• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetInstrInfo.h"
14 #include "llvm/CodeGen/MachineFrameInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/MachineScheduler.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetFrameLowering.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetRegisterInfo.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCInstrItineraries.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 
36 using namespace llvm;
37 
38 static cl::opt<bool> DisableHazardRecognizer(
39   "disable-sched-hazard", cl::Hidden, cl::init(false),
40   cl::desc("Disable hazard detection during preRA scheduling"));
41 
~TargetInstrInfo()42 TargetInstrInfo::~TargetInstrInfo() {
43 }
44 
45 const TargetRegisterClass*
getRegClass(const MCInstrDesc & MCID,unsigned OpNum,const TargetRegisterInfo * TRI,const MachineFunction & MF) const46 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
47                              const TargetRegisterInfo *TRI,
48                              const MachineFunction &MF) const {
49   if (OpNum >= MCID.getNumOperands())
50     return nullptr;
51 
52   short RegClass = MCID.OpInfo[OpNum].RegClass;
53   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
54     return TRI->getPointerRegClass(MF, RegClass);
55 
56   // Instructions like INSERT_SUBREG do not have fixed register classes.
57   if (RegClass < 0)
58     return nullptr;
59 
60   // Otherwise just look it up normally.
61   return TRI->getRegClass(RegClass);
62 }
63 
64 /// insertNoop - Insert a noop into the instruction stream at the specified
65 /// point.
insertNoop(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI) const66 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
67                                  MachineBasicBlock::iterator MI) const {
68   llvm_unreachable("Target didn't implement insertNoop!");
69 }
70 
isAsmComment(const char * Str,const MCAsmInfo & MAI)71 static bool isAsmComment(const char *Str, const MCAsmInfo &MAI) {
72   return strncmp(Str, MAI.getCommentString().data(),
73                  MAI.getCommentString().size()) == 0;
74 }
75 
76 /// Measure the specified inline asm to determine an approximation of its
77 /// length.
78 /// Comments (which run till the next SeparatorString or newline) do not
79 /// count as an instruction.
80 /// Any other non-whitespace text is considered an instruction, with
81 /// multiple instructions separated by SeparatorString or newlines.
82 /// Variable-length instructions are not handled here; this function
83 /// may be overloaded in the target code to do that.
84 /// We implement a special case of the .space directive which takes only a
85 /// single integer argument in base 10 that is the size in bytes. This is a
86 /// restricted form of the GAS directive in that we only interpret
87 /// simple--i.e. not a logical or arithmetic expression--size values without
88 /// the optional fill value. This is primarily used for creating arbitrary
89 /// sized inline asm blocks for testing purposes.
getInlineAsmLength(const char * Str,const MCAsmInfo & MAI,const TargetSubtargetInfo * STI) const90 unsigned TargetInstrInfo::getInlineAsmLength(
91   const char *Str,
92   const MCAsmInfo &MAI, const TargetSubtargetInfo *STI) const {
93   // Count the number of instructions in the asm.
94   bool AtInsnStart = true;
95   unsigned Length = 0;
96   const unsigned MaxInstLength = MAI.getMaxInstLength(STI);
97   for (; *Str; ++Str) {
98     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
99                                 strlen(MAI.getSeparatorString())) == 0) {
100       AtInsnStart = true;
101     } else if (isAsmComment(Str, MAI)) {
102       // Stop counting as an instruction after a comment until the next
103       // separator.
104       AtInsnStart = false;
105     }
106 
107     if (AtInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
108       unsigned AddLength = MaxInstLength;
109       if (strncmp(Str, ".space", 6) == 0) {
110         char *EStr;
111         int SpaceSize;
112         SpaceSize = strtol(Str + 6, &EStr, 10);
113         SpaceSize = SpaceSize < 0 ? 0 : SpaceSize;
114         while (*EStr != '\n' && std::isspace(static_cast<unsigned char>(*EStr)))
115           ++EStr;
116         if (*EStr == '\0' || *EStr == '\n' ||
117             isAsmComment(EStr, MAI)) // Successfully parsed .space argument
118           AddLength = SpaceSize;
119       }
120       Length += AddLength;
121       AtInsnStart = false;
122     }
123   }
124 
125   return Length;
126 }
127 
128 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
129 /// after it, replacing it with an unconditional branch to NewDest.
130 void
ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,MachineBasicBlock * NewDest) const131 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
132                                          MachineBasicBlock *NewDest) const {
133   MachineBasicBlock *MBB = Tail->getParent();
134 
135   // Remove all the old successors of MBB from the CFG.
136   while (!MBB->succ_empty())
137     MBB->removeSuccessor(MBB->succ_begin());
138 
139   // Save off the debug loc before erasing the instruction.
140   DebugLoc DL = Tail->getDebugLoc();
141 
142   // Update call site info and remove all the dead instructions
143   // from the end of MBB.
144   while (Tail != MBB->end()) {
145     auto MI = Tail++;
146     if (MI->isCall())
147       MBB->getParent()->eraseCallSiteInfo(&*MI);
148     MBB->erase(MI);
149   }
150 
151   // If MBB isn't immediately before MBB, insert a branch to it.
152   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
153     insertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(), DL);
154   MBB->addSuccessor(NewDest);
155 }
156 
commuteInstructionImpl(MachineInstr & MI,bool NewMI,unsigned Idx1,unsigned Idx2) const157 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr &MI,
158                                                       bool NewMI, unsigned Idx1,
159                                                       unsigned Idx2) const {
160   const MCInstrDesc &MCID = MI.getDesc();
161   bool HasDef = MCID.getNumDefs();
162   if (HasDef && !MI.getOperand(0).isReg())
163     // No idea how to commute this instruction. Target should implement its own.
164     return nullptr;
165 
166   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
167   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
168   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
169          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
170          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
171   assert(MI.getOperand(Idx1).isReg() && MI.getOperand(Idx2).isReg() &&
172          "This only knows how to commute register operands so far");
173 
174   Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register();
175   Register Reg1 = MI.getOperand(Idx1).getReg();
176   Register Reg2 = MI.getOperand(Idx2).getReg();
177   unsigned SubReg0 = HasDef ? MI.getOperand(0).getSubReg() : 0;
178   unsigned SubReg1 = MI.getOperand(Idx1).getSubReg();
179   unsigned SubReg2 = MI.getOperand(Idx2).getSubReg();
180   bool Reg1IsKill = MI.getOperand(Idx1).isKill();
181   bool Reg2IsKill = MI.getOperand(Idx2).isKill();
182   bool Reg1IsUndef = MI.getOperand(Idx1).isUndef();
183   bool Reg2IsUndef = MI.getOperand(Idx2).isUndef();
184   bool Reg1IsInternal = MI.getOperand(Idx1).isInternalRead();
185   bool Reg2IsInternal = MI.getOperand(Idx2).isInternalRead();
186   // Avoid calling isRenamable for virtual registers since we assert that
187   // renamable property is only queried/set for physical registers.
188   bool Reg1IsRenamable = Register::isPhysicalRegister(Reg1)
189                              ? MI.getOperand(Idx1).isRenamable()
190                              : false;
191   bool Reg2IsRenamable = Register::isPhysicalRegister(Reg2)
192                              ? MI.getOperand(Idx2).isRenamable()
193                              : false;
194   // If destination is tied to either of the commuted source register, then
195   // it must be updated.
196   if (HasDef && Reg0 == Reg1 &&
197       MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
198     Reg2IsKill = false;
199     Reg0 = Reg2;
200     SubReg0 = SubReg2;
201   } else if (HasDef && Reg0 == Reg2 &&
202              MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
203     Reg1IsKill = false;
204     Reg0 = Reg1;
205     SubReg0 = SubReg1;
206   }
207 
208   MachineInstr *CommutedMI = nullptr;
209   if (NewMI) {
210     // Create a new instruction.
211     MachineFunction &MF = *MI.getMF();
212     CommutedMI = MF.CloneMachineInstr(&MI);
213   } else {
214     CommutedMI = &MI;
215   }
216 
217   if (HasDef) {
218     CommutedMI->getOperand(0).setReg(Reg0);
219     CommutedMI->getOperand(0).setSubReg(SubReg0);
220   }
221   CommutedMI->getOperand(Idx2).setReg(Reg1);
222   CommutedMI->getOperand(Idx1).setReg(Reg2);
223   CommutedMI->getOperand(Idx2).setSubReg(SubReg1);
224   CommutedMI->getOperand(Idx1).setSubReg(SubReg2);
225   CommutedMI->getOperand(Idx2).setIsKill(Reg1IsKill);
226   CommutedMI->getOperand(Idx1).setIsKill(Reg2IsKill);
227   CommutedMI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
228   CommutedMI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
229   CommutedMI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
230   CommutedMI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
231   // Avoid calling setIsRenamable for virtual registers since we assert that
232   // renamable property is only queried/set for physical registers.
233   if (Register::isPhysicalRegister(Reg1))
234     CommutedMI->getOperand(Idx2).setIsRenamable(Reg1IsRenamable);
235   if (Register::isPhysicalRegister(Reg2))
236     CommutedMI->getOperand(Idx1).setIsRenamable(Reg2IsRenamable);
237   return CommutedMI;
238 }
239 
commuteInstruction(MachineInstr & MI,bool NewMI,unsigned OpIdx1,unsigned OpIdx2) const240 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr &MI, bool NewMI,
241                                                   unsigned OpIdx1,
242                                                   unsigned OpIdx2) const {
243   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
244   // any commutable operand, which is done in findCommutedOpIndices() method
245   // called below.
246   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
247       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
248     assert(MI.isCommutable() &&
249            "Precondition violation: MI must be commutable.");
250     return nullptr;
251   }
252   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
253 }
254 
fixCommutedOpIndices(unsigned & ResultIdx1,unsigned & ResultIdx2,unsigned CommutableOpIdx1,unsigned CommutableOpIdx2)255 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
256                                            unsigned &ResultIdx2,
257                                            unsigned CommutableOpIdx1,
258                                            unsigned CommutableOpIdx2) {
259   if (ResultIdx1 == CommuteAnyOperandIndex &&
260       ResultIdx2 == CommuteAnyOperandIndex) {
261     ResultIdx1 = CommutableOpIdx1;
262     ResultIdx2 = CommutableOpIdx2;
263   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
264     if (ResultIdx2 == CommutableOpIdx1)
265       ResultIdx1 = CommutableOpIdx2;
266     else if (ResultIdx2 == CommutableOpIdx2)
267       ResultIdx1 = CommutableOpIdx1;
268     else
269       return false;
270   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
271     if (ResultIdx1 == CommutableOpIdx1)
272       ResultIdx2 = CommutableOpIdx2;
273     else if (ResultIdx1 == CommutableOpIdx2)
274       ResultIdx2 = CommutableOpIdx1;
275     else
276       return false;
277   } else
278     // Check that the result operand indices match the given commutable
279     // operand indices.
280     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
281            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
282 
283   return true;
284 }
285 
findCommutedOpIndices(const MachineInstr & MI,unsigned & SrcOpIdx1,unsigned & SrcOpIdx2) const286 bool TargetInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
287                                             unsigned &SrcOpIdx1,
288                                             unsigned &SrcOpIdx2) const {
289   assert(!MI.isBundle() &&
290          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
291 
292   const MCInstrDesc &MCID = MI.getDesc();
293   if (!MCID.isCommutable())
294     return false;
295 
296   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
297   // is not true, then the target must implement this.
298   unsigned CommutableOpIdx1 = MCID.getNumDefs();
299   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
300   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
301                             CommutableOpIdx1, CommutableOpIdx2))
302     return false;
303 
304   if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg())
305     // No idea.
306     return false;
307   return true;
308 }
309 
isUnpredicatedTerminator(const MachineInstr & MI) const310 bool TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr &MI) const {
311   if (!MI.isTerminator()) return false;
312 
313   // Conditional branch is a special case.
314   if (MI.isBranch() && !MI.isBarrier())
315     return true;
316   if (!MI.isPredicable())
317     return true;
318   return !isPredicated(MI);
319 }
320 
PredicateInstruction(MachineInstr & MI,ArrayRef<MachineOperand> Pred) const321 bool TargetInstrInfo::PredicateInstruction(
322     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
323   bool MadeChange = false;
324 
325   assert(!MI.isBundle() &&
326          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
327 
328   const MCInstrDesc &MCID = MI.getDesc();
329   if (!MI.isPredicable())
330     return false;
331 
332   for (unsigned j = 0, i = 0, e = MI.getNumOperands(); i != e; ++i) {
333     if (MCID.OpInfo[i].isPredicate()) {
334       MachineOperand &MO = MI.getOperand(i);
335       if (MO.isReg()) {
336         MO.setReg(Pred[j].getReg());
337         MadeChange = true;
338       } else if (MO.isImm()) {
339         MO.setImm(Pred[j].getImm());
340         MadeChange = true;
341       } else if (MO.isMBB()) {
342         MO.setMBB(Pred[j].getMBB());
343         MadeChange = true;
344       }
345       ++j;
346     }
347   }
348   return MadeChange;
349 }
350 
hasLoadFromStackSlot(const MachineInstr & MI,SmallVectorImpl<const MachineMemOperand * > & Accesses) const351 bool TargetInstrInfo::hasLoadFromStackSlot(
352     const MachineInstr &MI,
353     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
354   size_t StartSize = Accesses.size();
355   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
356                                   oe = MI.memoperands_end();
357        o != oe; ++o) {
358     if ((*o)->isLoad() &&
359         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
360       Accesses.push_back(*o);
361   }
362   return Accesses.size() != StartSize;
363 }
364 
hasStoreToStackSlot(const MachineInstr & MI,SmallVectorImpl<const MachineMemOperand * > & Accesses) const365 bool TargetInstrInfo::hasStoreToStackSlot(
366     const MachineInstr &MI,
367     SmallVectorImpl<const MachineMemOperand *> &Accesses) const {
368   size_t StartSize = Accesses.size();
369   for (MachineInstr::mmo_iterator o = MI.memoperands_begin(),
370                                   oe = MI.memoperands_end();
371        o != oe; ++o) {
372     if ((*o)->isStore() &&
373         dyn_cast_or_null<FixedStackPseudoSourceValue>((*o)->getPseudoValue()))
374       Accesses.push_back(*o);
375   }
376   return Accesses.size() != StartSize;
377 }
378 
getStackSlotRange(const TargetRegisterClass * RC,unsigned SubIdx,unsigned & Size,unsigned & Offset,const MachineFunction & MF) const379 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
380                                         unsigned SubIdx, unsigned &Size,
381                                         unsigned &Offset,
382                                         const MachineFunction &MF) const {
383   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
384   if (!SubIdx) {
385     Size = TRI->getSpillSize(*RC);
386     Offset = 0;
387     return true;
388   }
389   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
390   // Convert bit size to byte size.
391   if (BitSize % 8)
392     return false;
393 
394   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
395   if (BitOffset < 0 || BitOffset % 8)
396     return false;
397 
398   Size = BitSize / 8;
399   Offset = (unsigned)BitOffset / 8;
400 
401   assert(TRI->getSpillSize(*RC) >= (Offset + Size) && "bad subregister range");
402 
403   if (!MF.getDataLayout().isLittleEndian()) {
404     Offset = TRI->getSpillSize(*RC) - (Offset + Size);
405   }
406   return true;
407 }
408 
reMaterialize(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,unsigned DestReg,unsigned SubIdx,const MachineInstr & Orig,const TargetRegisterInfo & TRI) const409 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
410                                     MachineBasicBlock::iterator I,
411                                     unsigned DestReg, unsigned SubIdx,
412                                     const MachineInstr &Orig,
413                                     const TargetRegisterInfo &TRI) const {
414   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
415   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
416   MBB.insert(I, MI);
417 }
418 
produceSameValue(const MachineInstr & MI0,const MachineInstr & MI1,const MachineRegisterInfo * MRI) const419 bool TargetInstrInfo::produceSameValue(const MachineInstr &MI0,
420                                        const MachineInstr &MI1,
421                                        const MachineRegisterInfo *MRI) const {
422   return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
423 }
424 
duplicate(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig) const425 MachineInstr &TargetInstrInfo::duplicate(MachineBasicBlock &MBB,
426     MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) const {
427   assert(!Orig.isNotDuplicable() && "Instruction cannot be duplicated");
428   MachineFunction &MF = *MBB.getParent();
429   return MF.CloneMachineInstrBundle(MBB, InsertBefore, Orig);
430 }
431 
432 // If the COPY instruction in MI can be folded to a stack operation, return
433 // the register class to use.
canFoldCopy(const MachineInstr & MI,unsigned FoldIdx)434 static const TargetRegisterClass *canFoldCopy(const MachineInstr &MI,
435                                               unsigned FoldIdx) {
436   assert(MI.isCopy() && "MI must be a COPY instruction");
437   if (MI.getNumOperands() != 2)
438     return nullptr;
439   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
440 
441   const MachineOperand &FoldOp = MI.getOperand(FoldIdx);
442   const MachineOperand &LiveOp = MI.getOperand(1 - FoldIdx);
443 
444   if (FoldOp.getSubReg() || LiveOp.getSubReg())
445     return nullptr;
446 
447   Register FoldReg = FoldOp.getReg();
448   Register LiveReg = LiveOp.getReg();
449 
450   assert(Register::isVirtualRegister(FoldReg) && "Cannot fold physregs");
451 
452   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
453   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
454 
455   if (Register::isPhysicalRegister(LiveOp.getReg()))
456     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
457 
458   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
459     return RC;
460 
461   // FIXME: Allow folding when register classes are memory compatible.
462   return nullptr;
463 }
464 
getNoop(MCInst & NopInst) const465 void TargetInstrInfo::getNoop(MCInst &NopInst) const {
466   llvm_unreachable("Not implemented");
467 }
468 
foldPatchpoint(MachineFunction & MF,MachineInstr & MI,ArrayRef<unsigned> Ops,int FrameIndex,const TargetInstrInfo & TII)469 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr &MI,
470                                     ArrayRef<unsigned> Ops, int FrameIndex,
471                                     const TargetInstrInfo &TII) {
472   unsigned StartIdx = 0;
473   switch (MI.getOpcode()) {
474   case TargetOpcode::STACKMAP: {
475     // StackMapLiveValues are foldable
476     StartIdx = StackMapOpers(&MI).getVarIdx();
477     break;
478   }
479   case TargetOpcode::PATCHPOINT: {
480     // For PatchPoint, the call args are not foldable (even if reported in the
481     // stackmap e.g. via anyregcc).
482     StartIdx = PatchPointOpers(&MI).getVarIdx();
483     break;
484   }
485   case TargetOpcode::STATEPOINT: {
486     // For statepoints, fold deopt and gc arguments, but not call arguments.
487     StartIdx = StatepointOpers(&MI).getVarIdx();
488     break;
489   }
490   default:
491     llvm_unreachable("unexpected stackmap opcode");
492   }
493 
494   // Return false if any operands requested for folding are not foldable (not
495   // part of the stackmap's live values).
496   for (unsigned Op : Ops) {
497     if (Op < StartIdx)
498       return nullptr;
499   }
500 
501   MachineInstr *NewMI =
502       MF.CreateMachineInstr(TII.get(MI.getOpcode()), MI.getDebugLoc(), true);
503   MachineInstrBuilder MIB(MF, NewMI);
504 
505   // No need to fold return, the meta data, and function arguments
506   for (unsigned i = 0; i < StartIdx; ++i)
507     MIB.add(MI.getOperand(i));
508 
509   for (unsigned i = StartIdx; i < MI.getNumOperands(); ++i) {
510     MachineOperand &MO = MI.getOperand(i);
511     if (is_contained(Ops, i)) {
512       unsigned SpillSize;
513       unsigned SpillOffset;
514       // Compute the spill slot size and offset.
515       const TargetRegisterClass *RC =
516         MF.getRegInfo().getRegClass(MO.getReg());
517       bool Valid =
518           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
519       if (!Valid)
520         report_fatal_error("cannot spill patchpoint subregister operand");
521       MIB.addImm(StackMaps::IndirectMemRefOp);
522       MIB.addImm(SpillSize);
523       MIB.addFrameIndex(FrameIndex);
524       MIB.addImm(SpillOffset);
525     }
526     else
527       MIB.add(MO);
528   }
529   return NewMI;
530 }
531 
foldMemoryOperand(MachineInstr & MI,ArrayRef<unsigned> Ops,int FI,LiveIntervals * LIS,VirtRegMap * VRM) const532 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
533                                                  ArrayRef<unsigned> Ops, int FI,
534                                                  LiveIntervals *LIS,
535                                                  VirtRegMap *VRM) const {
536   auto Flags = MachineMemOperand::MONone;
537   for (unsigned OpIdx : Ops)
538     Flags |= MI.getOperand(OpIdx).isDef() ? MachineMemOperand::MOStore
539                                           : MachineMemOperand::MOLoad;
540 
541   MachineBasicBlock *MBB = MI.getParent();
542   assert(MBB && "foldMemoryOperand needs an inserted instruction");
543   MachineFunction &MF = *MBB->getParent();
544 
545   // If we're not folding a load into a subreg, the size of the load is the
546   // size of the spill slot. But if we are, we need to figure out what the
547   // actual load size is.
548   int64_t MemSize = 0;
549   const MachineFrameInfo &MFI = MF.getFrameInfo();
550   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
551 
552   if (Flags & MachineMemOperand::MOStore) {
553     MemSize = MFI.getObjectSize(FI);
554   } else {
555     for (unsigned OpIdx : Ops) {
556       int64_t OpSize = MFI.getObjectSize(FI);
557 
558       if (auto SubReg = MI.getOperand(OpIdx).getSubReg()) {
559         unsigned SubRegSize = TRI->getSubRegIdxSize(SubReg);
560         if (SubRegSize > 0 && !(SubRegSize % 8))
561           OpSize = SubRegSize / 8;
562       }
563 
564       MemSize = std::max(MemSize, OpSize);
565     }
566   }
567 
568   assert(MemSize && "Did not expect a zero-sized stack slot");
569 
570   MachineInstr *NewMI = nullptr;
571 
572   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
573       MI.getOpcode() == TargetOpcode::PATCHPOINT ||
574       MI.getOpcode() == TargetOpcode::STATEPOINT) {
575     // Fold stackmap/patchpoint.
576     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
577     if (NewMI)
578       MBB->insert(MI, NewMI);
579   } else {
580     // Ask the target to do the actual folding.
581     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI, LIS, VRM);
582   }
583 
584   if (NewMI) {
585     NewMI->setMemRefs(MF, MI.memoperands());
586     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
587     assert((!(Flags & MachineMemOperand::MOStore) ||
588             NewMI->mayStore()) &&
589            "Folded a def to a non-store!");
590     assert((!(Flags & MachineMemOperand::MOLoad) ||
591             NewMI->mayLoad()) &&
592            "Folded a use to a non-load!");
593     assert(MFI.getObjectOffset(FI) != -1);
594     MachineMemOperand *MMO = MF.getMachineMemOperand(
595         MachinePointerInfo::getFixedStack(MF, FI), Flags, MemSize,
596         MFI.getObjectAlignment(FI));
597     NewMI->addMemOperand(MF, MMO);
598 
599     return NewMI;
600   }
601 
602   // Straight COPY may fold as load/store.
603   if (!MI.isCopy() || Ops.size() != 1)
604     return nullptr;
605 
606   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
607   if (!RC)
608     return nullptr;
609 
610   const MachineOperand &MO = MI.getOperand(1 - Ops[0]);
611   MachineBasicBlock::iterator Pos = MI;
612 
613   if (Flags == MachineMemOperand::MOStore)
614     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
615   else
616     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
617   return &*--Pos;
618 }
619 
foldMemoryOperand(MachineInstr & MI,ArrayRef<unsigned> Ops,MachineInstr & LoadMI,LiveIntervals * LIS) const620 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineInstr &MI,
621                                                  ArrayRef<unsigned> Ops,
622                                                  MachineInstr &LoadMI,
623                                                  LiveIntervals *LIS) const {
624   assert(LoadMI.canFoldAsLoad() && "LoadMI isn't foldable!");
625 #ifndef NDEBUG
626   for (unsigned OpIdx : Ops)
627     assert(MI.getOperand(OpIdx).isUse() && "Folding load into def!");
628 #endif
629 
630   MachineBasicBlock &MBB = *MI.getParent();
631   MachineFunction &MF = *MBB.getParent();
632 
633   // Ask the target to do the actual folding.
634   MachineInstr *NewMI = nullptr;
635   int FrameIndex = 0;
636 
637   if ((MI.getOpcode() == TargetOpcode::STACKMAP ||
638        MI.getOpcode() == TargetOpcode::PATCHPOINT ||
639        MI.getOpcode() == TargetOpcode::STATEPOINT) &&
640       isLoadFromStackSlot(LoadMI, FrameIndex)) {
641     // Fold stackmap/patchpoint.
642     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
643     if (NewMI)
644       NewMI = &*MBB.insert(MI, NewMI);
645   } else {
646     // Ask the target to do the actual folding.
647     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI, LIS);
648   }
649 
650   if (!NewMI)
651     return nullptr;
652 
653   // Copy the memoperands from the load to the folded instruction.
654   if (MI.memoperands_empty()) {
655     NewMI->setMemRefs(MF, LoadMI.memoperands());
656   } else {
657     // Handle the rare case of folding multiple loads.
658     NewMI->setMemRefs(MF, MI.memoperands());
659     for (MachineInstr::mmo_iterator I = LoadMI.memoperands_begin(),
660                                     E = LoadMI.memoperands_end();
661          I != E; ++I) {
662       NewMI->addMemOperand(MF, *I);
663     }
664   }
665   return NewMI;
666 }
667 
hasReassociableOperands(const MachineInstr & Inst,const MachineBasicBlock * MBB) const668 bool TargetInstrInfo::hasReassociableOperands(
669     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
670   const MachineOperand &Op1 = Inst.getOperand(1);
671   const MachineOperand &Op2 = Inst.getOperand(2);
672   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
673 
674   // We need virtual register definitions for the operands that we will
675   // reassociate.
676   MachineInstr *MI1 = nullptr;
677   MachineInstr *MI2 = nullptr;
678   if (Op1.isReg() && Register::isVirtualRegister(Op1.getReg()))
679     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
680   if (Op2.isReg() && Register::isVirtualRegister(Op2.getReg()))
681     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
682 
683   // And they need to be in the trace (otherwise, they won't have a depth).
684   return MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB;
685 }
686 
hasReassociableSibling(const MachineInstr & Inst,bool & Commuted) const687 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
688                                              bool &Commuted) const {
689   const MachineBasicBlock *MBB = Inst.getParent();
690   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
691   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
692   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
693   unsigned AssocOpcode = Inst.getOpcode();
694 
695   // If only one operand has the same opcode and it's the second source operand,
696   // the operands must be commuted.
697   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
698   if (Commuted)
699     std::swap(MI1, MI2);
700 
701   // 1. The previous instruction must be the same type as Inst.
702   // 2. The previous instruction must have virtual register definitions for its
703   //    operands in the same basic block as Inst.
704   // 3. The previous instruction's result must only be used by Inst.
705   return MI1->getOpcode() == AssocOpcode &&
706          hasReassociableOperands(*MI1, MBB) &&
707          MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg());
708 }
709 
710 // 1. The operation must be associative and commutative.
711 // 2. The instruction must have virtual register definitions for its
712 //    operands in the same basic block.
713 // 3. The instruction must have a reassociable sibling.
isReassociationCandidate(const MachineInstr & Inst,bool & Commuted) const714 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
715                                                bool &Commuted) const {
716   return isAssociativeAndCommutative(Inst) &&
717          hasReassociableOperands(Inst, Inst.getParent()) &&
718          hasReassociableSibling(Inst, Commuted);
719 }
720 
721 // The concept of the reassociation pass is that these operations can benefit
722 // from this kind of transformation:
723 //
724 // A = ? op ?
725 // B = A op X (Prev)
726 // C = B op Y (Root)
727 // -->
728 // A = ? op ?
729 // B = X op Y
730 // C = A op B
731 //
732 // breaking the dependency between A and B, allowing them to be executed in
733 // parallel (or back-to-back in a pipeline) instead of depending on each other.
734 
735 // FIXME: This has the potential to be expensive (compile time) while not
736 // improving the code at all. Some ways to limit the overhead:
737 // 1. Track successful transforms; bail out if hit rate gets too low.
738 // 2. Only enable at -O3 or some other non-default optimization level.
739 // 3. Pre-screen pattern candidates here: if an operand of the previous
740 //    instruction is known to not increase the critical path, then don't match
741 //    that pattern.
getMachineCombinerPatterns(MachineInstr & Root,SmallVectorImpl<MachineCombinerPattern> & Patterns) const742 bool TargetInstrInfo::getMachineCombinerPatterns(
743     MachineInstr &Root,
744     SmallVectorImpl<MachineCombinerPattern> &Patterns) const {
745   bool Commute;
746   if (isReassociationCandidate(Root, Commute)) {
747     // We found a sequence of instructions that may be suitable for a
748     // reassociation of operands to increase ILP. Specify each commutation
749     // possibility for the Prev instruction in the sequence and let the
750     // machine combiner decide if changing the operands is worthwhile.
751     if (Commute) {
752       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_YB);
753       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_YB);
754     } else {
755       Patterns.push_back(MachineCombinerPattern::REASSOC_AX_BY);
756       Patterns.push_back(MachineCombinerPattern::REASSOC_XA_BY);
757     }
758     return true;
759   }
760 
761   return false;
762 }
763 
764 /// Return true when a code sequence can improve loop throughput.
765 bool
isThroughputPattern(MachineCombinerPattern Pattern) const766 TargetInstrInfo::isThroughputPattern(MachineCombinerPattern Pattern) const {
767   return false;
768 }
769 
770 /// Attempt the reassociation transformation to reduce critical path length.
771 /// See the above comments before getMachineCombinerPatterns().
reassociateOps(MachineInstr & Root,MachineInstr & Prev,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstrIdxForVirtReg) const772 void TargetInstrInfo::reassociateOps(
773     MachineInstr &Root, MachineInstr &Prev,
774     MachineCombinerPattern Pattern,
775     SmallVectorImpl<MachineInstr *> &InsInstrs,
776     SmallVectorImpl<MachineInstr *> &DelInstrs,
777     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
778   MachineFunction *MF = Root.getMF();
779   MachineRegisterInfo &MRI = MF->getRegInfo();
780   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
781   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
782   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
783 
784   // This array encodes the operand index for each parameter because the
785   // operands may be commuted. Each row corresponds to a pattern value,
786   // and each column specifies the index of A, B, X, Y.
787   unsigned OpIdx[4][4] = {
788     { 1, 1, 2, 2 },
789     { 1, 2, 2, 1 },
790     { 2, 1, 1, 2 },
791     { 2, 2, 1, 1 }
792   };
793 
794   int Row;
795   switch (Pattern) {
796   case MachineCombinerPattern::REASSOC_AX_BY: Row = 0; break;
797   case MachineCombinerPattern::REASSOC_AX_YB: Row = 1; break;
798   case MachineCombinerPattern::REASSOC_XA_BY: Row = 2; break;
799   case MachineCombinerPattern::REASSOC_XA_YB: Row = 3; break;
800   default: llvm_unreachable("unexpected MachineCombinerPattern");
801   }
802 
803   MachineOperand &OpA = Prev.getOperand(OpIdx[Row][0]);
804   MachineOperand &OpB = Root.getOperand(OpIdx[Row][1]);
805   MachineOperand &OpX = Prev.getOperand(OpIdx[Row][2]);
806   MachineOperand &OpY = Root.getOperand(OpIdx[Row][3]);
807   MachineOperand &OpC = Root.getOperand(0);
808 
809   Register RegA = OpA.getReg();
810   Register RegB = OpB.getReg();
811   Register RegX = OpX.getReg();
812   Register RegY = OpY.getReg();
813   Register RegC = OpC.getReg();
814 
815   if (Register::isVirtualRegister(RegA))
816     MRI.constrainRegClass(RegA, RC);
817   if (Register::isVirtualRegister(RegB))
818     MRI.constrainRegClass(RegB, RC);
819   if (Register::isVirtualRegister(RegX))
820     MRI.constrainRegClass(RegX, RC);
821   if (Register::isVirtualRegister(RegY))
822     MRI.constrainRegClass(RegY, RC);
823   if (Register::isVirtualRegister(RegC))
824     MRI.constrainRegClass(RegC, RC);
825 
826   // Create a new virtual register for the result of (X op Y) instead of
827   // recycling RegB because the MachineCombiner's computation of the critical
828   // path requires a new register definition rather than an existing one.
829   Register NewVR = MRI.createVirtualRegister(RC);
830   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
831 
832   unsigned Opcode = Root.getOpcode();
833   bool KillA = OpA.isKill();
834   bool KillX = OpX.isKill();
835   bool KillY = OpY.isKill();
836 
837   // Create new instructions for insertion.
838   MachineInstrBuilder MIB1 =
839       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
840           .addReg(RegX, getKillRegState(KillX))
841           .addReg(RegY, getKillRegState(KillY));
842   MachineInstrBuilder MIB2 =
843       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
844           .addReg(RegA, getKillRegState(KillA))
845           .addReg(NewVR, getKillRegState(true));
846 
847   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
848 
849   // Record new instructions for insertion and old instructions for deletion.
850   InsInstrs.push_back(MIB1);
851   InsInstrs.push_back(MIB2);
852   DelInstrs.push_back(&Prev);
853   DelInstrs.push_back(&Root);
854 }
855 
genAlternativeCodeSequence(MachineInstr & Root,MachineCombinerPattern Pattern,SmallVectorImpl<MachineInstr * > & InsInstrs,SmallVectorImpl<MachineInstr * > & DelInstrs,DenseMap<unsigned,unsigned> & InstIdxForVirtReg) const856 void TargetInstrInfo::genAlternativeCodeSequence(
857     MachineInstr &Root, MachineCombinerPattern Pattern,
858     SmallVectorImpl<MachineInstr *> &InsInstrs,
859     SmallVectorImpl<MachineInstr *> &DelInstrs,
860     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
861   MachineRegisterInfo &MRI = Root.getMF()->getRegInfo();
862 
863   // Select the previous instruction in the sequence based on the input pattern.
864   MachineInstr *Prev = nullptr;
865   switch (Pattern) {
866   case MachineCombinerPattern::REASSOC_AX_BY:
867   case MachineCombinerPattern::REASSOC_XA_BY:
868     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
869     break;
870   case MachineCombinerPattern::REASSOC_AX_YB:
871   case MachineCombinerPattern::REASSOC_XA_YB:
872     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
873     break;
874   default:
875     break;
876   }
877 
878   assert(Prev && "Unknown pattern for machine combiner");
879 
880   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
881 }
882 
isReallyTriviallyReMaterializableGeneric(const MachineInstr & MI,AAResults * AA) const883 bool TargetInstrInfo::isReallyTriviallyReMaterializableGeneric(
884     const MachineInstr &MI, AAResults *AA) const {
885   const MachineFunction &MF = *MI.getMF();
886   const MachineRegisterInfo &MRI = MF.getRegInfo();
887 
888   // Remat clients assume operand 0 is the defined register.
889   if (!MI.getNumOperands() || !MI.getOperand(0).isReg())
890     return false;
891   Register DefReg = MI.getOperand(0).getReg();
892 
893   // A sub-register definition can only be rematerialized if the instruction
894   // doesn't read the other parts of the register.  Otherwise it is really a
895   // read-modify-write operation on the full virtual register which cannot be
896   // moved safely.
897   if (Register::isVirtualRegister(DefReg) && MI.getOperand(0).getSubReg() &&
898       MI.readsVirtualRegister(DefReg))
899     return false;
900 
901   // A load from a fixed stack slot can be rematerialized. This may be
902   // redundant with subsequent checks, but it's target-independent,
903   // simple, and a common case.
904   int FrameIdx = 0;
905   if (isLoadFromStackSlot(MI, FrameIdx) &&
906       MF.getFrameInfo().isImmutableObjectIndex(FrameIdx))
907     return true;
908 
909   // Avoid instructions obviously unsafe for remat.
910   if (MI.isNotDuplicable() || MI.mayStore() || MI.mayRaiseFPException() ||
911       MI.hasUnmodeledSideEffects())
912     return false;
913 
914   // Don't remat inline asm. We have no idea how expensive it is
915   // even if it's side effect free.
916   if (MI.isInlineAsm())
917     return false;
918 
919   // Avoid instructions which load from potentially varying memory.
920   if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA))
921     return false;
922 
923   // If any of the registers accessed are non-constant, conservatively assume
924   // the instruction is not rematerializable.
925   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
926     const MachineOperand &MO = MI.getOperand(i);
927     if (!MO.isReg()) continue;
928     Register Reg = MO.getReg();
929     if (Reg == 0)
930       continue;
931 
932     // Check for a well-behaved physical register.
933     if (Register::isPhysicalRegister(Reg)) {
934       if (MO.isUse()) {
935         // If the physreg has no defs anywhere, it's just an ambient register
936         // and we can freely move its uses. Alternatively, if it's allocatable,
937         // it could get allocated to something with a def during allocation.
938         if (!MRI.isConstantPhysReg(Reg))
939           return false;
940       } else {
941         // A physreg def. We can't remat it.
942         return false;
943       }
944       continue;
945     }
946 
947     // Only allow one virtual-register def.  There may be multiple defs of the
948     // same virtual register, though.
949     if (MO.isDef() && Reg != DefReg)
950       return false;
951 
952     // Don't allow any virtual-register uses. Rematting an instruction with
953     // virtual register uses would length the live ranges of the uses, which
954     // is not necessarily a good idea, certainly not "trivial".
955     if (MO.isUse())
956       return false;
957   }
958 
959   // Everything checked out.
960   return true;
961 }
962 
getSPAdjust(const MachineInstr & MI) const963 int TargetInstrInfo::getSPAdjust(const MachineInstr &MI) const {
964   const MachineFunction *MF = MI.getMF();
965   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
966   bool StackGrowsDown =
967     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
968 
969   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
970   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
971 
972   if (!isFrameInstr(MI))
973     return 0;
974 
975   int SPAdj = TFI->alignSPAdjust(getFrameSize(MI));
976 
977   if ((!StackGrowsDown && MI.getOpcode() == FrameSetupOpcode) ||
978       (StackGrowsDown && MI.getOpcode() == FrameDestroyOpcode))
979     SPAdj = -SPAdj;
980 
981   return SPAdj;
982 }
983 
984 /// isSchedulingBoundary - Test if the given instruction should be
985 /// considered a scheduling boundary. This primarily includes labels
986 /// and terminators.
isSchedulingBoundary(const MachineInstr & MI,const MachineBasicBlock * MBB,const MachineFunction & MF) const987 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
988                                            const MachineBasicBlock *MBB,
989                                            const MachineFunction &MF) const {
990   // Terminators and labels can't be scheduled around.
991   if (MI.isTerminator() || MI.isPosition())
992     return true;
993 
994   // Don't attempt to schedule around any instruction that defines
995   // a stack-oriented pointer, as it's unlikely to be profitable. This
996   // saves compile time, because it doesn't require every single
997   // stack slot reference to depend on the instruction that does the
998   // modification.
999   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
1000   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1001   return MI.modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI);
1002 }
1003 
1004 // Provide a global flag for disabling the PreRA hazard recognizer that targets
1005 // may choose to honor.
usePreRAHazardRecognizer() const1006 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
1007   return !DisableHazardRecognizer;
1008 }
1009 
1010 // Default implementation of CreateTargetRAHazardRecognizer.
1011 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetHazardRecognizer(const TargetSubtargetInfo * STI,const ScheduleDAG * DAG) const1012 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1013                              const ScheduleDAG *DAG) const {
1014   // Dummy hazard recognizer allows all instructions to issue.
1015   return new ScheduleHazardRecognizer();
1016 }
1017 
1018 // Default implementation of CreateTargetMIHazardRecognizer.
CreateTargetMIHazardRecognizer(const InstrItineraryData * II,const ScheduleDAGMI * DAG) const1019 ScheduleHazardRecognizer *TargetInstrInfo::CreateTargetMIHazardRecognizer(
1020     const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
1021   return new ScoreboardHazardRecognizer(II, DAG, "machine-scheduler");
1022 }
1023 
1024 // Default implementation of CreateTargetPostRAHazardRecognizer.
1025 ScheduleHazardRecognizer *TargetInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData * II,const ScheduleDAG * DAG) const1026 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
1027                                    const ScheduleDAG *DAG) const {
1028   return new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
1029 }
1030 
1031 //===----------------------------------------------------------------------===//
1032 //  SelectionDAG latency interface.
1033 //===----------------------------------------------------------------------===//
1034 
1035 int
getOperandLatency(const InstrItineraryData * ItinData,SDNode * DefNode,unsigned DefIdx,SDNode * UseNode,unsigned UseIdx) const1036 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1037                                    SDNode *DefNode, unsigned DefIdx,
1038                                    SDNode *UseNode, unsigned UseIdx) const {
1039   if (!ItinData || ItinData->isEmpty())
1040     return -1;
1041 
1042   if (!DefNode->isMachineOpcode())
1043     return -1;
1044 
1045   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
1046   if (!UseNode->isMachineOpcode())
1047     return ItinData->getOperandCycle(DefClass, DefIdx);
1048   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
1049   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1050 }
1051 
getInstrLatency(const InstrItineraryData * ItinData,SDNode * N) const1052 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1053                                      SDNode *N) const {
1054   if (!ItinData || ItinData->isEmpty())
1055     return 1;
1056 
1057   if (!N->isMachineOpcode())
1058     return 1;
1059 
1060   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1061 }
1062 
1063 //===----------------------------------------------------------------------===//
1064 //  MachineInstr latency interface.
1065 //===----------------------------------------------------------------------===//
1066 
getNumMicroOps(const InstrItineraryData * ItinData,const MachineInstr & MI) const1067 unsigned TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1068                                          const MachineInstr &MI) const {
1069   if (!ItinData || ItinData->isEmpty())
1070     return 1;
1071 
1072   unsigned Class = MI.getDesc().getSchedClass();
1073   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1074   if (UOps >= 0)
1075     return UOps;
1076 
1077   // The # of u-ops is dynamically determined. The specific target should
1078   // override this function to return the right number.
1079   return 1;
1080 }
1081 
1082 /// Return the default expected latency for a def based on it's opcode.
defaultDefLatency(const MCSchedModel & SchedModel,const MachineInstr & DefMI) const1083 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1084                                             const MachineInstr &DefMI) const {
1085   if (DefMI.isTransient())
1086     return 0;
1087   if (DefMI.mayLoad())
1088     return SchedModel.LoadLatency;
1089   if (isHighLatencyDef(DefMI.getOpcode()))
1090     return SchedModel.HighLatency;
1091   return 1;
1092 }
1093 
getPredicationCost(const MachineInstr &) const1094 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr &) const {
1095   return 0;
1096 }
1097 
getInstrLatency(const InstrItineraryData * ItinData,const MachineInstr & MI,unsigned * PredCost) const1098 unsigned TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1099                                           const MachineInstr &MI,
1100                                           unsigned *PredCost) const {
1101   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1102   // still have a MinLatency property, which getStageLatency checks.
1103   if (!ItinData)
1104     return MI.mayLoad() ? 2 : 1;
1105 
1106   return ItinData->getStageLatency(MI.getDesc().getSchedClass());
1107 }
1108 
hasLowDefLatency(const TargetSchedModel & SchedModel,const MachineInstr & DefMI,unsigned DefIdx) const1109 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1110                                        const MachineInstr &DefMI,
1111                                        unsigned DefIdx) const {
1112   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1113   if (!ItinData || ItinData->isEmpty())
1114     return false;
1115 
1116   unsigned DefClass = DefMI.getDesc().getSchedClass();
1117   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1118   return (DefCycle != -1 && DefCycle <= 1);
1119 }
1120 
1121 Optional<ParamLoadedValue>
describeLoadedValue(const MachineInstr & MI,Register Reg) const1122 TargetInstrInfo::describeLoadedValue(const MachineInstr &MI,
1123                                      Register Reg) const {
1124   const MachineFunction *MF = MI.getMF();
1125   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
1126   DIExpression *Expr = DIExpression::get(MF->getFunction().getContext(), {});
1127   int64_t Offset;
1128 
1129   // To simplify the sub-register handling, verify that we only need to
1130   // consider physical registers.
1131   assert(MF->getProperties().hasProperty(
1132       MachineFunctionProperties::Property::NoVRegs));
1133 
1134   if (auto DestSrc = isCopyInstr(MI)) {
1135     Register DestReg = DestSrc->Destination->getReg();
1136 
1137     if (Reg == DestReg)
1138       return ParamLoadedValue(*DestSrc->Source, Expr);
1139 
1140     // Cases where super- or sub-registers needs to be described should
1141     // be handled by the target's hook implementation.
1142     assert(!TRI->isSuperOrSubRegisterEq(Reg, DestReg) &&
1143            "TargetInstrInfo::describeLoadedValue can't describe super- or "
1144            "sub-regs for copy instructions");
1145     return None;
1146   } else if (auto RegImm = isAddImmediate(MI, Reg)) {
1147     Register SrcReg = RegImm->Reg;
1148     Offset = RegImm->Imm;
1149     Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset, Offset);
1150     return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr);
1151   } else if (MI.hasOneMemOperand()) {
1152     // Only describe memory which provably does not escape the function. As
1153     // described in llvm.org/PR43343, escaped memory may be clobbered by the
1154     // callee (or by another thread).
1155     const auto &TII = MF->getSubtarget().getInstrInfo();
1156     const MachineFrameInfo &MFI = MF->getFrameInfo();
1157     const MachineMemOperand *MMO = MI.memoperands()[0];
1158     const PseudoSourceValue *PSV = MMO->getPseudoValue();
1159 
1160     // If the address points to "special" memory (e.g. a spill slot), it's
1161     // sufficient to check that it isn't aliased by any high-level IR value.
1162     if (!PSV || PSV->mayAlias(&MFI))
1163       return None;
1164 
1165     const MachineOperand *BaseOp;
1166     if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI))
1167       return None;
1168 
1169     assert(MI.getNumExplicitDefs() == 1 &&
1170            "Can currently only handle mem instructions with a single define");
1171 
1172     // TODO: In what way do we need to take Reg into consideration here?
1173 
1174     SmallVector<uint64_t, 8> Ops;
1175     DIExpression::appendOffset(Ops, Offset);
1176     Ops.push_back(dwarf::DW_OP_deref_size);
1177     Ops.push_back(MMO->getSize());
1178     Expr = DIExpression::prependOpcodes(Expr, Ops);
1179     return ParamLoadedValue(*BaseOp, Expr);
1180   }
1181 
1182   return None;
1183 }
1184 
1185 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1186 /// itinerary. This may be overriden by the target.
getOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI,unsigned DefIdx,const MachineInstr & UseMI,unsigned UseIdx) const1187 int TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
1188                                        const MachineInstr &DefMI,
1189                                        unsigned DefIdx,
1190                                        const MachineInstr &UseMI,
1191                                        unsigned UseIdx) const {
1192   unsigned DefClass = DefMI.getDesc().getSchedClass();
1193   unsigned UseClass = UseMI.getDesc().getSchedClass();
1194   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1195 }
1196 
1197 /// If we can determine the operand latency from the def only, without itinerary
1198 /// lookup, do so. Otherwise return -1.
computeDefOperandLatency(const InstrItineraryData * ItinData,const MachineInstr & DefMI) const1199 int TargetInstrInfo::computeDefOperandLatency(
1200     const InstrItineraryData *ItinData, const MachineInstr &DefMI) const {
1201 
1202   // Let the target hook getInstrLatency handle missing itineraries.
1203   if (!ItinData)
1204     return getInstrLatency(ItinData, DefMI);
1205 
1206   if(ItinData->isEmpty())
1207     return defaultDefLatency(ItinData->SchedModel, DefMI);
1208 
1209   // ...operand lookup required
1210   return -1;
1211 }
1212 
getRegSequenceInputs(const MachineInstr & MI,unsigned DefIdx,SmallVectorImpl<RegSubRegPairAndIdx> & InputRegs) const1213 bool TargetInstrInfo::getRegSequenceInputs(
1214     const MachineInstr &MI, unsigned DefIdx,
1215     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1216   assert((MI.isRegSequence() ||
1217           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1218 
1219   if (!MI.isRegSequence())
1220     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1221 
1222   // We are looking at:
1223   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1224   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1225   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1226        OpIdx += 2) {
1227     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1228     if (MOReg.isUndef())
1229       continue;
1230     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1231     assert(MOSubIdx.isImm() &&
1232            "One of the subindex of the reg_sequence is not an immediate");
1233     // Record Reg:SubReg, SubIdx.
1234     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1235                                             (unsigned)MOSubIdx.getImm()));
1236   }
1237   return true;
1238 }
1239 
getExtractSubregInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPairAndIdx & InputReg) const1240 bool TargetInstrInfo::getExtractSubregInputs(
1241     const MachineInstr &MI, unsigned DefIdx,
1242     RegSubRegPairAndIdx &InputReg) const {
1243   assert((MI.isExtractSubreg() ||
1244       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1245 
1246   if (!MI.isExtractSubreg())
1247     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1248 
1249   // We are looking at:
1250   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1251   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1252   const MachineOperand &MOReg = MI.getOperand(1);
1253   if (MOReg.isUndef())
1254     return false;
1255   const MachineOperand &MOSubIdx = MI.getOperand(2);
1256   assert(MOSubIdx.isImm() &&
1257          "The subindex of the extract_subreg is not an immediate");
1258 
1259   InputReg.Reg = MOReg.getReg();
1260   InputReg.SubReg = MOReg.getSubReg();
1261   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1262   return true;
1263 }
1264 
getInsertSubregInputs(const MachineInstr & MI,unsigned DefIdx,RegSubRegPair & BaseReg,RegSubRegPairAndIdx & InsertedReg) const1265 bool TargetInstrInfo::getInsertSubregInputs(
1266     const MachineInstr &MI, unsigned DefIdx,
1267     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1268   assert((MI.isInsertSubreg() ||
1269       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1270 
1271   if (!MI.isInsertSubreg())
1272     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1273 
1274   // We are looking at:
1275   // Def = INSERT_SEQUENCE v0, v1, sub0.
1276   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1277   const MachineOperand &MOBaseReg = MI.getOperand(1);
1278   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1279   if (MOInsertedReg.isUndef())
1280     return false;
1281   const MachineOperand &MOSubIdx = MI.getOperand(3);
1282   assert(MOSubIdx.isImm() &&
1283          "One of the subindex of the reg_sequence is not an immediate");
1284   BaseReg.Reg = MOBaseReg.getReg();
1285   BaseReg.SubReg = MOBaseReg.getSubReg();
1286 
1287   InsertedReg.Reg = MOInsertedReg.getReg();
1288   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1289   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1290   return true;
1291 }
1292 
~PipelinerLoopInfo()1293 TargetInstrInfo::PipelinerLoopInfo::~PipelinerLoopInfo() {}
1294