB,
412 const MachineBasicBlock *LoopHeaderBB,
413 const BlockFilterSet *BlockFilter = nullptr);
414
415 BranchProbability
416 collectViableSuccessors(
417 const MachineBasicBlock *BB, const BlockChain &Chain,
418 const BlockFilterSet *BlockFilter,
419 SmallVector<MachineBasicBlock *, 4> &Successors);
420 bool shouldPredBlockBeOutlined(
421 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
422 const BlockChain &Chain, const BlockFilterSet *BlockFilter,
423 BranchProbability SuccProb, BranchProbability HotProb);
424 bool repeatedlyTailDuplicateBlock(
425 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
426 const MachineBasicBlock *LoopHeaderBB,
427 BlockChain &Chain, BlockFilterSet *BlockFilter,
428 MachineFunction::iterator &PrevUnplacedBlockIt);
429 bool maybeTailDuplicateBlock(
430 MachineBasicBlock *BB, MachineBasicBlock *LPred,
431 BlockChain &Chain, BlockFilterSet *BlockFilter,
432 MachineFunction::iterator &PrevUnplacedBlockIt,
433 bool &DuplicatedToLPred);
434 bool hasBetterLayoutPredecessor(
435 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
436 const BlockChain &SuccChain, BranchProbability SuccProb,
437 BranchProbability RealSuccProb, const BlockChain &Chain,
438 const BlockFilterSet *BlockFilter);
439 BlockAndTailDupResult selectBestSuccessor(
440 const MachineBasicBlock *BB, const BlockChain &Chain,
441 const BlockFilterSet *BlockFilter);
442 MachineBasicBlock *selectBestCandidateBlock(
443 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
444 MachineBasicBlock *getFirstUnplacedBlock(
445 const BlockChain &PlacedChain,
446 MachineFunction::iterator &PrevUnplacedBlockIt,
447 const BlockFilterSet *BlockFilter);
448
449 /// Add a basic block to the work list if it is appropriate.
450 ///
451 /// If the optional parameter BlockFilter is provided, only MBB
452 /// present in the set will be added to the worklist. If nullptr
453 /// is provided, no filtering occurs.
454 void fillWorkLists(const MachineBasicBlock *MBB,
455 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
456 const BlockFilterSet *BlockFilter);
457
458 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
459 BlockFilterSet *BlockFilter = nullptr);
460 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
461 const MachineBasicBlock *OldTop);
462 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
463 const BlockFilterSet &LoopBlockSet);
464 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
465 const BlockFilterSet &LoopBlockSet);
466 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
467 const MachineBasicBlock *OldTop,
468 const MachineBasicBlock *ExitBB,
469 const BlockFilterSet &LoopBlockSet);
470 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
471 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
472 MachineBasicBlock *findBestLoopTop(
473 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
474 MachineBasicBlock *findBestLoopExit(
475 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
476 BlockFrequency &ExitFreq);
477 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
478 void buildLoopChains(const MachineLoop &L);
479 void rotateLoop(
480 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
481 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
482 void rotateLoopWithProfile(
483 BlockChain &LoopChain, const MachineLoop &L,
484 const BlockFilterSet &LoopBlockSet);
485 void buildCFGChains();
486 void optimizeBranches();
487 void alignBlocks();
488 /// Returns true if a block should be tail-duplicated to increase fallthrough
489 /// opportunities.
490 bool shouldTailDuplicate(MachineBasicBlock *BB);
491 /// Check the edge frequencies to see if tail duplication will increase
492 /// fallthroughs.
493 bool isProfitableToTailDup(
494 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
495 BranchProbability QProb,
496 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
497
498 /// Check for a trellis layout.
499 bool isTrellis(const MachineBasicBlock *BB,
500 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
501 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
502
503 /// Get the best successor given a trellis layout.
504 BlockAndTailDupResult getBestTrellisSuccessor(
505 const MachineBasicBlock *BB,
506 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
507 BranchProbability AdjustedSumProb, const BlockChain &Chain,
508 const BlockFilterSet *BlockFilter);
509
510 /// Get the best pair of non-conflicting edges.
511 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
512 const MachineBasicBlock *BB,
513 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
514
515 /// Returns true if a block can tail duplicate into all unplaced
516 /// predecessors. Filters based on loop.
517 bool canTailDuplicateUnplacedPreds(
518 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
519 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
520
521 /// Find chains of triangles to tail-duplicate where a global analysis works,
522 /// but a local analysis would not find them.
523 void precomputeTriangleChains();
524
525 public:
526 static char ID; // Pass identification, replacement for typeid
527
MachineBlockPlacement()528 MachineBlockPlacement() : MachineFunctionPass(ID) {
529 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
530 }
531
532 bool runOnMachineFunction(MachineFunction &F) override;
533
allowTailDupPlacement() const534 bool allowTailDupPlacement() const {
535 assert(F);
536 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
537 }
538
getAnalysisUsage(AnalysisUsage & AU) const539 void getAnalysisUsage(AnalysisUsage &AU) const override {
540 AU.addRequired<MachineBranchProbabilityInfo>();
541 AU.addRequired<MachineBlockFrequencyInfo>();
542 if (TailDupPlacement)
543 AU.addRequired<MachinePostDominatorTree>();
544 AU.addRequired<MachineLoopInfo>();
545 AU.addRequired<ProfileSummaryInfoWrapperPass>();
546 AU.addRequired<TargetPassConfig>();
547 MachineFunctionPass::getAnalysisUsage(AU);
548 }
549 };
550
551 } // end anonymous namespace
552
553 char MachineBlockPlacement::ID = 0;
554
555 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
556
557 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
558 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)559 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
560 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
561 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
562 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
563 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
564 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
565 "Branch Probability Basic Block Placement", false, false)
566
567 #ifndef NDEBUG
568 /// Helper to print the name of a MBB.
569 ///
570 /// Only used by debug logging.
571 static std::string getBlockName(const MachineBasicBlock *BB) {
572 std::string Result;
573 raw_string_ostream OS(Result);
574 OS << printMBBReference(*BB);
575 OS << " ('" << BB->getName() << "')";
576 OS.flush();
577 return Result;
578 }
579 #endif
580
581 /// Mark a chain's successors as having one fewer preds.
582 ///
583 /// When a chain is being merged into the "placed" chain, this routine will
584 /// quickly walk the successors of each block in the chain and mark them as
585 /// having one fewer active predecessor. It also adds any successors of this
586 /// chain which reach the zero-predecessor state to the appropriate worklist.
markChainSuccessors(const BlockChain & Chain,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)587 void MachineBlockPlacement::markChainSuccessors(
588 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
589 const BlockFilterSet *BlockFilter) {
590 // Walk all the blocks in this chain, marking their successors as having
591 // a predecessor placed.
592 for (MachineBasicBlock *MBB : Chain) {
593 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
594 }
595 }
596
597 /// Mark a single block's successors as having one fewer preds.
598 ///
599 /// Under normal circumstances, this is only called by markChainSuccessors,
600 /// but if a block that was to be placed is completely tail-duplicated away,
601 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
602 /// for just that block.
markBlockSuccessors(const BlockChain & Chain,const MachineBasicBlock * MBB,const MachineBasicBlock * LoopHeaderBB,const BlockFilterSet * BlockFilter)603 void MachineBlockPlacement::markBlockSuccessors(
604 const BlockChain &Chain, const MachineBasicBlock *MBB,
605 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
606 // Add any successors for which this is the only un-placed in-loop
607 // predecessor to the worklist as a viable candidate for CFG-neutral
608 // placement. No subsequent placement of this block will violate the CFG
609 // shape, so we get to use heuristics to choose a favorable placement.
610 for (MachineBasicBlock *Succ : MBB->successors()) {
611 if (BlockFilter && !BlockFilter->count(Succ))
612 continue;
613 BlockChain &SuccChain = *BlockToChain[Succ];
614 // Disregard edges within a fixed chain, or edges to the loop header.
615 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
616 continue;
617
618 // This is a cross-chain edge that is within the loop, so decrement the
619 // loop predecessor count of the destination chain.
620 if (SuccChain.UnscheduledPredecessors == 0 ||
621 --SuccChain.UnscheduledPredecessors > 0)
622 continue;
623
624 auto *NewBB = *SuccChain.begin();
625 if (NewBB->isEHPad())
626 EHPadWorkList.push_back(NewBB);
627 else
628 BlockWorkList.push_back(NewBB);
629 }
630 }
631
632 /// This helper function collects the set of successors of block
633 /// \p BB that are allowed to be its layout successors, and return
634 /// the total branch probability of edges from \p BB to those
635 /// blocks.
collectViableSuccessors(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter,SmallVector<MachineBasicBlock *,4> & Successors)636 BranchProbability MachineBlockPlacement::collectViableSuccessors(
637 const MachineBasicBlock *BB, const BlockChain &Chain,
638 const BlockFilterSet *BlockFilter,
639 SmallVector<MachineBasicBlock *, 4> &Successors) {
640 // Adjust edge probabilities by excluding edges pointing to blocks that is
641 // either not in BlockFilter or is already in the current chain. Consider the
642 // following CFG:
643 //
644 // --->A
645 // | / \
646 // | B C
647 // | \ / \
648 // ----D E
649 //
650 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
651 // A->C is chosen as a fall-through, D won't be selected as a successor of C
652 // due to CFG constraint (the probability of C->D is not greater than
653 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
654 // when calculating the probability of C->D, D will be selected and we
655 // will get A C D B as the layout of this loop.
656 auto AdjustedSumProb = BranchProbability::getOne();
657 for (MachineBasicBlock *Succ : BB->successors()) {
658 bool SkipSucc = false;
659 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
660 SkipSucc = true;
661 } else {
662 BlockChain *SuccChain = BlockToChain[Succ];
663 if (SuccChain == &Chain) {
664 SkipSucc = true;
665 } else if (Succ != *SuccChain->begin()) {
666 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
667 << " -> Mid chain!\n");
668 continue;
669 }
670 }
671 if (SkipSucc)
672 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
673 else
674 Successors.push_back(Succ);
675 }
676
677 return AdjustedSumProb;
678 }
679
680 /// The helper function returns the branch probability that is adjusted
681 /// or normalized over the new total \p AdjustedSumProb.
682 static BranchProbability
getAdjustedProbability(BranchProbability OrigProb,BranchProbability AdjustedSumProb)683 getAdjustedProbability(BranchProbability OrigProb,
684 BranchProbability AdjustedSumProb) {
685 BranchProbability SuccProb;
686 uint32_t SuccProbN = OrigProb.getNumerator();
687 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
688 if (SuccProbN >= SuccProbD)
689 SuccProb = BranchProbability::getOne();
690 else
691 SuccProb = BranchProbability(SuccProbN, SuccProbD);
692
693 return SuccProb;
694 }
695
696 /// Check if \p BB has exactly the successors in \p Successors.
697 static bool
hasSameSuccessors(MachineBasicBlock & BB,SmallPtrSetImpl<const MachineBasicBlock * > & Successors)698 hasSameSuccessors(MachineBasicBlock &BB,
699 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
700 if (BB.succ_size() != Successors.size())
701 return false;
702 // We don't want to count self-loops
703 if (Successors.count(&BB))
704 return false;
705 for (MachineBasicBlock *Succ : BB.successors())
706 if (!Successors.count(Succ))
707 return false;
708 return true;
709 }
710
711 /// Check if a block should be tail duplicated to increase fallthrough
712 /// opportunities.
713 /// \p BB Block to check.
shouldTailDuplicate(MachineBasicBlock * BB)714 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
715 // Blocks with single successors don't create additional fallthrough
716 // opportunities. Don't duplicate them. TODO: When conditional exits are
717 // analyzable, allow them to be duplicated.
718 bool IsSimple = TailDup.isSimpleBB(BB);
719
720 if (BB->succ_size() == 1)
721 return false;
722 return TailDup.shouldTailDuplicate(IsSimple, *BB);
723 }
724
725 /// Compare 2 BlockFrequency's with a small penalty for \p A.
726 /// In order to be conservative, we apply a X% penalty to account for
727 /// increased icache pressure and static heuristics. For small frequencies
728 /// we use only the numerators to improve accuracy. For simplicity, we assume the
729 /// penalty is less than 100%
730 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
greaterWithBias(BlockFrequency A,BlockFrequency B,uint64_t EntryFreq)731 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
732 uint64_t EntryFreq) {
733 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
734 BlockFrequency Gain = A - B;
735 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
736 }
737
738 /// Check the edge frequencies to see if tail duplication will increase
739 /// fallthroughs. It only makes sense to call this function when
740 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
741 /// always locally profitable if we would have picked \p Succ without
742 /// considering duplication.
isProfitableToTailDup(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,BranchProbability QProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)743 bool MachineBlockPlacement::isProfitableToTailDup(
744 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
745 BranchProbability QProb,
746 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
747 // We need to do a probability calculation to make sure this is profitable.
748 // First: does succ have a successor that post-dominates? This affects the
749 // calculation. The 2 relevant cases are:
750 // BB BB
751 // | \Qout | \Qout
752 // P| C |P C
753 // = C' = C'
754 // | /Qin | /Qin
755 // | / | /
756 // Succ Succ
757 // / \ | \ V
758 // U/ =V |U \
759 // / \ = D
760 // D E | /
761 // | /
762 // |/
763 // PDom
764 // '=' : Branch taken for that CFG edge
765 // In the second case, Placing Succ while duplicating it into C prevents the
766 // fallthrough of Succ into either D or PDom, because they now have C as an
767 // unplaced predecessor
768
769 // Start by figuring out which case we fall into
770 MachineBasicBlock *PDom = nullptr;
771 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
772 // Only scan the relevant successors
773 auto AdjustedSuccSumProb =
774 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
775 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
776 auto BBFreq = MBFI->getBlockFreq(BB);
777 auto SuccFreq = MBFI->getBlockFreq(Succ);
778 BlockFrequency P = BBFreq * PProb;
779 BlockFrequency Qout = BBFreq * QProb;
780 uint64_t EntryFreq = MBFI->getEntryFreq();
781 // If there are no more successors, it is profitable to copy, as it strictly
782 // increases fallthrough.
783 if (SuccSuccs.size() == 0)
784 return greaterWithBias(P, Qout, EntryFreq);
785
786 auto BestSuccSucc = BranchProbability::getZero();
787 // Find the PDom or the best Succ if no PDom exists.
788 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
789 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
790 if (Prob > BestSuccSucc)
791 BestSuccSucc = Prob;
792 if (PDom == nullptr)
793 if (MPDT->dominates(SuccSucc, Succ)) {
794 PDom = SuccSucc;
795 break;
796 }
797 }
798 // For the comparisons, we need to know Succ's best incoming edge that isn't
799 // from BB.
800 auto SuccBestPred = BlockFrequency(0);
801 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
802 if (SuccPred == Succ || SuccPred == BB
803 || BlockToChain[SuccPred] == &Chain
804 || (BlockFilter && !BlockFilter->count(SuccPred)))
805 continue;
806 auto Freq = MBFI->getBlockFreq(SuccPred)
807 * MBPI->getEdgeProbability(SuccPred, Succ);
808 if (Freq > SuccBestPred)
809 SuccBestPred = Freq;
810 }
811 // Qin is Succ's best unplaced incoming edge that isn't BB
812 BlockFrequency Qin = SuccBestPred;
813 // If it doesn't have a post-dominating successor, here is the calculation:
814 // BB BB
815 // | \Qout | \
816 // P| C | =
817 // = C' | C
818 // | /Qin | |
819 // | / | C' (+Succ)
820 // Succ Succ /|
821 // / \ | \/ |
822 // U/ =V | == |
823 // / \ | / \|
824 // D E D E
825 // '=' : Branch taken for that CFG edge
826 // Cost in the first case is: P + V
827 // For this calculation, we always assume P > Qout. If Qout > P
828 // The result of this function will be ignored at the caller.
829 // Let F = SuccFreq - Qin
830 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
831
832 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
833 BranchProbability UProb = BestSuccSucc;
834 BranchProbability VProb = AdjustedSuccSumProb - UProb;
835 BlockFrequency F = SuccFreq - Qin;
836 BlockFrequency V = SuccFreq * VProb;
837 BlockFrequency QinU = std::min(Qin, F) * UProb;
838 BlockFrequency BaseCost = P + V;
839 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
840 return greaterWithBias(BaseCost, DupCost, EntryFreq);
841 }
842 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
843 BranchProbability VProb = AdjustedSuccSumProb - UProb;
844 BlockFrequency U = SuccFreq * UProb;
845 BlockFrequency V = SuccFreq * VProb;
846 BlockFrequency F = SuccFreq - Qin;
847 // If there is a post-dominating successor, here is the calculation:
848 // BB BB BB BB
849 // | \Qout | \ | \Qout | \
850 // |P C | = |P C | =
851 // = C' |P C = C' |P C
852 // | /Qin | | | /Qin | |
853 // | / | C' (+Succ) | / | C' (+Succ)
854 // Succ Succ /| Succ Succ /|
855 // | \ V | \/ | | \ V | \/ |
856 // |U \ |U /\ =? |U = |U /\ |
857 // = D = = =?| | D | = =|
858 // | / |/ D | / |/ D
859 // | / | / | = | /
860 // |/ | / |/ | =
861 // Dom Dom Dom Dom
862 // '=' : Branch taken for that CFG edge
863 // The cost for taken branches in the first case is P + U
864 // Let F = SuccFreq - Qin
865 // The cost in the second case (assuming independence), given the layout:
866 // BB, Succ, (C+Succ), D, Dom or the layout:
867 // BB, Succ, D, Dom, (C+Succ)
868 // is Qout + max(F, Qin) * U + min(F, Qin)
869 // compare P + U vs Qout + P * U + Qin.
870 //
871 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
872 //
873 // For the 3rd case, the cost is P + 2 * V
874 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
875 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
876 if (UProb > AdjustedSuccSumProb / 2 &&
877 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
878 Chain, BlockFilter))
879 // Cases 3 & 4
880 return greaterWithBias(
881 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
882 EntryFreq);
883 // Cases 1 & 2
884 return greaterWithBias((P + U),
885 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
886 std::max(Qin, F) * UProb),
887 EntryFreq);
888 }
889
890 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
891 /// successors form the lower part of a trellis. A successor set S forms the
892 /// lower part of a trellis if all of the predecessors of S are either in S or
893 /// have all of S as successors. We ignore trellises where BB doesn't have 2
894 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
895 /// are very uncommon and complex to compute optimally. Allowing edges within S
896 /// is not strictly a trellis, but the same algorithm works, so we allow it.
isTrellis(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,const BlockChain & Chain,const BlockFilterSet * BlockFilter)897 bool MachineBlockPlacement::isTrellis(
898 const MachineBasicBlock *BB,
899 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
900 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
901 // Technically BB could form a trellis with branching factor higher than 2.
902 // But that's extremely uncommon.
903 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
904 return false;
905
906 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
907 BB->succ_end());
908 // To avoid reviewing the same predecessors twice.
909 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
910
911 for (MachineBasicBlock *Succ : ViableSuccs) {
912 int PredCount = 0;
913 for (auto SuccPred : Succ->predecessors()) {
914 // Allow triangle successors, but don't count them.
915 if (Successors.count(SuccPred)) {
916 // Make sure that it is actually a triangle.
917 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
918 if (!Successors.count(CheckSucc))
919 return false;
920 continue;
921 }
922 const BlockChain *PredChain = BlockToChain[SuccPred];
923 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
924 PredChain == &Chain || PredChain == BlockToChain[Succ])
925 continue;
926 ++PredCount;
927 // Perform the successor check only once.
928 if (!SeenPreds.insert(SuccPred).second)
929 continue;
930 if (!hasSameSuccessors(*SuccPred, Successors))
931 return false;
932 }
933 // If one of the successors has only BB as a predecessor, it is not a
934 // trellis.
935 if (PredCount < 1)
936 return false;
937 }
938 return true;
939 }
940
941 /// Pick the highest total weight pair of edges that can both be laid out.
942 /// The edges in \p Edges[0] are assumed to have a different destination than
943 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
944 /// the individual highest weight edges to the 2 different destinations, or in
945 /// case of a conflict, one of them should be replaced with a 2nd best edge.
946 std::pair<MachineBlockPlacement::WeightedEdge,
947 MachineBlockPlacement::WeightedEdge>
getBestNonConflictingEdges(const MachineBasicBlock * BB,MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge,8>> Edges)948 MachineBlockPlacement::getBestNonConflictingEdges(
949 const MachineBasicBlock *BB,
950 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
951 Edges) {
952 // Sort the edges, and then for each successor, find the best incoming
953 // predecessor. If the best incoming predecessors aren't the same,
954 // then that is clearly the best layout. If there is a conflict, one of the
955 // successors will have to fallthrough from the second best predecessor. We
956 // compare which combination is better overall.
957
958 // Sort for highest frequency.
959 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
960
961 llvm::stable_sort(Edges[0], Cmp);
962 llvm::stable_sort(Edges[1], Cmp);
963 auto BestA = Edges[0].begin();
964 auto BestB = Edges[1].begin();
965 // Arrange for the correct answer to be in BestA and BestB
966 // If the 2 best edges don't conflict, the answer is already there.
967 if (BestA->Src == BestB->Src) {
968 // Compare the total fallthrough of (Best + Second Best) for both pairs
969 auto SecondBestA = std::next(BestA);
970 auto SecondBestB = std::next(BestB);
971 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
972 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
973 if (BestAScore < BestBScore)
974 BestA = SecondBestA;
975 else
976 BestB = SecondBestB;
977 }
978 // Arrange for the BB edge to be in BestA if it exists.
979 if (BestB->Src == BB)
980 std::swap(BestA, BestB);
981 return std::make_pair(*BestA, *BestB);
982 }
983
984 /// Get the best successor from \p BB based on \p BB being part of a trellis.
985 /// We only handle trellises with 2 successors, so the algorithm is
986 /// straightforward: Find the best pair of edges that don't conflict. We find
987 /// the best incoming edge for each successor in the trellis. If those conflict,
988 /// we consider which of them should be replaced with the second best.
989 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
990 /// comes from \p BB, it will be in \p BestEdges[0]
991 MachineBlockPlacement::BlockAndTailDupResult
getBestTrellisSuccessor(const MachineBasicBlock * BB,const SmallVectorImpl<MachineBasicBlock * > & ViableSuccs,BranchProbability AdjustedSumProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)992 MachineBlockPlacement::getBestTrellisSuccessor(
993 const MachineBasicBlock *BB,
994 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
995 BranchProbability AdjustedSumProb, const BlockChain &Chain,
996 const BlockFilterSet *BlockFilter) {
997
998 BlockAndTailDupResult Result = {nullptr, false};
999 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1000 BB->succ_end());
1001
1002 // We assume size 2 because it's common. For general n, we would have to do
1003 // the Hungarian algorithm, but it's not worth the complexity because more
1004 // than 2 successors is fairly uncommon, and a trellis even more so.
1005 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1006 return Result;
1007
1008 // Collect the edge frequencies of all edges that form the trellis.
1009 SmallVector<WeightedEdge, 8> Edges[2];
1010 int SuccIndex = 0;
1011 for (auto Succ : ViableSuccs) {
1012 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1013 // Skip any placed predecessors that are not BB
1014 if (SuccPred != BB)
1015 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1016 BlockToChain[SuccPred] == &Chain ||
1017 BlockToChain[SuccPred] == BlockToChain[Succ])
1018 continue;
1019 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1020 MBPI->getEdgeProbability(SuccPred, Succ);
1021 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1022 }
1023 ++SuccIndex;
1024 }
1025
1026 // Pick the best combination of 2 edges from all the edges in the trellis.
1027 WeightedEdge BestA, BestB;
1028 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1029
1030 if (BestA.Src != BB) {
1031 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1032 // we shouldn't choose any successor. We've already looked and there's a
1033 // better fallthrough edge for all the successors.
1034 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1035 return Result;
1036 }
1037
1038 // Did we pick the triangle edge? If tail-duplication is profitable, do
1039 // that instead. Otherwise merge the triangle edge now while we know it is
1040 // optimal.
1041 if (BestA.Dest == BestB.Src) {
1042 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1043 // would be better.
1044 MachineBasicBlock *Succ1 = BestA.Dest;
1045 MachineBasicBlock *Succ2 = BestB.Dest;
1046 // Check to see if tail-duplication would be profitable.
1047 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1048 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1049 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1050 Chain, BlockFilter)) {
1051 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1052 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1053 dbgs() << " Selected: " << getBlockName(Succ2)
1054 << ", probability: " << Succ2Prob
1055 << " (Tail Duplicate)\n");
1056 Result.BB = Succ2;
1057 Result.ShouldTailDup = true;
1058 return Result;
1059 }
1060 }
1061 // We have already computed the optimal edge for the other side of the
1062 // trellis.
1063 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1064
1065 auto TrellisSucc = BestA.Dest;
1066 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1067 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1068 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1069 << ", probability: " << SuccProb << " (Trellis)\n");
1070 Result.BB = TrellisSucc;
1071 return Result;
1072 }
1073
1074 /// When the option allowTailDupPlacement() is on, this method checks if the
1075 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1076 /// into all of its unplaced, unfiltered predecessors, that are not BB.
canTailDuplicateUnplacedPreds(const MachineBasicBlock * BB,MachineBasicBlock * Succ,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1077 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1078 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1079 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1080 if (!shouldTailDuplicate(Succ))
1081 return false;
1082
1083 // The result of canTailDuplicate.
1084 bool Duplicate = true;
1085 // Number of possible duplication.
1086 unsigned int NumDup = 0;
1087
1088 // For CFG checking.
1089 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1090 BB->succ_end());
1091 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1092 // Make sure all unplaced and unfiltered predecessors can be
1093 // tail-duplicated into.
1094 // Skip any blocks that are already placed or not in this loop.
1095 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1096 || BlockToChain[Pred] == &Chain)
1097 continue;
1098 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1099 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1100 // This will result in a trellis after tail duplication, so we don't
1101 // need to copy Succ into this predecessor. In the presence
1102 // of a trellis tail duplication can continue to be profitable.
1103 // For example:
1104 // A A
1105 // |\ |\
1106 // | \ | \
1107 // | C | C+BB
1108 // | / | |
1109 // |/ | |
1110 // BB => BB |
1111 // |\ |\/|
1112 // | \ |/\|
1113 // | D | D
1114 // | / | /
1115 // |/ |/
1116 // Succ Succ
1117 //
1118 // After BB was duplicated into C, the layout looks like the one on the
1119 // right. BB and C now have the same successors. When considering
1120 // whether Succ can be duplicated into all its unplaced predecessors, we
1121 // ignore C.
1122 // We can do this because C already has a profitable fallthrough, namely
1123 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1124 // duplication and for this test.
1125 //
1126 // This allows trellises to be laid out in 2 separate chains
1127 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1128 // because it allows the creation of 2 fallthrough paths with links
1129 // between them, and we correctly identify the best layout for these
1130 // CFGs. We want to extend trellises that the user created in addition
1131 // to trellises created by tail-duplication, so we just look for the
1132 // CFG.
1133 continue;
1134 Duplicate = false;
1135 continue;
1136 }
1137 NumDup++;
1138 }
1139
1140 // No possible duplication in current filter set.
1141 if (NumDup == 0)
1142 return false;
1143
1144 // This is mainly for function exit BB.
1145 // The integrated tail duplication is really designed for increasing
1146 // fallthrough from predecessors from Succ to its successors. We may need
1147 // other machanism to handle different cases.
1148 if (Succ->succ_size() == 0)
1149 return true;
1150
1151 // Plus the already placed predecessor.
1152 NumDup++;
1153
1154 // If the duplication candidate has more unplaced predecessors than
1155 // successors, the extra duplication can't bring more fallthrough.
1156 //
1157 // Pred1 Pred2 Pred3
1158 // \ | /
1159 // \ | /
1160 // \ | /
1161 // Dup
1162 // / \
1163 // / \
1164 // Succ1 Succ2
1165 //
1166 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1167 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1168 // but the duplication into Pred3 can't increase fallthrough.
1169 //
1170 // A small number of extra duplication may not hurt too much. We need a better
1171 // heuristic to handle it.
1172 //
1173 // FIXME: we should selectively tail duplicate a BB into part of its
1174 // predecessors.
1175 if ((NumDup > Succ->succ_size()) || !Duplicate)
1176 return false;
1177
1178 return true;
1179 }
1180
1181 /// Find chains of triangles where we believe it would be profitable to
1182 /// tail-duplicate them all, but a local analysis would not find them.
1183 /// There are 3 ways this can be profitable:
1184 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1185 /// longer chains)
1186 /// 2) The chains are statically correlated. Branch probabilities have a very
1187 /// U-shaped distribution.
1188 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1189 /// If the branches in a chain are likely to be from the same side of the
1190 /// distribution as their predecessor, but are independent at runtime, this
1191 /// transformation is profitable. (Because the cost of being wrong is a small
1192 /// fixed cost, unlike the standard triangle layout where the cost of being
1193 /// wrong scales with the # of triangles.)
1194 /// 3) The chains are dynamically correlated. If the probability that a previous
1195 /// branch was taken positively influences whether the next branch will be
1196 /// taken
1197 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
precomputeTriangleChains()1198 void MachineBlockPlacement::precomputeTriangleChains() {
1199 struct TriangleChain {
1200 std::vector<MachineBasicBlock *> Edges;
1201
1202 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1203 : Edges({src, dst}) {}
1204
1205 void append(MachineBasicBlock *dst) {
1206 assert(getKey()->isSuccessor(dst) &&
1207 "Attempting to append a block that is not a successor.");
1208 Edges.push_back(dst);
1209 }
1210
1211 unsigned count() const { return Edges.size() - 1; }
1212
1213 MachineBasicBlock *getKey() const {
1214 return Edges.back();
1215 }
1216 };
1217
1218 if (TriangleChainCount == 0)
1219 return;
1220
1221 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1222 // Map from last block to the chain that contains it. This allows us to extend
1223 // chains as we find new triangles.
1224 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1225 for (MachineBasicBlock &BB : *F) {
1226 // If BB doesn't have 2 successors, it doesn't start a triangle.
1227 if (BB.succ_size() != 2)
1228 continue;
1229 MachineBasicBlock *PDom = nullptr;
1230 for (MachineBasicBlock *Succ : BB.successors()) {
1231 if (!MPDT->dominates(Succ, &BB))
1232 continue;
1233 PDom = Succ;
1234 break;
1235 }
1236 // If BB doesn't have a post-dominating successor, it doesn't form a
1237 // triangle.
1238 if (PDom == nullptr)
1239 continue;
1240 // If PDom has a hint that it is low probability, skip this triangle.
1241 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1242 continue;
1243 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1244 // we're looking for.
1245 if (!shouldTailDuplicate(PDom))
1246 continue;
1247 bool CanTailDuplicate = true;
1248 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1249 // isn't the kind of triangle we're looking for.
1250 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1251 if (Pred == &BB)
1252 continue;
1253 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1254 CanTailDuplicate = false;
1255 break;
1256 }
1257 }
1258 // If we can't tail-duplicate PDom to its predecessors, then skip this
1259 // triangle.
1260 if (!CanTailDuplicate)
1261 continue;
1262
1263 // Now we have an interesting triangle. Insert it if it's not part of an
1264 // existing chain.
1265 // Note: This cannot be replaced with a call insert() or emplace() because
1266 // the find key is BB, but the insert/emplace key is PDom.
1267 auto Found = TriangleChainMap.find(&BB);
1268 // If it is, remove the chain from the map, grow it, and put it back in the
1269 // map with the end as the new key.
1270 if (Found != TriangleChainMap.end()) {
1271 TriangleChain Chain = std::move(Found->second);
1272 TriangleChainMap.erase(Found);
1273 Chain.append(PDom);
1274 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1275 } else {
1276 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1277 assert(InsertResult.second && "Block seen twice.");
1278 (void)InsertResult;
1279 }
1280 }
1281
1282 // Iterating over a DenseMap is safe here, because the only thing in the body
1283 // of the loop is inserting into another DenseMap (ComputedEdges).
1284 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1285 for (auto &ChainPair : TriangleChainMap) {
1286 TriangleChain &Chain = ChainPair.second;
1287 // Benchmarking has shown that due to branch correlation duplicating 2 or
1288 // more triangles is profitable, despite the calculations assuming
1289 // independence.
1290 if (Chain.count() < TriangleChainCount)
1291 continue;
1292 MachineBasicBlock *dst = Chain.Edges.back();
1293 Chain.Edges.pop_back();
1294 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1295 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1296 << getBlockName(dst)
1297 << " as pre-computed based on triangles.\n");
1298
1299 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1300 assert(InsertResult.second && "Block seen twice.");
1301 (void)InsertResult;
1302
1303 dst = src;
1304 }
1305 }
1306 }
1307
1308 // When profile is not present, return the StaticLikelyProb.
1309 // When profile is available, we need to handle the triangle-shape CFG.
getLayoutSuccessorProbThreshold(const MachineBasicBlock * BB)1310 static BranchProbability getLayoutSuccessorProbThreshold(
1311 const MachineBasicBlock *BB) {
1312 if (!BB->getParent()->getFunction().hasProfileData())
1313 return BranchProbability(StaticLikelyProb, 100);
1314 if (BB->succ_size() == 2) {
1315 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1316 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1317 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1318 /* See case 1 below for the cost analysis. For BB->Succ to
1319 * be taken with smaller cost, the following needs to hold:
1320 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1321 * So the threshold T in the calculation below
1322 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1323 * So T / (1 - T) = 2, Yielding T = 2/3
1324 * Also adding user specified branch bias, we have
1325 * T = (2/3)*(ProfileLikelyProb/50)
1326 * = (2*ProfileLikelyProb)/150)
1327 */
1328 return BranchProbability(2 * ProfileLikelyProb, 150);
1329 }
1330 }
1331 return BranchProbability(ProfileLikelyProb, 100);
1332 }
1333
1334 /// Checks to see if the layout candidate block \p Succ has a better layout
1335 /// predecessor than \c BB. If yes, returns true.
1336 /// \p SuccProb: The probability adjusted for only remaining blocks.
1337 /// Only used for logging
1338 /// \p RealSuccProb: The un-adjusted probability.
1339 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1340 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1341 /// considered
hasBetterLayoutPredecessor(const MachineBasicBlock * BB,const MachineBasicBlock * Succ,const BlockChain & SuccChain,BranchProbability SuccProb,BranchProbability RealSuccProb,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1342 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1343 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1344 const BlockChain &SuccChain, BranchProbability SuccProb,
1345 BranchProbability RealSuccProb, const BlockChain &Chain,
1346 const BlockFilterSet *BlockFilter) {
1347
1348 // There isn't a better layout when there are no unscheduled predecessors.
1349 if (SuccChain.UnscheduledPredecessors == 0)
1350 return false;
1351
1352 // There are two basic scenarios here:
1353 // -------------------------------------
1354 // Case 1: triangular shape CFG (if-then):
1355 // BB
1356 // | \
1357 // | \
1358 // | Pred
1359 // | /
1360 // Succ
1361 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1362 // set Succ as the layout successor of BB. Picking Succ as BB's
1363 // successor breaks the CFG constraints (FIXME: define these constraints).
1364 // With this layout, Pred BB
1365 // is forced to be outlined, so the overall cost will be cost of the
1366 // branch taken from BB to Pred, plus the cost of back taken branch
1367 // from Pred to Succ, as well as the additional cost associated
1368 // with the needed unconditional jump instruction from Pred To Succ.
1369
1370 // The cost of the topological order layout is the taken branch cost
1371 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1372 // must hold:
1373 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1374 // < freq(BB->Succ) * taken_branch_cost.
1375 // Ignoring unconditional jump cost, we get
1376 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1377 // prob(BB->Succ) > 2 * prob(BB->Pred)
1378 //
1379 // When real profile data is available, we can precisely compute the
1380 // probability threshold that is needed for edge BB->Succ to be considered.
1381 // Without profile data, the heuristic requires the branch bias to be
1382 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1383 // -----------------------------------------------------------------
1384 // Case 2: diamond like CFG (if-then-else):
1385 // S
1386 // / \
1387 // | \
1388 // BB Pred
1389 // \ /
1390 // Succ
1391 // ..
1392 //
1393 // The current block is BB and edge BB->Succ is now being evaluated.
1394 // Note that edge S->BB was previously already selected because
1395 // prob(S->BB) > prob(S->Pred).
1396 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1397 // choose Pred, we will have a topological ordering as shown on the left
1398 // in the picture below. If we choose Succ, we have the solution as shown
1399 // on the right:
1400 //
1401 // topo-order:
1402 //
1403 // S----- ---S
1404 // | | | |
1405 // ---BB | | BB
1406 // | | | |
1407 // | Pred-- | Succ--
1408 // | | | |
1409 // ---Succ ---Pred--
1410 //
1411 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1412 // = freq(S->Pred) + freq(S->BB)
1413 //
1414 // If we have profile data (i.e, branch probabilities can be trusted), the
1415 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1416 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1417 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1418 // means the cost of topological order is greater.
1419 // When profile data is not available, however, we need to be more
1420 // conservative. If the branch prediction is wrong, breaking the topo-order
1421 // will actually yield a layout with large cost. For this reason, we need
1422 // strong biased branch at block S with Prob(S->BB) in order to select
1423 // BB->Succ. This is equivalent to looking the CFG backward with backward
1424 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1425 // profile data).
1426 // --------------------------------------------------------------------------
1427 // Case 3: forked diamond
1428 // S
1429 // / \
1430 // / \
1431 // BB Pred
1432 // | \ / |
1433 // | \ / |
1434 // | X |
1435 // | / \ |
1436 // | / \ |
1437 // S1 S2
1438 //
1439 // The current block is BB and edge BB->S1 is now being evaluated.
1440 // As above S->BB was already selected because
1441 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1442 //
1443 // topo-order:
1444 //
1445 // S-------| ---S
1446 // | | | |
1447 // ---BB | | BB
1448 // | | | |
1449 // | Pred----| | S1----
1450 // | | | |
1451 // --(S1 or S2) ---Pred--
1452 // |
1453 // S2
1454 //
1455 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1456 // + min(freq(Pred->S1), freq(Pred->S2))
1457 // Non-topo-order cost:
1458 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1459 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1460 // is 0. Then the non topo layout is better when
1461 // freq(S->Pred) < freq(BB->S1).
1462 // This is exactly what is checked below.
1463 // Note there are other shapes that apply (Pred may not be a single block,
1464 // but they all fit this general pattern.)
1465 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1466
1467 // Make sure that a hot successor doesn't have a globally more
1468 // important predecessor.
1469 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1470 bool BadCFGConflict = false;
1471
1472 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1473 BlockChain *PredChain = BlockToChain[Pred];
1474 if (Pred == Succ || PredChain == &SuccChain ||
1475 (BlockFilter && !BlockFilter->count(Pred)) ||
1476 PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1477 // This check is redundant except for look ahead. This function is
1478 // called for lookahead by isProfitableToTailDup when BB hasn't been
1479 // placed yet.
1480 (Pred == BB))
1481 continue;
1482 // Do backward checking.
1483 // For all cases above, we need a backward checking to filter out edges that
1484 // are not 'strongly' biased.
1485 // BB Pred
1486 // \ /
1487 // Succ
1488 // We select edge BB->Succ if
1489 // freq(BB->Succ) > freq(Succ) * HotProb
1490 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1491 // HotProb
1492 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1493 // Case 1 is covered too, because the first equation reduces to:
1494 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1495 BlockFrequency PredEdgeFreq =
1496 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1497 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1498 BadCFGConflict = true;
1499 break;
1500 }
1501 }
1502
1503 if (BadCFGConflict) {
1504 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1505 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1506 return true;
1507 }
1508
1509 return false;
1510 }
1511
1512 /// Select the best successor for a block.
1513 ///
1514 /// This looks across all successors of a particular block and attempts to
1515 /// select the "best" one to be the layout successor. It only considers direct
1516 /// successors which also pass the block filter. It will attempt to avoid
1517 /// breaking CFG structure, but cave and break such structures in the case of
1518 /// very hot successor edges.
1519 ///
1520 /// \returns The best successor block found, or null if none are viable, along
1521 /// with a boolean indicating if tail duplication is necessary.
1522 MachineBlockPlacement::BlockAndTailDupResult
selectBestSuccessor(const MachineBasicBlock * BB,const BlockChain & Chain,const BlockFilterSet * BlockFilter)1523 MachineBlockPlacement::selectBestSuccessor(
1524 const MachineBasicBlock *BB, const BlockChain &Chain,
1525 const BlockFilterSet *BlockFilter) {
1526 const BranchProbability HotProb(StaticLikelyProb, 100);
1527
1528 BlockAndTailDupResult BestSucc = { nullptr, false };
1529 auto BestProb = BranchProbability::getZero();
1530
1531 SmallVector<MachineBasicBlock *, 4> Successors;
1532 auto AdjustedSumProb =
1533 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1534
1535 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1536 << "\n");
1537
1538 // if we already precomputed the best successor for BB, return that if still
1539 // applicable.
1540 auto FoundEdge = ComputedEdges.find(BB);
1541 if (FoundEdge != ComputedEdges.end()) {
1542 MachineBasicBlock *Succ = FoundEdge->second.BB;
1543 ComputedEdges.erase(FoundEdge);
1544 BlockChain *SuccChain = BlockToChain[Succ];
1545 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1546 SuccChain != &Chain && Succ == *SuccChain->begin())
1547 return FoundEdge->second;
1548 }
1549
1550 // if BB is part of a trellis, Use the trellis to determine the optimal
1551 // fallthrough edges
1552 if (isTrellis(BB, Successors, Chain, BlockFilter))
1553 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1554 BlockFilter);
1555
1556 // For blocks with CFG violations, we may be able to lay them out anyway with
1557 // tail-duplication. We keep this vector so we can perform the probability
1558 // calculations the minimum number of times.
1559 SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4>
1560 DupCandidates;
1561 for (MachineBasicBlock *Succ : Successors) {
1562 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1563 BranchProbability SuccProb =
1564 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1565
1566 BlockChain &SuccChain = *BlockToChain[Succ];
1567 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1568 // predecessor that yields lower global cost.
1569 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1570 Chain, BlockFilter)) {
1571 // If tail duplication would make Succ profitable, place it.
1572 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1573 DupCandidates.push_back(std::make_tuple(SuccProb, Succ));
1574 continue;
1575 }
1576
1577 LLVM_DEBUG(
1578 dbgs() << " Candidate: " << getBlockName(Succ)
1579 << ", probability: " << SuccProb
1580 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1581 << "\n");
1582
1583 if (BestSucc.BB && BestProb >= SuccProb) {
1584 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1585 continue;
1586 }
1587
1588 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1589 BestSucc.BB = Succ;
1590 BestProb = SuccProb;
1591 }
1592 // Handle the tail duplication candidates in order of decreasing probability.
1593 // Stop at the first one that is profitable. Also stop if they are less
1594 // profitable than BestSucc. Position is important because we preserve it and
1595 // prefer first best match. Here we aren't comparing in order, so we capture
1596 // the position instead.
1597 llvm::stable_sort(DupCandidates,
1598 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1599 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1600 return std::get<0>(L) > std::get<0>(R);
1601 });
1602 for (auto &Tup : DupCandidates) {
1603 BranchProbability DupProb;
1604 MachineBasicBlock *Succ;
1605 std::tie(DupProb, Succ) = Tup;
1606 if (DupProb < BestProb)
1607 break;
1608 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1609 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1610 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1611 << ", probability: " << DupProb
1612 << " (Tail Duplicate)\n");
1613 BestSucc.BB = Succ;
1614 BestSucc.ShouldTailDup = true;
1615 break;
1616 }
1617 }
1618
1619 if (BestSucc.BB)
1620 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1621
1622 return BestSucc;
1623 }
1624
1625 /// Select the best block from a worklist.
1626 ///
1627 /// This looks through the provided worklist as a list of candidate basic
1628 /// blocks and select the most profitable one to place. The definition of
1629 /// profitable only really makes sense in the context of a loop. This returns
1630 /// the most frequently visited block in the worklist, which in the case of
1631 /// a loop, is the one most desirable to be physically close to the rest of the
1632 /// loop body in order to improve i-cache behavior.
1633 ///
1634 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(const BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList)1635 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1636 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1637 // Once we need to walk the worklist looking for a candidate, cleanup the
1638 // worklist of already placed entries.
1639 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1640 // some code complexity) into the loop below.
1641 WorkList.erase(llvm::remove_if(WorkList,
1642 [&](MachineBasicBlock *BB) {
1643 return BlockToChain.lookup(BB) == &Chain;
1644 }),
1645 WorkList.end());
1646
1647 if (WorkList.empty())
1648 return nullptr;
1649
1650 bool IsEHPad = WorkList[0]->isEHPad();
1651
1652 MachineBasicBlock *BestBlock = nullptr;
1653 BlockFrequency BestFreq;
1654 for (MachineBasicBlock *MBB : WorkList) {
1655 assert(MBB->isEHPad() == IsEHPad &&
1656 "EHPad mismatch between block and work list.");
1657
1658 BlockChain &SuccChain = *BlockToChain[MBB];
1659 if (&SuccChain == &Chain)
1660 continue;
1661
1662 assert(SuccChain.UnscheduledPredecessors == 0 &&
1663 "Found CFG-violating block");
1664
1665 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1666 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1667 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1668
1669 // For ehpad, we layout the least probable first as to avoid jumping back
1670 // from least probable landingpads to more probable ones.
1671 //
1672 // FIXME: Using probability is probably (!) not the best way to achieve
1673 // this. We should probably have a more principled approach to layout
1674 // cleanup code.
1675 //
1676 // The goal is to get:
1677 //
1678 // +--------------------------+
1679 // | V
1680 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1681 //
1682 // Rather than:
1683 //
1684 // +-------------------------------------+
1685 // V |
1686 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1687 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1688 continue;
1689
1690 BestBlock = MBB;
1691 BestFreq = CandidateFreq;
1692 }
1693
1694 return BestBlock;
1695 }
1696
1697 /// Retrieve the first unplaced basic block.
1698 ///
1699 /// This routine is called when we are unable to use the CFG to walk through
1700 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1701 /// We walk through the function's blocks in order, starting from the
1702 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1703 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)1704 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1705 const BlockChain &PlacedChain,
1706 MachineFunction::iterator &PrevUnplacedBlockIt,
1707 const BlockFilterSet *BlockFilter) {
1708 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1709 ++I) {
1710 if (BlockFilter && !BlockFilter->count(&*I))
1711 continue;
1712 if (BlockToChain[&*I] != &PlacedChain) {
1713 PrevUnplacedBlockIt = I;
1714 // Now select the head of the chain to which the unplaced block belongs
1715 // as the block to place. This will force the entire chain to be placed,
1716 // and satisfies the requirements of merging chains.
1717 return *BlockToChain[&*I]->begin();
1718 }
1719 }
1720 return nullptr;
1721 }
1722
fillWorkLists(const MachineBasicBlock * MBB,SmallPtrSetImpl<BlockChain * > & UpdatedPreds,const BlockFilterSet * BlockFilter=nullptr)1723 void MachineBlockPlacement::fillWorkLists(
1724 const MachineBasicBlock *MBB,
1725 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1726 const BlockFilterSet *BlockFilter = nullptr) {
1727 BlockChain &Chain = *BlockToChain[MBB];
1728 if (!UpdatedPreds.insert(&Chain).second)
1729 return;
1730
1731 assert(
1732 Chain.UnscheduledPredecessors == 0 &&
1733 "Attempting to place block with unscheduled predecessors in worklist.");
1734 for (MachineBasicBlock *ChainBB : Chain) {
1735 assert(BlockToChain[ChainBB] == &Chain &&
1736 "Block in chain doesn't match BlockToChain map.");
1737 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1738 if (BlockFilter && !BlockFilter->count(Pred))
1739 continue;
1740 if (BlockToChain[Pred] == &Chain)
1741 continue;
1742 ++Chain.UnscheduledPredecessors;
1743 }
1744 }
1745
1746 if (Chain.UnscheduledPredecessors != 0)
1747 return;
1748
1749 MachineBasicBlock *BB = *Chain.begin();
1750 if (BB->isEHPad())
1751 EHPadWorkList.push_back(BB);
1752 else
1753 BlockWorkList.push_back(BB);
1754 }
1755
buildChain(const MachineBasicBlock * HeadBB,BlockChain & Chain,BlockFilterSet * BlockFilter)1756 void MachineBlockPlacement::buildChain(
1757 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1758 BlockFilterSet *BlockFilter) {
1759 assert(HeadBB && "BB must not be null.\n");
1760 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1761 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1762
1763 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1764 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1765 MachineBasicBlock *BB = *std::prev(Chain.end());
1766 while (true) {
1767 assert(BB && "null block found at end of chain in loop.");
1768 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1769 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1770
1771
1772 // Look for the best viable successor if there is one to place immediately
1773 // after this block.
1774 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1775 MachineBasicBlock* BestSucc = Result.BB;
1776 bool ShouldTailDup = Result.ShouldTailDup;
1777 if (allowTailDupPlacement())
1778 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1779 Chain,
1780 BlockFilter));
1781
1782 // If an immediate successor isn't available, look for the best viable
1783 // block among those we've identified as not violating the loop's CFG at
1784 // this point. This won't be a fallthrough, but it will increase locality.
1785 if (!BestSucc)
1786 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1787 if (!BestSucc)
1788 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1789
1790 if (!BestSucc) {
1791 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1792 if (!BestSucc)
1793 break;
1794
1795 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1796 "layout successor until the CFG reduces\n");
1797 }
1798
1799 // Placement may have changed tail duplication opportunities.
1800 // Check for that now.
1801 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1802 // If the chosen successor was duplicated into all its predecessors,
1803 // don't bother laying it out, just go round the loop again with BB as
1804 // the chain end.
1805 if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1806 BlockFilter, PrevUnplacedBlockIt))
1807 continue;
1808 }
1809
1810 // Place this block, updating the datastructures to reflect its placement.
1811 BlockChain &SuccChain = *BlockToChain[BestSucc];
1812 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1813 // we selected a successor that didn't fit naturally into the CFG.
1814 SuccChain.UnscheduledPredecessors = 0;
1815 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1816 << getBlockName(BestSucc) << "\n");
1817 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1818 Chain.merge(BestSucc, &SuccChain);
1819 BB = *std::prev(Chain.end());
1820 }
1821
1822 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1823 << getBlockName(*Chain.begin()) << "\n");
1824 }
1825
1826 // If bottom of block BB has only one successor OldTop, in most cases it is
1827 // profitable to move it before OldTop, except the following case:
1828 //
1829 // -->OldTop<-
1830 // | . |
1831 // | . |
1832 // | . |
1833 // ---Pred |
1834 // | |
1835 // BB-----
1836 //
1837 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1838 // layout the other successor below it, so it can't reduce taken branch.
1839 // In this case we keep its original layout.
1840 bool
canMoveBottomBlockToTop(const MachineBasicBlock * BottomBlock,const MachineBasicBlock * OldTop)1841 MachineBlockPlacement::canMoveBottomBlockToTop(
1842 const MachineBasicBlock *BottomBlock,
1843 const MachineBasicBlock *OldTop) {
1844 if (BottomBlock->pred_size() != 1)
1845 return true;
1846 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1847 if (Pred->succ_size() != 2)
1848 return true;
1849
1850 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1851 if (OtherBB == BottomBlock)
1852 OtherBB = *Pred->succ_rbegin();
1853 if (OtherBB == OldTop)
1854 return false;
1855
1856 return true;
1857 }
1858
1859 // Find out the possible fall through frequence to the top of a loop.
1860 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)1861 MachineBlockPlacement::TopFallThroughFreq(
1862 const MachineBasicBlock *Top,
1863 const BlockFilterSet &LoopBlockSet) {
1864 BlockFrequency MaxFreq = 0;
1865 for (MachineBasicBlock *Pred : Top->predecessors()) {
1866 BlockChain *PredChain = BlockToChain[Pred];
1867 if (!LoopBlockSet.count(Pred) &&
1868 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1869 // Found a Pred block can be placed before Top.
1870 // Check if Top is the best successor of Pred.
1871 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1872 bool TopOK = true;
1873 for (MachineBasicBlock *Succ : Pred->successors()) {
1874 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1875 BlockChain *SuccChain = BlockToChain[Succ];
1876 // Check if Succ can be placed after Pred.
1877 // Succ should not be in any chain, or it is the head of some chain.
1878 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1879 (!SuccChain || Succ == *SuccChain->begin())) {
1880 TopOK = false;
1881 break;
1882 }
1883 }
1884 if (TopOK) {
1885 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1886 MBPI->getEdgeProbability(Pred, Top);
1887 if (EdgeFreq > MaxFreq)
1888 MaxFreq = EdgeFreq;
1889 }
1890 }
1891 }
1892 return MaxFreq;
1893 }
1894
1895 // Compute the fall through gains when move NewTop before OldTop.
1896 //
1897 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1898 // marked as "+" are increased fallthrough, this function computes
1899 //
1900 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1901 //
1902 // |
1903 // | -
1904 // V
1905 // --->OldTop
1906 // | .
1907 // | .
1908 // +| . +
1909 // | Pred --->
1910 // | |-
1911 // | V
1912 // --- NewTop <---
1913 // |-
1914 // V
1915 //
1916 BlockFrequency
FallThroughGains(const MachineBasicBlock * NewTop,const MachineBasicBlock * OldTop,const MachineBasicBlock * ExitBB,const BlockFilterSet & LoopBlockSet)1917 MachineBlockPlacement::FallThroughGains(
1918 const MachineBasicBlock *NewTop,
1919 const MachineBasicBlock *OldTop,
1920 const MachineBasicBlock *ExitBB,
1921 const BlockFilterSet &LoopBlockSet) {
1922 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1923 BlockFrequency FallThrough2Exit = 0;
1924 if (ExitBB)
1925 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1926 MBPI->getEdgeProbability(NewTop, ExitBB);
1927 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1928 MBPI->getEdgeProbability(NewTop, OldTop);
1929
1930 // Find the best Pred of NewTop.
1931 MachineBasicBlock *BestPred = nullptr;
1932 BlockFrequency FallThroughFromPred = 0;
1933 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1934 if (!LoopBlockSet.count(Pred))
1935 continue;
1936 BlockChain *PredChain = BlockToChain[Pred];
1937 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1938 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1939 MBPI->getEdgeProbability(Pred, NewTop);
1940 if (EdgeFreq > FallThroughFromPred) {
1941 FallThroughFromPred = EdgeFreq;
1942 BestPred = Pred;
1943 }
1944 }
1945 }
1946
1947 // If NewTop is not placed after Pred, another successor can be placed
1948 // after Pred.
1949 BlockFrequency NewFreq = 0;
1950 if (BestPred) {
1951 for (MachineBasicBlock *Succ : BestPred->successors()) {
1952 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1953 continue;
1954 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1955 continue;
1956 BlockChain *SuccChain = BlockToChain[Succ];
1957 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1958 (SuccChain == BlockToChain[BestPred]))
1959 continue;
1960 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1961 MBPI->getEdgeProbability(BestPred, Succ);
1962 if (EdgeFreq > NewFreq)
1963 NewFreq = EdgeFreq;
1964 }
1965 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
1966 MBPI->getEdgeProbability(BestPred, NewTop);
1967 if (NewFreq > OrigEdgeFreq) {
1968 // If NewTop is not the best successor of Pred, then Pred doesn't
1969 // fallthrough to NewTop. So there is no FallThroughFromPred and
1970 // NewFreq.
1971 NewFreq = 0;
1972 FallThroughFromPred = 0;
1973 }
1974 }
1975
1976 BlockFrequency Result = 0;
1977 BlockFrequency Gains = BackEdgeFreq + NewFreq;
1978 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
1979 FallThroughFromPred;
1980 if (Gains > Lost)
1981 Result = Gains - Lost;
1982 return Result;
1983 }
1984
1985 /// Helper function of findBestLoopTop. Find the best loop top block
1986 /// from predecessors of old top.
1987 ///
1988 /// Look for a block which is strictly better than the old top for laying
1989 /// out before the old top of the loop. This looks for only two patterns:
1990 ///
1991 /// 1. a block has only one successor, the old loop top
1992 ///
1993 /// Because such a block will always result in an unconditional jump,
1994 /// rotating it in front of the old top is always profitable.
1995 ///
1996 /// 2. a block has two successors, one is old top, another is exit
1997 /// and it has more than one predecessors
1998 ///
1999 /// If it is below one of its predecessors P, only P can fall through to
2000 /// it, all other predecessors need a jump to it, and another conditional
2001 /// jump to loop header. If it is moved before loop header, all its
2002 /// predecessors jump to it, then fall through to loop header. So all its
2003 /// predecessors except P can reduce one taken branch.
2004 /// At the same time, move it before old top increases the taken branch
2005 /// to loop exit block, so the reduced taken branch will be compared with
2006 /// the increased taken branch to the loop exit block.
2007 MachineBasicBlock *
findBestLoopTopHelper(MachineBasicBlock * OldTop,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2008 MachineBlockPlacement::findBestLoopTopHelper(
2009 MachineBasicBlock *OldTop,
2010 const MachineLoop &L,
2011 const BlockFilterSet &LoopBlockSet) {
2012 // Check that the header hasn't been fused with a preheader block due to
2013 // crazy branches. If it has, we need to start with the header at the top to
2014 // prevent pulling the preheader into the loop body.
2015 BlockChain &HeaderChain = *BlockToChain[OldTop];
2016 if (!LoopBlockSet.count(*HeaderChain.begin()))
2017 return OldTop;
2018
2019 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2020 << "\n");
2021
2022 BlockFrequency BestGains = 0;
2023 MachineBasicBlock *BestPred = nullptr;
2024 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2025 if (!LoopBlockSet.count(Pred))
2026 continue;
2027 if (Pred == L.getHeader())
2028 continue;
2029 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2030 << Pred->succ_size() << " successors, ";
2031 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2032 if (Pred->succ_size() > 2)
2033 continue;
2034
2035 MachineBasicBlock *OtherBB = nullptr;
2036 if (Pred->succ_size() == 2) {
2037 OtherBB = *Pred->succ_begin();
2038 if (OtherBB == OldTop)
2039 OtherBB = *Pred->succ_rbegin();
2040 }
2041
2042 if (!canMoveBottomBlockToTop(Pred, OldTop))
2043 continue;
2044
2045 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2046 LoopBlockSet);
2047 if ((Gains > 0) && (Gains > BestGains ||
2048 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2049 BestPred = Pred;
2050 BestGains = Gains;
2051 }
2052 }
2053
2054 // If no direct predecessor is fine, just use the loop header.
2055 if (!BestPred) {
2056 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2057 return OldTop;
2058 }
2059
2060 // Walk backwards through any straight line of predecessors.
2061 while (BestPred->pred_size() == 1 &&
2062 (*BestPred->pred_begin())->succ_size() == 1 &&
2063 *BestPred->pred_begin() != L.getHeader())
2064 BestPred = *BestPred->pred_begin();
2065
2066 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2067 return BestPred;
2068 }
2069
2070 /// Find the best loop top block for layout.
2071 ///
2072 /// This function iteratively calls findBestLoopTopHelper, until no new better
2073 /// BB can be found.
2074 MachineBasicBlock *
findBestLoopTop(const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2075 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2076 const BlockFilterSet &LoopBlockSet) {
2077 // Placing the latch block before the header may introduce an extra branch
2078 // that skips this block the first time the loop is executed, which we want
2079 // to avoid when optimising for size.
2080 // FIXME: in theory there is a case that does not introduce a new branch,
2081 // i.e. when the layout predecessor does not fallthrough to the loop header.
2082 // In practice this never happens though: there always seems to be a preheader
2083 // that can fallthrough and that is also placed before the header.
2084 bool OptForSize = F->getFunction().hasOptSize() ||
2085 llvm::shouldOptimizeForSize(L.getHeader(), PSI,
2086 &MBFI->getMBFI());
2087 if (OptForSize)
2088 return L.getHeader();
2089
2090 MachineBasicBlock *OldTop = nullptr;
2091 MachineBasicBlock *NewTop = L.getHeader();
2092 while (NewTop != OldTop) {
2093 OldTop = NewTop;
2094 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2095 if (NewTop != OldTop)
2096 ComputedEdges[NewTop] = { OldTop, false };
2097 }
2098 return NewTop;
2099 }
2100
2101 /// Find the best loop exiting block for layout.
2102 ///
2103 /// This routine implements the logic to analyze the loop looking for the best
2104 /// block to layout at the top of the loop. Typically this is done to maximize
2105 /// fallthrough opportunities.
2106 MachineBasicBlock *
findBestLoopExit(const MachineLoop & L,const BlockFilterSet & LoopBlockSet,BlockFrequency & ExitFreq)2107 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2108 const BlockFilterSet &LoopBlockSet,
2109 BlockFrequency &ExitFreq) {
2110 // We don't want to layout the loop linearly in all cases. If the loop header
2111 // is just a normal basic block in the loop, we want to look for what block
2112 // within the loop is the best one to layout at the top. However, if the loop
2113 // header has be pre-merged into a chain due to predecessors not having
2114 // analyzable branches, *and* the predecessor it is merged with is *not* part
2115 // of the loop, rotating the header into the middle of the loop will create
2116 // a non-contiguous range of blocks which is Very Bad. So start with the
2117 // header and only rotate if safe.
2118 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2119 if (!LoopBlockSet.count(*HeaderChain.begin()))
2120 return nullptr;
2121
2122 BlockFrequency BestExitEdgeFreq;
2123 unsigned BestExitLoopDepth = 0;
2124 MachineBasicBlock *ExitingBB = nullptr;
2125 // If there are exits to outer loops, loop rotation can severely limit
2126 // fallthrough opportunities unless it selects such an exit. Keep a set of
2127 // blocks where rotating to exit with that block will reach an outer loop.
2128 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2129
2130 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2131 << getBlockName(L.getHeader()) << "\n");
2132 for (MachineBasicBlock *MBB : L.getBlocks()) {
2133 BlockChain &Chain = *BlockToChain[MBB];
2134 // Ensure that this block is at the end of a chain; otherwise it could be
2135 // mid-way through an inner loop or a successor of an unanalyzable branch.
2136 if (MBB != *std::prev(Chain.end()))
2137 continue;
2138
2139 // Now walk the successors. We need to establish whether this has a viable
2140 // exiting successor and whether it has a viable non-exiting successor.
2141 // We store the old exiting state and restore it if a viable looping
2142 // successor isn't found.
2143 MachineBasicBlock *OldExitingBB = ExitingBB;
2144 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2145 bool HasLoopingSucc = false;
2146 for (MachineBasicBlock *Succ : MBB->successors()) {
2147 if (Succ->isEHPad())
2148 continue;
2149 if (Succ == MBB)
2150 continue;
2151 BlockChain &SuccChain = *BlockToChain[Succ];
2152 // Don't split chains, either this chain or the successor's chain.
2153 if (&Chain == &SuccChain) {
2154 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2155 << getBlockName(Succ) << " (chain conflict)\n");
2156 continue;
2157 }
2158
2159 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2160 if (LoopBlockSet.count(Succ)) {
2161 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2162 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2163 HasLoopingSucc = true;
2164 continue;
2165 }
2166
2167 unsigned SuccLoopDepth = 0;
2168 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2169 SuccLoopDepth = ExitLoop->getLoopDepth();
2170 if (ExitLoop->contains(&L))
2171 BlocksExitingToOuterLoop.insert(MBB);
2172 }
2173
2174 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2175 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2176 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2177 << "] (";
2178 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2179 // Note that we bias this toward an existing layout successor to retain
2180 // incoming order in the absence of better information. The exit must have
2181 // a frequency higher than the current exit before we consider breaking
2182 // the layout.
2183 BranchProbability Bias(100 - ExitBlockBias, 100);
2184 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2185 ExitEdgeFreq > BestExitEdgeFreq ||
2186 (MBB->isLayoutSuccessor(Succ) &&
2187 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2188 BestExitEdgeFreq = ExitEdgeFreq;
2189 ExitingBB = MBB;
2190 }
2191 }
2192
2193 if (!HasLoopingSucc) {
2194 // Restore the old exiting state, no viable looping successor was found.
2195 ExitingBB = OldExitingBB;
2196 BestExitEdgeFreq = OldBestExitEdgeFreq;
2197 }
2198 }
2199 // Without a candidate exiting block or with only a single block in the
2200 // loop, just use the loop header to layout the loop.
2201 if (!ExitingBB) {
2202 LLVM_DEBUG(
2203 dbgs() << " No other candidate exit blocks, using loop header\n");
2204 return nullptr;
2205 }
2206 if (L.getNumBlocks() == 1) {
2207 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2208 return nullptr;
2209 }
2210
2211 // Also, if we have exit blocks which lead to outer loops but didn't select
2212 // one of them as the exiting block we are rotating toward, disable loop
2213 // rotation altogether.
2214 if (!BlocksExitingToOuterLoop.empty() &&
2215 !BlocksExitingToOuterLoop.count(ExitingBB))
2216 return nullptr;
2217
2218 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2219 << "\n");
2220 ExitFreq = BestExitEdgeFreq;
2221 return ExitingBB;
2222 }
2223
2224 /// Check if there is a fallthrough to loop header Top.
2225 ///
2226 /// 1. Look for a Pred that can be layout before Top.
2227 /// 2. Check if Top is the most possible successor of Pred.
2228 bool
hasViableTopFallthrough(const MachineBasicBlock * Top,const BlockFilterSet & LoopBlockSet)2229 MachineBlockPlacement::hasViableTopFallthrough(
2230 const MachineBasicBlock *Top,
2231 const BlockFilterSet &LoopBlockSet) {
2232 for (MachineBasicBlock *Pred : Top->predecessors()) {
2233 BlockChain *PredChain = BlockToChain[Pred];
2234 if (!LoopBlockSet.count(Pred) &&
2235 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2236 // Found a Pred block can be placed before Top.
2237 // Check if Top is the best successor of Pred.
2238 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2239 bool TopOK = true;
2240 for (MachineBasicBlock *Succ : Pred->successors()) {
2241 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2242 BlockChain *SuccChain = BlockToChain[Succ];
2243 // Check if Succ can be placed after Pred.
2244 // Succ should not be in any chain, or it is the head of some chain.
2245 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2246 TopOK = false;
2247 break;
2248 }
2249 }
2250 if (TopOK)
2251 return true;
2252 }
2253 }
2254 return false;
2255 }
2256
2257 /// Attempt to rotate an exiting block to the bottom of the loop.
2258 ///
2259 /// Once we have built a chain, try to rotate it to line up the hot exit block
2260 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2261 /// branches. For example, if the loop has fallthrough into its header and out
2262 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,const MachineBasicBlock * ExitingBB,BlockFrequency ExitFreq,const BlockFilterSet & LoopBlockSet)2263 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2264 const MachineBasicBlock *ExitingBB,
2265 BlockFrequency ExitFreq,
2266 const BlockFilterSet &LoopBlockSet) {
2267 if (!ExitingBB)
2268 return;
2269
2270 MachineBasicBlock *Top = *LoopChain.begin();
2271 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2272
2273 // If ExitingBB is already the last one in a chain then nothing to do.
2274 if (Bottom == ExitingBB)
2275 return;
2276
2277 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2278
2279 // If the header has viable fallthrough, check whether the current loop
2280 // bottom is a viable exiting block. If so, bail out as rotating will
2281 // introduce an unnecessary branch.
2282 if (ViableTopFallthrough) {
2283 for (MachineBasicBlock *Succ : Bottom->successors()) {
2284 BlockChain *SuccChain = BlockToChain[Succ];
2285 if (!LoopBlockSet.count(Succ) &&
2286 (!SuccChain || Succ == *SuccChain->begin()))
2287 return;
2288 }
2289
2290 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2291 // frequency is larger than top fallthrough.
2292 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2293 if (FallThrough2Top >= ExitFreq)
2294 return;
2295 }
2296
2297 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2298 if (ExitIt == LoopChain.end())
2299 return;
2300
2301 // Rotating a loop exit to the bottom when there is a fallthrough to top
2302 // trades the entry fallthrough for an exit fallthrough.
2303 // If there is no bottom->top edge, but the chosen exit block does have
2304 // a fallthrough, we break that fallthrough for nothing in return.
2305
2306 // Let's consider an example. We have a built chain of basic blocks
2307 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2308 // By doing a rotation we get
2309 // Bk+1, ..., Bn, B1, ..., Bk
2310 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2311 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2312 // It might be compensated by fallthrough Bn -> B1.
2313 // So we have a condition to avoid creation of extra branch by loop rotation.
2314 // All below must be true to avoid loop rotation:
2315 // If there is a fallthrough to top (B1)
2316 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2317 // There is no fallthrough from bottom (Bn) to top (B1).
2318 // Please note that there is no exit fallthrough from Bn because we checked it
2319 // above.
2320 if (ViableTopFallthrough) {
2321 assert(std::next(ExitIt) != LoopChain.end() &&
2322 "Exit should not be last BB");
2323 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2324 if (ExitingBB->isSuccessor(NextBlockInChain))
2325 if (!Bottom->isSuccessor(Top))
2326 return;
2327 }
2328
2329 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2330 << " at bottom\n");
2331 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2332 }
2333
2334 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2335 ///
2336 /// With profile data, we can determine the cost in terms of missed fall through
2337 /// opportunities when rotating a loop chain and select the best rotation.
2338 /// Basically, there are three kinds of cost to consider for each rotation:
2339 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2340 /// the loop to the loop header.
2341 /// 2. The possibly missed fall through edges (if they exist) from the loop
2342 /// exits to BB out of the loop.
2343 /// 3. The missed fall through edge (if it exists) from the last BB to the
2344 /// first BB in the loop chain.
2345 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2346 /// We select the best rotation with the smallest cost.
rotateLoopWithProfile(BlockChain & LoopChain,const MachineLoop & L,const BlockFilterSet & LoopBlockSet)2347 void MachineBlockPlacement::rotateLoopWithProfile(
2348 BlockChain &LoopChain, const MachineLoop &L,
2349 const BlockFilterSet &LoopBlockSet) {
2350 auto RotationPos = LoopChain.end();
2351
2352 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2353
2354 // A utility lambda that scales up a block frequency by dividing it by a
2355 // branch probability which is the reciprocal of the scale.
2356 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2357 unsigned Scale) -> BlockFrequency {
2358 if (Scale == 0)
2359 return 0;
2360 // Use operator / between BlockFrequency and BranchProbability to implement
2361 // saturating multiplication.
2362 return Freq / BranchProbability(1, Scale);
2363 };
2364
2365 // Compute the cost of the missed fall-through edge to the loop header if the
2366 // chain head is not the loop header. As we only consider natural loops with
2367 // single header, this computation can be done only once.
2368 BlockFrequency HeaderFallThroughCost(0);
2369 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2370 for (auto *Pred : ChainHeaderBB->predecessors()) {
2371 BlockChain *PredChain = BlockToChain[Pred];
2372 if (!LoopBlockSet.count(Pred) &&
2373 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2374 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2375 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2376 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2377 // If the predecessor has only an unconditional jump to the header, we
2378 // need to consider the cost of this jump.
2379 if (Pred->succ_size() == 1)
2380 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2381 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2382 }
2383 }
2384
2385 // Here we collect all exit blocks in the loop, and for each exit we find out
2386 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2387 // as the sum of frequencies of exit edges we collect here, excluding the exit
2388 // edge from the tail of the loop chain.
2389 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2390 for (auto BB : LoopChain) {
2391 auto LargestExitEdgeProb = BranchProbability::getZero();
2392 for (auto *Succ : BB->successors()) {
2393 BlockChain *SuccChain = BlockToChain[Succ];
2394 if (!LoopBlockSet.count(Succ) &&
2395 (!SuccChain || Succ == *SuccChain->begin())) {
2396 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2397 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2398 }
2399 }
2400 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2401 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2402 ExitsWithFreq.emplace_back(BB, ExitFreq);
2403 }
2404 }
2405
2406 // In this loop we iterate every block in the loop chain and calculate the
2407 // cost assuming the block is the head of the loop chain. When the loop ends,
2408 // we should have found the best candidate as the loop chain's head.
2409 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2410 EndIter = LoopChain.end();
2411 Iter != EndIter; Iter++, TailIter++) {
2412 // TailIter is used to track the tail of the loop chain if the block we are
2413 // checking (pointed by Iter) is the head of the chain.
2414 if (TailIter == LoopChain.end())
2415 TailIter = LoopChain.begin();
2416
2417 auto TailBB = *TailIter;
2418
2419 // Calculate the cost by putting this BB to the top.
2420 BlockFrequency Cost = 0;
2421
2422 // If the current BB is the loop header, we need to take into account the
2423 // cost of the missed fall through edge from outside of the loop to the
2424 // header.
2425 if (Iter != LoopChain.begin())
2426 Cost += HeaderFallThroughCost;
2427
2428 // Collect the loop exit cost by summing up frequencies of all exit edges
2429 // except the one from the chain tail.
2430 for (auto &ExitWithFreq : ExitsWithFreq)
2431 if (TailBB != ExitWithFreq.first)
2432 Cost += ExitWithFreq.second;
2433
2434 // The cost of breaking the once fall-through edge from the tail to the top
2435 // of the loop chain. Here we need to consider three cases:
2436 // 1. If the tail node has only one successor, then we will get an
2437 // additional jmp instruction. So the cost here is (MisfetchCost +
2438 // JumpInstCost) * tail node frequency.
2439 // 2. If the tail node has two successors, then we may still get an
2440 // additional jmp instruction if the layout successor after the loop
2441 // chain is not its CFG successor. Note that the more frequently executed
2442 // jmp instruction will be put ahead of the other one. Assume the
2443 // frequency of those two branches are x and y, where x is the frequency
2444 // of the edge to the chain head, then the cost will be
2445 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2446 // 3. If the tail node has more than two successors (this rarely happens),
2447 // we won't consider any additional cost.
2448 if (TailBB->isSuccessor(*Iter)) {
2449 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2450 if (TailBB->succ_size() == 1)
2451 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2452 MisfetchCost + JumpInstCost);
2453 else if (TailBB->succ_size() == 2) {
2454 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2455 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2456 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2457 ? TailBBFreq * TailToHeadProb.getCompl()
2458 : TailToHeadFreq;
2459 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2460 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2461 }
2462 }
2463
2464 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2465 << getBlockName(*Iter)
2466 << " to the top: " << Cost.getFrequency() << "\n");
2467
2468 if (Cost < SmallestRotationCost) {
2469 SmallestRotationCost = Cost;
2470 RotationPos = Iter;
2471 }
2472 }
2473
2474 if (RotationPos != LoopChain.end()) {
2475 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2476 << " to the top\n");
2477 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2478 }
2479 }
2480
2481 /// Collect blocks in the given loop that are to be placed.
2482 ///
2483 /// When profile data is available, exclude cold blocks from the returned set;
2484 /// otherwise, collect all blocks in the loop.
2485 MachineBlockPlacement::BlockFilterSet
collectLoopBlockSet(const MachineLoop & L)2486 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2487 BlockFilterSet LoopBlockSet;
2488
2489 // Filter cold blocks off from LoopBlockSet when profile data is available.
2490 // Collect the sum of frequencies of incoming edges to the loop header from
2491 // outside. If we treat the loop as a super block, this is the frequency of
2492 // the loop. Then for each block in the loop, we calculate the ratio between
2493 // its frequency and the frequency of the loop block. When it is too small,
2494 // don't add it to the loop chain. If there are outer loops, then this block
2495 // will be merged into the first outer loop chain for which this block is not
2496 // cold anymore. This needs precise profile data and we only do this when
2497 // profile data is available.
2498 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2499 BlockFrequency LoopFreq(0);
2500 for (auto LoopPred : L.getHeader()->predecessors())
2501 if (!L.contains(LoopPred))
2502 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2503 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2504
2505 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2506 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2507 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2508 continue;
2509 LoopBlockSet.insert(LoopBB);
2510 }
2511 } else
2512 LoopBlockSet.insert(L.block_begin(), L.block_end());
2513
2514 return LoopBlockSet;
2515 }
2516
2517 /// Forms basic block chains from the natural loop structures.
2518 ///
2519 /// These chains are designed to preserve the existing *structure* of the code
2520 /// as much as possible. We can then stitch the chains together in a way which
2521 /// both preserves the topological structure and minimizes taken conditional
2522 /// branches.
buildLoopChains(const MachineLoop & L)2523 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2524 // First recurse through any nested loops, building chains for those inner
2525 // loops.
2526 for (const MachineLoop *InnerLoop : L)
2527 buildLoopChains(*InnerLoop);
2528
2529 assert(BlockWorkList.empty() &&
2530 "BlockWorkList not empty when starting to build loop chains.");
2531 assert(EHPadWorkList.empty() &&
2532 "EHPadWorkList not empty when starting to build loop chains.");
2533 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2534
2535 // Check if we have profile data for this function. If yes, we will rotate
2536 // this loop by modeling costs more precisely which requires the profile data
2537 // for better layout.
2538 bool RotateLoopWithProfile =
2539 ForcePreciseRotationCost ||
2540 (PreciseRotationCost && F->getFunction().hasProfileData());
2541
2542 // First check to see if there is an obviously preferable top block for the
2543 // loop. This will default to the header, but may end up as one of the
2544 // predecessors to the header if there is one which will result in strictly
2545 // fewer branches in the loop body.
2546 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2547
2548 // If we selected just the header for the loop top, look for a potentially
2549 // profitable exit block in the event that rotating the loop can eliminate
2550 // branches by placing an exit edge at the bottom.
2551 //
2552 // Loops are processed innermost to uttermost, make sure we clear
2553 // PreferredLoopExit before processing a new loop.
2554 PreferredLoopExit = nullptr;
2555 BlockFrequency ExitFreq;
2556 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2557 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2558
2559 BlockChain &LoopChain = *BlockToChain[LoopTop];
2560
2561 // FIXME: This is a really lame way of walking the chains in the loop: we
2562 // walk the blocks, and use a set to prevent visiting a particular chain
2563 // twice.
2564 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2565 assert(LoopChain.UnscheduledPredecessors == 0 &&
2566 "LoopChain should not have unscheduled predecessors.");
2567 UpdatedPreds.insert(&LoopChain);
2568
2569 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2570 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2571
2572 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2573
2574 if (RotateLoopWithProfile)
2575 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2576 else
2577 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2578
2579 LLVM_DEBUG({
2580 // Crash at the end so we get all of the debugging output first.
2581 bool BadLoop = false;
2582 if (LoopChain.UnscheduledPredecessors) {
2583 BadLoop = true;
2584 dbgs() << "Loop chain contains a block without its preds placed!\n"
2585 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2586 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2587 }
2588 for (MachineBasicBlock *ChainBB : LoopChain) {
2589 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2590 if (!LoopBlockSet.remove(ChainBB)) {
2591 // We don't mark the loop as bad here because there are real situations
2592 // where this can occur. For example, with an unanalyzable fallthrough
2593 // from a loop block to a non-loop block or vice versa.
2594 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2595 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2596 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2597 << " Bad block: " << getBlockName(ChainBB) << "\n";
2598 }
2599 }
2600
2601 if (!LoopBlockSet.empty()) {
2602 BadLoop = true;
2603 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2604 dbgs() << "Loop contains blocks never placed into a chain!\n"
2605 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2606 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2607 << " Bad block: " << getBlockName(LoopBB) << "\n";
2608 }
2609 assert(!BadLoop && "Detected problems with the placement of this loop.");
2610 });
2611
2612 BlockWorkList.clear();
2613 EHPadWorkList.clear();
2614 }
2615
buildCFGChains()2616 void MachineBlockPlacement::buildCFGChains() {
2617 // Ensure that every BB in the function has an associated chain to simplify
2618 // the assumptions of the remaining algorithm.
2619 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2620 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2621 ++FI) {
2622 MachineBasicBlock *BB = &*FI;
2623 BlockChain *Chain =
2624 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2625 // Also, merge any blocks which we cannot reason about and must preserve
2626 // the exact fallthrough behavior for.
2627 while (true) {
2628 Cond.clear();
2629 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2630 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2631 break;
2632
2633 MachineFunction::iterator NextFI = std::next(FI);
2634 MachineBasicBlock *NextBB = &*NextFI;
2635 // Ensure that the layout successor is a viable block, as we know that
2636 // fallthrough is a possibility.
2637 assert(NextFI != FE && "Can't fallthrough past the last block.");
2638 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2639 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2640 << "\n");
2641 Chain->merge(NextBB, nullptr);
2642 #ifndef NDEBUG
2643 BlocksWithUnanalyzableExits.insert(&*BB);
2644 #endif
2645 FI = NextFI;
2646 BB = NextBB;
2647 }
2648 }
2649
2650 // Build any loop-based chains.
2651 PreferredLoopExit = nullptr;
2652 for (MachineLoop *L : *MLI)
2653 buildLoopChains(*L);
2654
2655 assert(BlockWorkList.empty() &&
2656 "BlockWorkList should be empty before building final chain.");
2657 assert(EHPadWorkList.empty() &&
2658 "EHPadWorkList should be empty before building final chain.");
2659
2660 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2661 for (MachineBasicBlock &MBB : *F)
2662 fillWorkLists(&MBB, UpdatedPreds);
2663
2664 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2665 buildChain(&F->front(), FunctionChain);
2666
2667 #ifndef NDEBUG
2668 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2669 #endif
2670 LLVM_DEBUG({
2671 // Crash at the end so we get all of the debugging output first.
2672 bool BadFunc = false;
2673 FunctionBlockSetType FunctionBlockSet;
2674 for (MachineBasicBlock &MBB : *F)
2675 FunctionBlockSet.insert(&MBB);
2676
2677 for (MachineBasicBlock *ChainBB : FunctionChain)
2678 if (!FunctionBlockSet.erase(ChainBB)) {
2679 BadFunc = true;
2680 dbgs() << "Function chain contains a block not in the function!\n"
2681 << " Bad block: " << getBlockName(ChainBB) << "\n";
2682 }
2683
2684 if (!FunctionBlockSet.empty()) {
2685 BadFunc = true;
2686 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2687 dbgs() << "Function contains blocks never placed into a chain!\n"
2688 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2689 }
2690 assert(!BadFunc && "Detected problems with the block placement.");
2691 });
2692
2693 // Splice the blocks into place.
2694 MachineFunction::iterator InsertPos = F->begin();
2695 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2696 for (MachineBasicBlock *ChainBB : FunctionChain) {
2697 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2698 : " ... ")
2699 << getBlockName(ChainBB) << "\n");
2700 if (InsertPos != MachineFunction::iterator(ChainBB))
2701 F->splice(InsertPos, ChainBB);
2702 else
2703 ++InsertPos;
2704
2705 // Update the terminator of the previous block.
2706 if (ChainBB == *FunctionChain.begin())
2707 continue;
2708 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2709
2710 // FIXME: It would be awesome of updateTerminator would just return rather
2711 // than assert when the branch cannot be analyzed in order to remove this
2712 // boiler plate.
2713 Cond.clear();
2714 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2715
2716 #ifndef NDEBUG
2717 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2718 // Given the exact block placement we chose, we may actually not _need_ to
2719 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2720 // do that at this point is a bug.
2721 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2722 !PrevBB->canFallThrough()) &&
2723 "Unexpected block with un-analyzable fallthrough!");
2724 Cond.clear();
2725 TBB = FBB = nullptr;
2726 }
2727 #endif
2728
2729 // The "PrevBB" is not yet updated to reflect current code layout, so,
2730 // o. it may fall-through to a block without explicit "goto" instruction
2731 // before layout, and no longer fall-through it after layout; or
2732 // o. just opposite.
2733 //
2734 // analyzeBranch() may return erroneous value for FBB when these two
2735 // situations take place. For the first scenario FBB is mistakenly set NULL;
2736 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2737 // mistakenly pointing to "*BI".
2738 // Thus, if the future change needs to use FBB before the layout is set, it
2739 // has to correct FBB first by using the code similar to the following:
2740 //
2741 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2742 // PrevBB->updateTerminator();
2743 // Cond.clear();
2744 // TBB = FBB = nullptr;
2745 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2746 // // FIXME: This should never take place.
2747 // TBB = FBB = nullptr;
2748 // }
2749 // }
2750 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond))
2751 PrevBB->updateTerminator();
2752 }
2753
2754 // Fixup the last block.
2755 Cond.clear();
2756 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2757 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond))
2758 F->back().updateTerminator();
2759
2760 BlockWorkList.clear();
2761 EHPadWorkList.clear();
2762 }
2763
optimizeBranches()2764 void MachineBlockPlacement::optimizeBranches() {
2765 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2766 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
2767
2768 // Now that all the basic blocks in the chain have the proper layout,
2769 // make a final call to AnalyzeBranch with AllowModify set.
2770 // Indeed, the target may be able to optimize the branches in a way we
2771 // cannot because all branches may not be analyzable.
2772 // E.g., the target may be able to remove an unconditional branch to
2773 // a fallthrough when it occurs after predicated terminators.
2774 for (MachineBasicBlock *ChainBB : FunctionChain) {
2775 Cond.clear();
2776 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch.
2777 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2778 // If PrevBB has a two-way branch, try to re-order the branches
2779 // such that we branch to the successor with higher probability first.
2780 if (TBB && !Cond.empty() && FBB &&
2781 MBPI->getEdgeProbability(ChainBB, FBB) >
2782 MBPI->getEdgeProbability(ChainBB, TBB) &&
2783 !TII->reverseBranchCondition(Cond)) {
2784 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2785 << getBlockName(ChainBB) << "\n");
2786 LLVM_DEBUG(dbgs() << " Edge probability: "
2787 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2788 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2789 DebugLoc dl; // FIXME: this is nowhere
2790 TII->removeBranch(*ChainBB);
2791 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2792 ChainBB->updateTerminator();
2793 }
2794 }
2795 }
2796 }
2797
alignBlocks()2798 void MachineBlockPlacement::alignBlocks() {
2799 // Walk through the backedges of the function now that we have fully laid out
2800 // the basic blocks and align the destination of each backedge. We don't rely
2801 // exclusively on the loop info here so that we can align backedges in
2802 // unnatural CFGs and backedges that were introduced purely because of the
2803 // loop rotations done during this layout pass.
2804 if (F->getFunction().hasMinSize() ||
2805 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2806 return;
2807 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2808 if (FunctionChain.begin() == FunctionChain.end())
2809 return; // Empty chain.
2810
2811 const BranchProbability ColdProb(1, 5); // 20%
2812 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2813 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2814 for (MachineBasicBlock *ChainBB : FunctionChain) {
2815 if (ChainBB == *FunctionChain.begin())
2816 continue;
2817
2818 // Don't align non-looping basic blocks. These are unlikely to execute
2819 // enough times to matter in practice. Note that we'll still handle
2820 // unnatural CFGs inside of a natural outer loop (the common case) and
2821 // rotated loops.
2822 MachineLoop *L = MLI->getLoopFor(ChainBB);
2823 if (!L)
2824 continue;
2825
2826 const Align Align = TLI->getPrefLoopAlignment(L);
2827 if (Align == 1)
2828 continue; // Don't care about loop alignment.
2829
2830 // If the block is cold relative to the function entry don't waste space
2831 // aligning it.
2832 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2833 if (Freq < WeightedEntryFreq)
2834 continue;
2835
2836 // If the block is cold relative to its loop header, don't align it
2837 // regardless of what edges into the block exist.
2838 MachineBasicBlock *LoopHeader = L->getHeader();
2839 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2840 if (Freq < (LoopHeaderFreq * ColdProb))
2841 continue;
2842
2843 // If the global profiles indicates so, don't align it.
2844 if (llvm::shouldOptimizeForSize(ChainBB, PSI, &MBFI->getMBFI()) &&
2845 !TLI->alignLoopsWithOptSize())
2846 continue;
2847
2848 // Check for the existence of a non-layout predecessor which would benefit
2849 // from aligning this block.
2850 MachineBasicBlock *LayoutPred =
2851 &*std::prev(MachineFunction::iterator(ChainBB));
2852
2853 // Force alignment if all the predecessors are jumps. We already checked
2854 // that the block isn't cold above.
2855 if (!LayoutPred->isSuccessor(ChainBB)) {
2856 ChainBB->setAlignment(Align);
2857 continue;
2858 }
2859
2860 // Align this block if the layout predecessor's edge into this block is
2861 // cold relative to the block. When this is true, other predecessors make up
2862 // all of the hot entries into the block and thus alignment is likely to be
2863 // important.
2864 BranchProbability LayoutProb =
2865 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2866 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2867 if (LayoutEdgeFreq <= (Freq * ColdProb))
2868 ChainBB->setAlignment(Align);
2869 }
2870 }
2871
2872 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2873 /// it was duplicated into its chain predecessor and removed.
2874 /// \p BB - Basic block that may be duplicated.
2875 ///
2876 /// \p LPred - Chosen layout predecessor of \p BB.
2877 /// Updated to be the chain end if LPred is removed.
2878 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2879 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2880 /// Used to identify which blocks to update predecessor
2881 /// counts.
2882 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2883 /// chosen in the given order due to unnatural CFG
2884 /// only needed if \p BB is removed and
2885 /// \p PrevUnplacedBlockIt pointed to \p BB.
2886 /// @return true if \p BB was removed.
repeatedlyTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * & LPred,const MachineBasicBlock * LoopHeaderBB,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt)2887 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2888 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2889 const MachineBasicBlock *LoopHeaderBB,
2890 BlockChain &Chain, BlockFilterSet *BlockFilter,
2891 MachineFunction::iterator &PrevUnplacedBlockIt) {
2892 bool Removed, DuplicatedToLPred;
2893 bool DuplicatedToOriginalLPred;
2894 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2895 PrevUnplacedBlockIt,
2896 DuplicatedToLPred);
2897 if (!Removed)
2898 return false;
2899 DuplicatedToOriginalLPred = DuplicatedToLPred;
2900 // Iteratively try to duplicate again. It can happen that a block that is
2901 // duplicated into is still small enough to be duplicated again.
2902 // No need to call markBlockSuccessors in this case, as the blocks being
2903 // duplicated from here on are already scheduled.
2904 // Note that DuplicatedToLPred always implies Removed.
2905 while (DuplicatedToLPred) {
2906 assert(Removed && "Block must have been removed to be duplicated into its "
2907 "layout predecessor.");
2908 MachineBasicBlock *DupBB, *DupPred;
2909 // The removal callback causes Chain.end() to be updated when a block is
2910 // removed. On the first pass through the loop, the chain end should be the
2911 // same as it was on function entry. On subsequent passes, because we are
2912 // duplicating the block at the end of the chain, if it is removed the
2913 // chain will have shrunk by one block.
2914 BlockChain::iterator ChainEnd = Chain.end();
2915 DupBB = *(--ChainEnd);
2916 // Now try to duplicate again.
2917 if (ChainEnd == Chain.begin())
2918 break;
2919 DupPred = *std::prev(ChainEnd);
2920 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2921 PrevUnplacedBlockIt,
2922 DuplicatedToLPred);
2923 }
2924 // If BB was duplicated into LPred, it is now scheduled. But because it was
2925 // removed, markChainSuccessors won't be called for its chain. Instead we
2926 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2927 // at the end because repeating the tail duplication can increase the number
2928 // of unscheduled predecessors.
2929 LPred = *std::prev(Chain.end());
2930 if (DuplicatedToOriginalLPred)
2931 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2932 return true;
2933 }
2934
2935 /// Tail duplicate \p BB into (some) predecessors if profitable.
2936 /// \p BB - Basic block that may be duplicated
2937 /// \p LPred - Chosen layout predecessor of \p BB
2938 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2939 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2940 /// Used to identify which blocks to update predecessor
2941 /// counts.
2942 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2943 /// chosen in the given order due to unnatural CFG
2944 /// only needed if \p BB is removed and
2945 /// \p PrevUnplacedBlockIt pointed to \p BB.
2946 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2947 /// only be true if the block was removed.
2948 /// \return - True if the block was duplicated into all preds and removed.
maybeTailDuplicateBlock(MachineBasicBlock * BB,MachineBasicBlock * LPred,BlockChain & Chain,BlockFilterSet * BlockFilter,MachineFunction::iterator & PrevUnplacedBlockIt,bool & DuplicatedToLPred)2949 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2950 MachineBasicBlock *BB, MachineBasicBlock *LPred,
2951 BlockChain &Chain, BlockFilterSet *BlockFilter,
2952 MachineFunction::iterator &PrevUnplacedBlockIt,
2953 bool &DuplicatedToLPred) {
2954 DuplicatedToLPred = false;
2955 if (!shouldTailDuplicate(BB))
2956 return false;
2957
2958 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
2959 << "\n");
2960
2961 // This has to be a callback because none of it can be done after
2962 // BB is deleted.
2963 bool Removed = false;
2964 auto RemovalCallback =
2965 [&](MachineBasicBlock *RemBB) {
2966 // Signal to outer function
2967 Removed = true;
2968
2969 // Conservative default.
2970 bool InWorkList = true;
2971 // Remove from the Chain and Chain Map
2972 if (BlockToChain.count(RemBB)) {
2973 BlockChain *Chain = BlockToChain[RemBB];
2974 InWorkList = Chain->UnscheduledPredecessors == 0;
2975 Chain->remove(RemBB);
2976 BlockToChain.erase(RemBB);
2977 }
2978
2979 // Handle the unplaced block iterator
2980 if (&(*PrevUnplacedBlockIt) == RemBB) {
2981 PrevUnplacedBlockIt++;
2982 }
2983
2984 // Handle the Work Lists
2985 if (InWorkList) {
2986 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
2987 if (RemBB->isEHPad())
2988 RemoveList = EHPadWorkList;
2989 RemoveList.erase(
2990 llvm::remove_if(RemoveList,
2991 [RemBB](MachineBasicBlock *BB) {
2992 return BB == RemBB;
2993 }),
2994 RemoveList.end());
2995 }
2996
2997 // Handle the filter set
2998 if (BlockFilter) {
2999 BlockFilter->remove(RemBB);
3000 }
3001
3002 // Remove the block from loop info.
3003 MLI->removeBlock(RemBB);
3004 if (RemBB == PreferredLoopExit)
3005 PreferredLoopExit = nullptr;
3006
3007 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3008 << getBlockName(RemBB) << "\n");
3009 };
3010 auto RemovalCallbackRef =
3011 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3012
3013 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3014 bool IsSimple = TailDup.isSimpleBB(BB);
3015 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred,
3016 &DuplicatedPreds, &RemovalCallbackRef);
3017
3018 // Update UnscheduledPredecessors to reflect tail-duplication.
3019 DuplicatedToLPred = false;
3020 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3021 // We're only looking for unscheduled predecessors that match the filter.
3022 BlockChain* PredChain = BlockToChain[Pred];
3023 if (Pred == LPred)
3024 DuplicatedToLPred = true;
3025 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3026 || PredChain == &Chain)
3027 continue;
3028 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3029 if (BlockFilter && !BlockFilter->count(NewSucc))
3030 continue;
3031 BlockChain *NewChain = BlockToChain[NewSucc];
3032 if (NewChain != &Chain && NewChain != PredChain)
3033 NewChain->UnscheduledPredecessors++;
3034 }
3035 }
3036 return Removed;
3037 }
3038
runOnMachineFunction(MachineFunction & MF)3039 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3040 if (skipFunction(MF.getFunction()))
3041 return false;
3042
3043 // Check for single-block functions and skip them.
3044 if (std::next(MF.begin()) == MF.end())
3045 return false;
3046
3047 F = &MF;
3048 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3049 MBFI = std::make_unique<BranchFolder::MBFIWrapper>(
3050 getAnalysis<MachineBlockFrequencyInfo>());
3051 MLI = &getAnalysis<MachineLoopInfo>();
3052 TII = MF.getSubtarget().getInstrInfo();
3053 TLI = MF.getSubtarget().getTargetLowering();
3054 MPDT = nullptr;
3055 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3056
3057 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3058 // there are no MachineLoops.
3059 PreferredLoopExit = nullptr;
3060
3061 assert(BlockToChain.empty() &&
3062 "BlockToChain map should be empty before starting placement.");
3063 assert(ComputedEdges.empty() &&
3064 "Computed Edge map should be empty before starting placement.");
3065
3066 unsigned TailDupSize = TailDupPlacementThreshold;
3067 // If only the aggressive threshold is explicitly set, use it.
3068 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3069 TailDupPlacementThreshold.getNumOccurrences() == 0)
3070 TailDupSize = TailDupPlacementAggressiveThreshold;
3071
3072 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3073 // For aggressive optimization, we can adjust some thresholds to be less
3074 // conservative.
3075 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3076 // At O3 we should be more willing to copy blocks for tail duplication. This
3077 // increases size pressure, so we only do it at O3
3078 // Do this unless only the regular threshold is explicitly set.
3079 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3080 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3081 TailDupSize = TailDupPlacementAggressiveThreshold;
3082 }
3083
3084 if (allowTailDupPlacement()) {
3085 MPDT = &getAnalysis<MachinePostDominatorTree>();
3086 bool OptForSize = MF.getFunction().hasOptSize() ||
3087 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3088 if (OptForSize)
3089 TailDupSize = 1;
3090 bool PreRegAlloc = false;
3091 TailDup.initMF(MF, PreRegAlloc, MBPI, &MBFI->getMBFI(), PSI,
3092 /* LayoutMode */ true, TailDupSize);
3093 precomputeTriangleChains();
3094 }
3095
3096 buildCFGChains();
3097
3098 // Changing the layout can create new tail merging opportunities.
3099 // TailMerge can create jump into if branches that make CFG irreducible for
3100 // HW that requires structured CFG.
3101 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3102 PassConfig->getEnableTailMerge() &&
3103 BranchFoldPlacement;
3104 // No tail merging opportunities if the block number is less than four.
3105 if (MF.size() > 3 && EnableTailMerge) {
3106 unsigned TailMergeSize = TailDupSize + 1;
3107 BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI,
3108 *MBPI, PSI, TailMergeSize);
3109
3110 auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
3111 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(),
3112 MMIWP ? &MMIWP->getMMI() : nullptr, MLI,
3113 /*AfterPlacement=*/true)) {
3114 // Redo the layout if tail merging creates/removes/moves blocks.
3115 BlockToChain.clear();
3116 ComputedEdges.clear();
3117 // Must redo the post-dominator tree if blocks were changed.
3118 if (MPDT)
3119 MPDT->runOnMachineFunction(MF);
3120 ChainAllocator.DestroyAll();
3121 buildCFGChains();
3122 }
3123 }
3124
3125 optimizeBranches();
3126 alignBlocks();
3127
3128 BlockToChain.clear();
3129 ComputedEdges.clear();
3130 ChainAllocator.DestroyAll();
3131
3132 if (AlignAllBlock)
3133 // Align all of the blocks in the function to a specific alignment.
3134 for (MachineBasicBlock &MBB : MF)
3135 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3136 else if (AlignAllNonFallThruBlocks) {
3137 // Align all of the blocks that have no fall-through predecessors to a
3138 // specific alignment.
3139 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3140 auto LayoutPred = std::prev(MBI);
3141 if (!LayoutPred->isSuccessor(&*MBI))
3142 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3143 }
3144 }
3145 if (ViewBlockLayoutWithBFI != GVDT_None &&
3146 (ViewBlockFreqFuncName.empty() ||
3147 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3148 MBFI->view("MBP." + MF.getName(), false);
3149 }
3150
3151
3152 // We always return true as we have no way to track whether the final order
3153 // differs from the original order.
3154 return true;
3155 }
3156
3157 namespace {
3158
3159 /// A pass to compute block placement statistics.
3160 ///
3161 /// A separate pass to compute interesting statistics for evaluating block
3162 /// placement. This is separate from the actual placement pass so that they can
3163 /// be computed in the absence of any placement transformations or when using
3164 /// alternative placement strategies.
3165 class MachineBlockPlacementStats : public MachineFunctionPass {
3166 /// A handle to the branch probability pass.
3167 const MachineBranchProbabilityInfo *MBPI;
3168
3169 /// A handle to the function-wide block frequency pass.
3170 const MachineBlockFrequencyInfo *MBFI;
3171
3172 public:
3173 static char ID; // Pass identification, replacement for typeid
3174
MachineBlockPlacementStats()3175 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3176 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3177 }
3178
3179 bool runOnMachineFunction(MachineFunction &F) override;
3180
getAnalysisUsage(AnalysisUsage & AU) const3181 void getAnalysisUsage(AnalysisUsage &AU) const override {
3182 AU.addRequired<MachineBranchProbabilityInfo>();
3183 AU.addRequired<MachineBlockFrequencyInfo>();
3184 AU.setPreservesAll();
3185 MachineFunctionPass::getAnalysisUsage(AU);
3186 }
3187 };
3188
3189 } // end anonymous namespace
3190
3191 char MachineBlockPlacementStats::ID = 0;
3192
3193 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3194
3195 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3196 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)3197 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3198 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3199 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3200 "Basic Block Placement Stats", false, false)
3201
3202 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3203 // Check for single-block functions and skip them.
3204 if (std::next(F.begin()) == F.end())
3205 return false;
3206
3207 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3208 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3209
3210 for (MachineBasicBlock &MBB : F) {
3211 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3212 Statistic &NumBranches =
3213 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3214 Statistic &BranchTakenFreq =
3215 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3216 for (MachineBasicBlock *Succ : MBB.successors()) {
3217 // Skip if this successor is a fallthrough.
3218 if (MBB.isLayoutSuccessor(Succ))
3219 continue;
3220
3221 BlockFrequency EdgeFreq =
3222 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3223 ++NumBranches;
3224 BranchTakenFreq += EdgeFreq.getFrequency();
3225 }
3226 }
3227
3228 return false;
3229 }
3230