1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallSite.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/AtomicOrdering.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/TypeSize.h"
42 #include <algorithm>
43 #include <cassert>
44 #include <cstdint>
45 #include <vector>
46
47 using namespace llvm;
48
49 //===----------------------------------------------------------------------===//
50 // AllocaInst Class
51 //===----------------------------------------------------------------------===//
52
53 Optional<uint64_t>
getAllocationSizeInBits(const DataLayout & DL) const54 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
55 uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
56 if (isArrayAllocation()) {
57 auto C = dyn_cast<ConstantInt>(getArraySize());
58 if (!C)
59 return None;
60 Size *= C->getZExtValue();
61 }
62 return Size;
63 }
64
65 //===----------------------------------------------------------------------===//
66 // CallSite Class
67 //===----------------------------------------------------------------------===//
68
getCallee() const69 User::op_iterator CallSite::getCallee() const {
70 return cast<CallBase>(getInstruction())->op_end() - 1;
71 }
72
73 //===----------------------------------------------------------------------===//
74 // SelectInst Class
75 //===----------------------------------------------------------------------===//
76
77 /// areInvalidOperands - Return a string if the specified operands are invalid
78 /// for a select operation, otherwise return null.
areInvalidOperands(Value * Op0,Value * Op1,Value * Op2)79 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
80 if (Op1->getType() != Op2->getType())
81 return "both values to select must have same type";
82
83 if (Op1->getType()->isTokenTy())
84 return "select values cannot have token type";
85
86 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
87 // Vector select.
88 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
89 return "vector select condition element type must be i1";
90 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
91 if (!ET)
92 return "selected values for vector select must be vectors";
93 if (ET->getNumElements() != VT->getNumElements())
94 return "vector select requires selected vectors to have "
95 "the same vector length as select condition";
96 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
97 return "select condition must be i1 or <n x i1>";
98 }
99 return nullptr;
100 }
101
102 //===----------------------------------------------------------------------===//
103 // PHINode Class
104 //===----------------------------------------------------------------------===//
105
PHINode(const PHINode & PN)106 PHINode::PHINode(const PHINode &PN)
107 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
108 ReservedSpace(PN.getNumOperands()) {
109 allocHungoffUses(PN.getNumOperands());
110 std::copy(PN.op_begin(), PN.op_end(), op_begin());
111 std::copy(PN.block_begin(), PN.block_end(), block_begin());
112 SubclassOptionalData = PN.SubclassOptionalData;
113 }
114
115 // removeIncomingValue - Remove an incoming value. This is useful if a
116 // predecessor basic block is deleted.
removeIncomingValue(unsigned Idx,bool DeletePHIIfEmpty)117 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
118 Value *Removed = getIncomingValue(Idx);
119
120 // Move everything after this operand down.
121 //
122 // FIXME: we could just swap with the end of the list, then erase. However,
123 // clients might not expect this to happen. The code as it is thrashes the
124 // use/def lists, which is kinda lame.
125 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
126 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
127
128 // Nuke the last value.
129 Op<-1>().set(nullptr);
130 setNumHungOffUseOperands(getNumOperands() - 1);
131
132 // If the PHI node is dead, because it has zero entries, nuke it now.
133 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
134 // If anyone is using this PHI, make them use a dummy value instead...
135 replaceAllUsesWith(UndefValue::get(getType()));
136 eraseFromParent();
137 }
138 return Removed;
139 }
140
141 /// growOperands - grow operands - This grows the operand list in response
142 /// to a push_back style of operation. This grows the number of ops by 1.5
143 /// times.
144 ///
growOperands()145 void PHINode::growOperands() {
146 unsigned e = getNumOperands();
147 unsigned NumOps = e + e / 2;
148 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
149
150 ReservedSpace = NumOps;
151 growHungoffUses(ReservedSpace, /* IsPhi */ true);
152 }
153
154 /// hasConstantValue - If the specified PHI node always merges together the same
155 /// value, return the value, otherwise return null.
hasConstantValue() const156 Value *PHINode::hasConstantValue() const {
157 // Exploit the fact that phi nodes always have at least one entry.
158 Value *ConstantValue = getIncomingValue(0);
159 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
160 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
161 if (ConstantValue != this)
162 return nullptr; // Incoming values not all the same.
163 // The case where the first value is this PHI.
164 ConstantValue = getIncomingValue(i);
165 }
166 if (ConstantValue == this)
167 return UndefValue::get(getType());
168 return ConstantValue;
169 }
170
171 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
172 /// together the same value, assuming that undefs result in the same value as
173 /// non-undefs.
174 /// Unlike \ref hasConstantValue, this does not return a value because the
175 /// unique non-undef incoming value need not dominate the PHI node.
hasConstantOrUndefValue() const176 bool PHINode::hasConstantOrUndefValue() const {
177 Value *ConstantValue = nullptr;
178 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
179 Value *Incoming = getIncomingValue(i);
180 if (Incoming != this && !isa<UndefValue>(Incoming)) {
181 if (ConstantValue && ConstantValue != Incoming)
182 return false;
183 ConstantValue = Incoming;
184 }
185 }
186 return true;
187 }
188
189 //===----------------------------------------------------------------------===//
190 // LandingPadInst Implementation
191 //===----------------------------------------------------------------------===//
192
LandingPadInst(Type * RetTy,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)193 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
194 const Twine &NameStr, Instruction *InsertBefore)
195 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
196 init(NumReservedValues, NameStr);
197 }
198
LandingPadInst(Type * RetTy,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)199 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
200 const Twine &NameStr, BasicBlock *InsertAtEnd)
201 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
202 init(NumReservedValues, NameStr);
203 }
204
LandingPadInst(const LandingPadInst & LP)205 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
206 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
207 LP.getNumOperands()),
208 ReservedSpace(LP.getNumOperands()) {
209 allocHungoffUses(LP.getNumOperands());
210 Use *OL = getOperandList();
211 const Use *InOL = LP.getOperandList();
212 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
213 OL[I] = InOL[I];
214
215 setCleanup(LP.isCleanup());
216 }
217
Create(Type * RetTy,unsigned NumReservedClauses,const Twine & NameStr,Instruction * InsertBefore)218 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
219 const Twine &NameStr,
220 Instruction *InsertBefore) {
221 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
222 }
223
Create(Type * RetTy,unsigned NumReservedClauses,const Twine & NameStr,BasicBlock * InsertAtEnd)224 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
225 const Twine &NameStr,
226 BasicBlock *InsertAtEnd) {
227 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
228 }
229
init(unsigned NumReservedValues,const Twine & NameStr)230 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
231 ReservedSpace = NumReservedValues;
232 setNumHungOffUseOperands(0);
233 allocHungoffUses(ReservedSpace);
234 setName(NameStr);
235 setCleanup(false);
236 }
237
238 /// growOperands - grow operands - This grows the operand list in response to a
239 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)240 void LandingPadInst::growOperands(unsigned Size) {
241 unsigned e = getNumOperands();
242 if (ReservedSpace >= e + Size) return;
243 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
244 growHungoffUses(ReservedSpace);
245 }
246
addClause(Constant * Val)247 void LandingPadInst::addClause(Constant *Val) {
248 unsigned OpNo = getNumOperands();
249 growOperands(1);
250 assert(OpNo < ReservedSpace && "Growing didn't work!");
251 setNumHungOffUseOperands(getNumOperands() + 1);
252 getOperandList()[OpNo] = Val;
253 }
254
255 //===----------------------------------------------------------------------===//
256 // CallBase Implementation
257 //===----------------------------------------------------------------------===//
258
getCaller()259 Function *CallBase::getCaller() { return getParent()->getParent(); }
260
getNumSubclassExtraOperandsDynamic() const261 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
262 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
263 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
264 }
265
isIndirectCall() const266 bool CallBase::isIndirectCall() const {
267 const Value *V = getCalledValue();
268 if (isa<Function>(V) || isa<Constant>(V))
269 return false;
270 if (const CallInst *CI = dyn_cast<CallInst>(this))
271 if (CI->isInlineAsm())
272 return false;
273 return true;
274 }
275
276 /// Tests if this call site must be tail call optimized. Only a CallInst can
277 /// be tail call optimized.
isMustTailCall() const278 bool CallBase::isMustTailCall() const {
279 if (auto *CI = dyn_cast<CallInst>(this))
280 return CI->isMustTailCall();
281 return false;
282 }
283
284 /// Tests if this call site is marked as a tail call.
isTailCall() const285 bool CallBase::isTailCall() const {
286 if (auto *CI = dyn_cast<CallInst>(this))
287 return CI->isTailCall();
288 return false;
289 }
290
getIntrinsicID() const291 Intrinsic::ID CallBase::getIntrinsicID() const {
292 if (auto *F = getCalledFunction())
293 return F->getIntrinsicID();
294 return Intrinsic::not_intrinsic;
295 }
296
isReturnNonNull() const297 bool CallBase::isReturnNonNull() const {
298 if (hasRetAttr(Attribute::NonNull))
299 return true;
300
301 if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
302 !NullPointerIsDefined(getCaller(),
303 getType()->getPointerAddressSpace()))
304 return true;
305
306 return false;
307 }
308
getReturnedArgOperand() const309 Value *CallBase::getReturnedArgOperand() const {
310 unsigned Index;
311
312 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
313 return getArgOperand(Index - AttributeList::FirstArgIndex);
314 if (const Function *F = getCalledFunction())
315 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
316 Index)
317 return getArgOperand(Index - AttributeList::FirstArgIndex);
318
319 return nullptr;
320 }
321
hasRetAttr(Attribute::AttrKind Kind) const322 bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
323 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
324 return true;
325
326 // Look at the callee, if available.
327 if (const Function *F = getCalledFunction())
328 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
329 return false;
330 }
331
332 /// Determine whether the argument or parameter has the given attribute.
paramHasAttr(unsigned ArgNo,Attribute::AttrKind Kind) const333 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
334 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
335
336 if (Attrs.hasParamAttribute(ArgNo, Kind))
337 return true;
338 if (const Function *F = getCalledFunction())
339 return F->getAttributes().hasParamAttribute(ArgNo, Kind);
340 return false;
341 }
342
hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const343 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
344 if (const Function *F = getCalledFunction())
345 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
346 return false;
347 }
348
hasFnAttrOnCalledFunction(StringRef Kind) const349 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
350 if (const Function *F = getCalledFunction())
351 return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
352 return false;
353 }
354
355 CallBase::op_iterator
populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,const unsigned BeginIndex)356 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
357 const unsigned BeginIndex) {
358 auto It = op_begin() + BeginIndex;
359 for (auto &B : Bundles)
360 It = std::copy(B.input_begin(), B.input_end(), It);
361
362 auto *ContextImpl = getContext().pImpl;
363 auto BI = Bundles.begin();
364 unsigned CurrentIndex = BeginIndex;
365
366 for (auto &BOI : bundle_op_infos()) {
367 assert(BI != Bundles.end() && "Incorrect allocation?");
368
369 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
370 BOI.Begin = CurrentIndex;
371 BOI.End = CurrentIndex + BI->input_size();
372 CurrentIndex = BOI.End;
373 BI++;
374 }
375
376 assert(BI == Bundles.end() && "Incorrect allocation?");
377
378 return It;
379 }
380
381 //===----------------------------------------------------------------------===//
382 // CallInst Implementation
383 //===----------------------------------------------------------------------===//
384
init(FunctionType * FTy,Value * Func,ArrayRef<Value * > Args,ArrayRef<OperandBundleDef> Bundles,const Twine & NameStr)385 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
386 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
387 this->FTy = FTy;
388 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
389 "NumOperands not set up?");
390 setCalledOperand(Func);
391
392 #ifndef NDEBUG
393 assert((Args.size() == FTy->getNumParams() ||
394 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
395 "Calling a function with bad signature!");
396
397 for (unsigned i = 0; i != Args.size(); ++i)
398 assert((i >= FTy->getNumParams() ||
399 FTy->getParamType(i) == Args[i]->getType()) &&
400 "Calling a function with a bad signature!");
401 #endif
402
403 llvm::copy(Args, op_begin());
404
405 auto It = populateBundleOperandInfos(Bundles, Args.size());
406 (void)It;
407 assert(It + 1 == op_end() && "Should add up!");
408
409 setName(NameStr);
410 }
411
init(FunctionType * FTy,Value * Func,const Twine & NameStr)412 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
413 this->FTy = FTy;
414 assert(getNumOperands() == 1 && "NumOperands not set up?");
415 setCalledOperand(Func);
416
417 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
418
419 setName(NameStr);
420 }
421
CallInst(FunctionType * Ty,Value * Func,const Twine & Name,Instruction * InsertBefore)422 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
423 Instruction *InsertBefore)
424 : CallBase(Ty->getReturnType(), Instruction::Call,
425 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
426 init(Ty, Func, Name);
427 }
428
CallInst(FunctionType * Ty,Value * Func,const Twine & Name,BasicBlock * InsertAtEnd)429 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
430 BasicBlock *InsertAtEnd)
431 : CallBase(Ty->getReturnType(), Instruction::Call,
432 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
433 init(Ty, Func, Name);
434 }
435
CallInst(const CallInst & CI)436 CallInst::CallInst(const CallInst &CI)
437 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
438 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
439 CI.getNumOperands()) {
440 setTailCallKind(CI.getTailCallKind());
441 setCallingConv(CI.getCallingConv());
442
443 std::copy(CI.op_begin(), CI.op_end(), op_begin());
444 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
445 bundle_op_info_begin());
446 SubclassOptionalData = CI.SubclassOptionalData;
447 }
448
Create(CallInst * CI,ArrayRef<OperandBundleDef> OpB,Instruction * InsertPt)449 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
450 Instruction *InsertPt) {
451 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
452
453 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
454 Args, OpB, CI->getName(), InsertPt);
455 NewCI->setTailCallKind(CI->getTailCallKind());
456 NewCI->setCallingConv(CI->getCallingConv());
457 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
458 NewCI->setAttributes(CI->getAttributes());
459 NewCI->setDebugLoc(CI->getDebugLoc());
460 return NewCI;
461 }
462
463 // Update profile weight for call instruction by scaling it using the ratio
464 // of S/T. The meaning of "branch_weights" meta data for call instruction is
465 // transfered to represent call count.
updateProfWeight(uint64_t S,uint64_t T)466 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
467 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
468 if (ProfileData == nullptr)
469 return;
470
471 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
472 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
473 !ProfDataName->getString().equals("VP")))
474 return;
475
476 if (T == 0) {
477 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
478 "div by 0. Ignoring. Likely the function "
479 << getParent()->getParent()->getName()
480 << " has 0 entry count, and contains call instructions "
481 "with non-zero prof info.");
482 return;
483 }
484
485 MDBuilder MDB(getContext());
486 SmallVector<Metadata *, 3> Vals;
487 Vals.push_back(ProfileData->getOperand(0));
488 APInt APS(128, S), APT(128, T);
489 if (ProfDataName->getString().equals("branch_weights") &&
490 ProfileData->getNumOperands() > 0) {
491 // Using APInt::div may be expensive, but most cases should fit 64 bits.
492 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
493 ->getValue()
494 .getZExtValue());
495 Val *= APS;
496 Vals.push_back(MDB.createConstant(ConstantInt::get(
497 Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue())));
498 } else if (ProfDataName->getString().equals("VP"))
499 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
500 // The first value is the key of the value profile, which will not change.
501 Vals.push_back(ProfileData->getOperand(i));
502 // Using APInt::div may be expensive, but most cases should fit 64 bits.
503 APInt Val(128,
504 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
505 ->getValue()
506 .getZExtValue());
507 Val *= APS;
508 Vals.push_back(MDB.createConstant(
509 ConstantInt::get(Type::getInt64Ty(getContext()),
510 Val.udiv(APT).getLimitedValue())));
511 }
512 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
513 }
514
515 /// IsConstantOne - Return true only if val is constant int 1
IsConstantOne(Value * val)516 static bool IsConstantOne(Value *val) {
517 assert(val && "IsConstantOne does not work with nullptr val");
518 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
519 return CVal && CVal->isOne();
520 }
521
createMalloc(Instruction * InsertBefore,BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,ArrayRef<OperandBundleDef> OpB,Function * MallocF,const Twine & Name)522 static Instruction *createMalloc(Instruction *InsertBefore,
523 BasicBlock *InsertAtEnd, Type *IntPtrTy,
524 Type *AllocTy, Value *AllocSize,
525 Value *ArraySize,
526 ArrayRef<OperandBundleDef> OpB,
527 Function *MallocF, const Twine &Name) {
528 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
529 "createMalloc needs either InsertBefore or InsertAtEnd");
530
531 // malloc(type) becomes:
532 // bitcast (i8* malloc(typeSize)) to type*
533 // malloc(type, arraySize) becomes:
534 // bitcast (i8* malloc(typeSize*arraySize)) to type*
535 if (!ArraySize)
536 ArraySize = ConstantInt::get(IntPtrTy, 1);
537 else if (ArraySize->getType() != IntPtrTy) {
538 if (InsertBefore)
539 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
540 "", InsertBefore);
541 else
542 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
543 "", InsertAtEnd);
544 }
545
546 if (!IsConstantOne(ArraySize)) {
547 if (IsConstantOne(AllocSize)) {
548 AllocSize = ArraySize; // Operand * 1 = Operand
549 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
550 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
551 false /*ZExt*/);
552 // Malloc arg is constant product of type size and array size
553 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
554 } else {
555 // Multiply type size by the array size...
556 if (InsertBefore)
557 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
558 "mallocsize", InsertBefore);
559 else
560 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
561 "mallocsize", InsertAtEnd);
562 }
563 }
564
565 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
566 // Create the call to Malloc.
567 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
568 Module *M = BB->getParent()->getParent();
569 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
570 FunctionCallee MallocFunc = MallocF;
571 if (!MallocFunc)
572 // prototype malloc as "void *malloc(size_t)"
573 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
574 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
575 CallInst *MCall = nullptr;
576 Instruction *Result = nullptr;
577 if (InsertBefore) {
578 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
579 InsertBefore);
580 Result = MCall;
581 if (Result->getType() != AllocPtrType)
582 // Create a cast instruction to convert to the right type...
583 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
584 } else {
585 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
586 Result = MCall;
587 if (Result->getType() != AllocPtrType) {
588 InsertAtEnd->getInstList().push_back(MCall);
589 // Create a cast instruction to convert to the right type...
590 Result = new BitCastInst(MCall, AllocPtrType, Name);
591 }
592 }
593 MCall->setTailCall();
594 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
595 MCall->setCallingConv(F->getCallingConv());
596 if (!F->returnDoesNotAlias())
597 F->setReturnDoesNotAlias();
598 }
599 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
600
601 return Result;
602 }
603
604 /// CreateMalloc - Generate the IR for a call to malloc:
605 /// 1. Compute the malloc call's argument as the specified type's size,
606 /// possibly multiplied by the array size if the array size is not
607 /// constant 1.
608 /// 2. Call malloc with that argument.
609 /// 3. Bitcast the result of the malloc call to the specified type.
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)610 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
611 Type *IntPtrTy, Type *AllocTy,
612 Value *AllocSize, Value *ArraySize,
613 Function *MallocF,
614 const Twine &Name) {
615 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
616 ArraySize, None, MallocF, Name);
617 }
CreateMalloc(Instruction * InsertBefore,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,ArrayRef<OperandBundleDef> OpB,Function * MallocF,const Twine & Name)618 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
619 Type *IntPtrTy, Type *AllocTy,
620 Value *AllocSize, Value *ArraySize,
621 ArrayRef<OperandBundleDef> OpB,
622 Function *MallocF,
623 const Twine &Name) {
624 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
625 ArraySize, OpB, MallocF, Name);
626 }
627
628 /// CreateMalloc - Generate the IR for a call to malloc:
629 /// 1. Compute the malloc call's argument as the specified type's size,
630 /// possibly multiplied by the array size if the array size is not
631 /// constant 1.
632 /// 2. Call malloc with that argument.
633 /// 3. Bitcast the result of the malloc call to the specified type.
634 /// Note: This function does not add the bitcast to the basic block, that is the
635 /// responsibility of the caller.
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,Function * MallocF,const Twine & Name)636 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
637 Type *IntPtrTy, Type *AllocTy,
638 Value *AllocSize, Value *ArraySize,
639 Function *MallocF, const Twine &Name) {
640 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
641 ArraySize, None, MallocF, Name);
642 }
CreateMalloc(BasicBlock * InsertAtEnd,Type * IntPtrTy,Type * AllocTy,Value * AllocSize,Value * ArraySize,ArrayRef<OperandBundleDef> OpB,Function * MallocF,const Twine & Name)643 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
644 Type *IntPtrTy, Type *AllocTy,
645 Value *AllocSize, Value *ArraySize,
646 ArrayRef<OperandBundleDef> OpB,
647 Function *MallocF, const Twine &Name) {
648 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
649 ArraySize, OpB, MallocF, Name);
650 }
651
createFree(Value * Source,ArrayRef<OperandBundleDef> Bundles,Instruction * InsertBefore,BasicBlock * InsertAtEnd)652 static Instruction *createFree(Value *Source,
653 ArrayRef<OperandBundleDef> Bundles,
654 Instruction *InsertBefore,
655 BasicBlock *InsertAtEnd) {
656 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
657 "createFree needs either InsertBefore or InsertAtEnd");
658 assert(Source->getType()->isPointerTy() &&
659 "Can not free something of nonpointer type!");
660
661 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
662 Module *M = BB->getParent()->getParent();
663
664 Type *VoidTy = Type::getVoidTy(M->getContext());
665 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
666 // prototype free as "void free(void*)"
667 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
668 CallInst *Result = nullptr;
669 Value *PtrCast = Source;
670 if (InsertBefore) {
671 if (Source->getType() != IntPtrTy)
672 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
673 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
674 } else {
675 if (Source->getType() != IntPtrTy)
676 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
677 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
678 }
679 Result->setTailCall();
680 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
681 Result->setCallingConv(F->getCallingConv());
682
683 return Result;
684 }
685
686 /// CreateFree - Generate the IR for a call to the builtin free function.
CreateFree(Value * Source,Instruction * InsertBefore)687 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
688 return createFree(Source, None, InsertBefore, nullptr);
689 }
CreateFree(Value * Source,ArrayRef<OperandBundleDef> Bundles,Instruction * InsertBefore)690 Instruction *CallInst::CreateFree(Value *Source,
691 ArrayRef<OperandBundleDef> Bundles,
692 Instruction *InsertBefore) {
693 return createFree(Source, Bundles, InsertBefore, nullptr);
694 }
695
696 /// CreateFree - Generate the IR for a call to the builtin free function.
697 /// Note: This function does not add the call to the basic block, that is the
698 /// responsibility of the caller.
CreateFree(Value * Source,BasicBlock * InsertAtEnd)699 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
700 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
701 assert(FreeCall && "CreateFree did not create a CallInst");
702 return FreeCall;
703 }
CreateFree(Value * Source,ArrayRef<OperandBundleDef> Bundles,BasicBlock * InsertAtEnd)704 Instruction *CallInst::CreateFree(Value *Source,
705 ArrayRef<OperandBundleDef> Bundles,
706 BasicBlock *InsertAtEnd) {
707 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
708 assert(FreeCall && "CreateFree did not create a CallInst");
709 return FreeCall;
710 }
711
712 //===----------------------------------------------------------------------===//
713 // InvokeInst Implementation
714 //===----------------------------------------------------------------------===//
715
init(FunctionType * FTy,Value * Fn,BasicBlock * IfNormal,BasicBlock * IfException,ArrayRef<Value * > Args,ArrayRef<OperandBundleDef> Bundles,const Twine & NameStr)716 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
717 BasicBlock *IfException, ArrayRef<Value *> Args,
718 ArrayRef<OperandBundleDef> Bundles,
719 const Twine &NameStr) {
720 this->FTy = FTy;
721
722 assert((int)getNumOperands() ==
723 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
724 "NumOperands not set up?");
725 setNormalDest(IfNormal);
726 setUnwindDest(IfException);
727 setCalledOperand(Fn);
728
729 #ifndef NDEBUG
730 assert(((Args.size() == FTy->getNumParams()) ||
731 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
732 "Invoking a function with bad signature");
733
734 for (unsigned i = 0, e = Args.size(); i != e; i++)
735 assert((i >= FTy->getNumParams() ||
736 FTy->getParamType(i) == Args[i]->getType()) &&
737 "Invoking a function with a bad signature!");
738 #endif
739
740 llvm::copy(Args, op_begin());
741
742 auto It = populateBundleOperandInfos(Bundles, Args.size());
743 (void)It;
744 assert(It + 3 == op_end() && "Should add up!");
745
746 setName(NameStr);
747 }
748
InvokeInst(const InvokeInst & II)749 InvokeInst::InvokeInst(const InvokeInst &II)
750 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
751 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
752 II.getNumOperands()) {
753 setCallingConv(II.getCallingConv());
754 std::copy(II.op_begin(), II.op_end(), op_begin());
755 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
756 bundle_op_info_begin());
757 SubclassOptionalData = II.SubclassOptionalData;
758 }
759
Create(InvokeInst * II,ArrayRef<OperandBundleDef> OpB,Instruction * InsertPt)760 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
761 Instruction *InsertPt) {
762 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
763
764 auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
765 II->getNormalDest(), II->getUnwindDest(),
766 Args, OpB, II->getName(), InsertPt);
767 NewII->setCallingConv(II->getCallingConv());
768 NewII->SubclassOptionalData = II->SubclassOptionalData;
769 NewII->setAttributes(II->getAttributes());
770 NewII->setDebugLoc(II->getDebugLoc());
771 return NewII;
772 }
773
774
getLandingPadInst() const775 LandingPadInst *InvokeInst::getLandingPadInst() const {
776 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
777 }
778
779 //===----------------------------------------------------------------------===//
780 // CallBrInst Implementation
781 //===----------------------------------------------------------------------===//
782
init(FunctionType * FTy,Value * Fn,BasicBlock * Fallthrough,ArrayRef<BasicBlock * > IndirectDests,ArrayRef<Value * > Args,ArrayRef<OperandBundleDef> Bundles,const Twine & NameStr)783 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
784 ArrayRef<BasicBlock *> IndirectDests,
785 ArrayRef<Value *> Args,
786 ArrayRef<OperandBundleDef> Bundles,
787 const Twine &NameStr) {
788 this->FTy = FTy;
789
790 assert((int)getNumOperands() ==
791 ComputeNumOperands(Args.size(), IndirectDests.size(),
792 CountBundleInputs(Bundles)) &&
793 "NumOperands not set up?");
794 NumIndirectDests = IndirectDests.size();
795 setDefaultDest(Fallthrough);
796 for (unsigned i = 0; i != NumIndirectDests; ++i)
797 setIndirectDest(i, IndirectDests[i]);
798 setCalledOperand(Fn);
799
800 #ifndef NDEBUG
801 assert(((Args.size() == FTy->getNumParams()) ||
802 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
803 "Calling a function with bad signature");
804
805 for (unsigned i = 0, e = Args.size(); i != e; i++)
806 assert((i >= FTy->getNumParams() ||
807 FTy->getParamType(i) == Args[i]->getType()) &&
808 "Calling a function with a bad signature!");
809 #endif
810
811 std::copy(Args.begin(), Args.end(), op_begin());
812
813 auto It = populateBundleOperandInfos(Bundles, Args.size());
814 (void)It;
815 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
816
817 setName(NameStr);
818 }
819
updateArgBlockAddresses(unsigned i,BasicBlock * B)820 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
821 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
822 if (BasicBlock *OldBB = getIndirectDest(i)) {
823 BlockAddress *Old = BlockAddress::get(OldBB);
824 BlockAddress *New = BlockAddress::get(B);
825 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
826 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
827 setArgOperand(ArgNo, New);
828 }
829 }
830
CallBrInst(const CallBrInst & CBI)831 CallBrInst::CallBrInst(const CallBrInst &CBI)
832 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
833 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
834 CBI.getNumOperands()) {
835 setCallingConv(CBI.getCallingConv());
836 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
837 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
838 bundle_op_info_begin());
839 SubclassOptionalData = CBI.SubclassOptionalData;
840 NumIndirectDests = CBI.NumIndirectDests;
841 }
842
Create(CallBrInst * CBI,ArrayRef<OperandBundleDef> OpB,Instruction * InsertPt)843 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
844 Instruction *InsertPt) {
845 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
846
847 auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
848 CBI->getCalledValue(),
849 CBI->getDefaultDest(),
850 CBI->getIndirectDests(),
851 Args, OpB, CBI->getName(), InsertPt);
852 NewCBI->setCallingConv(CBI->getCallingConv());
853 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
854 NewCBI->setAttributes(CBI->getAttributes());
855 NewCBI->setDebugLoc(CBI->getDebugLoc());
856 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
857 return NewCBI;
858 }
859
860 //===----------------------------------------------------------------------===//
861 // ReturnInst Implementation
862 //===----------------------------------------------------------------------===//
863
ReturnInst(const ReturnInst & RI)864 ReturnInst::ReturnInst(const ReturnInst &RI)
865 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
866 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
867 RI.getNumOperands()) {
868 if (RI.getNumOperands())
869 Op<0>() = RI.Op<0>();
870 SubclassOptionalData = RI.SubclassOptionalData;
871 }
872
ReturnInst(LLVMContext & C,Value * retVal,Instruction * InsertBefore)873 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
874 : Instruction(Type::getVoidTy(C), Instruction::Ret,
875 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
876 InsertBefore) {
877 if (retVal)
878 Op<0>() = retVal;
879 }
880
ReturnInst(LLVMContext & C,Value * retVal,BasicBlock * InsertAtEnd)881 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
882 : Instruction(Type::getVoidTy(C), Instruction::Ret,
883 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
884 InsertAtEnd) {
885 if (retVal)
886 Op<0>() = retVal;
887 }
888
ReturnInst(LLVMContext & Context,BasicBlock * InsertAtEnd)889 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
890 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
891 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
892
893 //===----------------------------------------------------------------------===//
894 // ResumeInst Implementation
895 //===----------------------------------------------------------------------===//
896
ResumeInst(const ResumeInst & RI)897 ResumeInst::ResumeInst(const ResumeInst &RI)
898 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
899 OperandTraits<ResumeInst>::op_begin(this), 1) {
900 Op<0>() = RI.Op<0>();
901 }
902
ResumeInst(Value * Exn,Instruction * InsertBefore)903 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
904 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
905 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
906 Op<0>() = Exn;
907 }
908
ResumeInst(Value * Exn,BasicBlock * InsertAtEnd)909 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
910 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
911 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
912 Op<0>() = Exn;
913 }
914
915 //===----------------------------------------------------------------------===//
916 // CleanupReturnInst Implementation
917 //===----------------------------------------------------------------------===//
918
CleanupReturnInst(const CleanupReturnInst & CRI)919 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
920 : Instruction(CRI.getType(), Instruction::CleanupRet,
921 OperandTraits<CleanupReturnInst>::op_end(this) -
922 CRI.getNumOperands(),
923 CRI.getNumOperands()) {
924 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
925 Op<0>() = CRI.Op<0>();
926 if (CRI.hasUnwindDest())
927 Op<1>() = CRI.Op<1>();
928 }
929
init(Value * CleanupPad,BasicBlock * UnwindBB)930 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
931 if (UnwindBB)
932 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
933
934 Op<0>() = CleanupPad;
935 if (UnwindBB)
936 Op<1>() = UnwindBB;
937 }
938
CleanupReturnInst(Value * CleanupPad,BasicBlock * UnwindBB,unsigned Values,Instruction * InsertBefore)939 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
940 unsigned Values, Instruction *InsertBefore)
941 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
942 Instruction::CleanupRet,
943 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
944 Values, InsertBefore) {
945 init(CleanupPad, UnwindBB);
946 }
947
CleanupReturnInst(Value * CleanupPad,BasicBlock * UnwindBB,unsigned Values,BasicBlock * InsertAtEnd)948 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
949 unsigned Values, BasicBlock *InsertAtEnd)
950 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
951 Instruction::CleanupRet,
952 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
953 Values, InsertAtEnd) {
954 init(CleanupPad, UnwindBB);
955 }
956
957 //===----------------------------------------------------------------------===//
958 // CatchReturnInst Implementation
959 //===----------------------------------------------------------------------===//
init(Value * CatchPad,BasicBlock * BB)960 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
961 Op<0>() = CatchPad;
962 Op<1>() = BB;
963 }
964
CatchReturnInst(const CatchReturnInst & CRI)965 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
966 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
967 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
968 Op<0>() = CRI.Op<0>();
969 Op<1>() = CRI.Op<1>();
970 }
971
CatchReturnInst(Value * CatchPad,BasicBlock * BB,Instruction * InsertBefore)972 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
973 Instruction *InsertBefore)
974 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
975 OperandTraits<CatchReturnInst>::op_begin(this), 2,
976 InsertBefore) {
977 init(CatchPad, BB);
978 }
979
CatchReturnInst(Value * CatchPad,BasicBlock * BB,BasicBlock * InsertAtEnd)980 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
981 BasicBlock *InsertAtEnd)
982 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
983 OperandTraits<CatchReturnInst>::op_begin(this), 2,
984 InsertAtEnd) {
985 init(CatchPad, BB);
986 }
987
988 //===----------------------------------------------------------------------===//
989 // CatchSwitchInst Implementation
990 //===----------------------------------------------------------------------===//
991
CatchSwitchInst(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues,const Twine & NameStr,Instruction * InsertBefore)992 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
993 unsigned NumReservedValues,
994 const Twine &NameStr,
995 Instruction *InsertBefore)
996 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
997 InsertBefore) {
998 if (UnwindDest)
999 ++NumReservedValues;
1000 init(ParentPad, UnwindDest, NumReservedValues + 1);
1001 setName(NameStr);
1002 }
1003
CatchSwitchInst(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues,const Twine & NameStr,BasicBlock * InsertAtEnd)1004 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1005 unsigned NumReservedValues,
1006 const Twine &NameStr, BasicBlock *InsertAtEnd)
1007 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1008 InsertAtEnd) {
1009 if (UnwindDest)
1010 ++NumReservedValues;
1011 init(ParentPad, UnwindDest, NumReservedValues + 1);
1012 setName(NameStr);
1013 }
1014
CatchSwitchInst(const CatchSwitchInst & CSI)1015 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1016 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1017 CSI.getNumOperands()) {
1018 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1019 setNumHungOffUseOperands(ReservedSpace);
1020 Use *OL = getOperandList();
1021 const Use *InOL = CSI.getOperandList();
1022 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1023 OL[I] = InOL[I];
1024 }
1025
init(Value * ParentPad,BasicBlock * UnwindDest,unsigned NumReservedValues)1026 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1027 unsigned NumReservedValues) {
1028 assert(ParentPad && NumReservedValues);
1029
1030 ReservedSpace = NumReservedValues;
1031 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1032 allocHungoffUses(ReservedSpace);
1033
1034 Op<0>() = ParentPad;
1035 if (UnwindDest) {
1036 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
1037 setUnwindDest(UnwindDest);
1038 }
1039 }
1040
1041 /// growOperands - grow operands - This grows the operand list in response to a
1042 /// push_back style of operation. This grows the number of ops by 2 times.
growOperands(unsigned Size)1043 void CatchSwitchInst::growOperands(unsigned Size) {
1044 unsigned NumOperands = getNumOperands();
1045 assert(NumOperands >= 1);
1046 if (ReservedSpace >= NumOperands + Size)
1047 return;
1048 ReservedSpace = (NumOperands + Size / 2) * 2;
1049 growHungoffUses(ReservedSpace);
1050 }
1051
addHandler(BasicBlock * Handler)1052 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1053 unsigned OpNo = getNumOperands();
1054 growOperands(1);
1055 assert(OpNo < ReservedSpace && "Growing didn't work!");
1056 setNumHungOffUseOperands(getNumOperands() + 1);
1057 getOperandList()[OpNo] = Handler;
1058 }
1059
removeHandler(handler_iterator HI)1060 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1061 // Move all subsequent handlers up one.
1062 Use *EndDst = op_end() - 1;
1063 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1064 *CurDst = *(CurDst + 1);
1065 // Null out the last handler use.
1066 *EndDst = nullptr;
1067
1068 setNumHungOffUseOperands(getNumOperands() - 1);
1069 }
1070
1071 //===----------------------------------------------------------------------===//
1072 // FuncletPadInst Implementation
1073 //===----------------------------------------------------------------------===//
init(Value * ParentPad,ArrayRef<Value * > Args,const Twine & NameStr)1074 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1075 const Twine &NameStr) {
1076 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1077 llvm::copy(Args, op_begin());
1078 setParentPad(ParentPad);
1079 setName(NameStr);
1080 }
1081
FuncletPadInst(const FuncletPadInst & FPI)1082 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1083 : Instruction(FPI.getType(), FPI.getOpcode(),
1084 OperandTraits<FuncletPadInst>::op_end(this) -
1085 FPI.getNumOperands(),
1086 FPI.getNumOperands()) {
1087 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1088 setParentPad(FPI.getParentPad());
1089 }
1090
FuncletPadInst(Instruction::FuncletPadOps Op,Value * ParentPad,ArrayRef<Value * > Args,unsigned Values,const Twine & NameStr,Instruction * InsertBefore)1091 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1092 ArrayRef<Value *> Args, unsigned Values,
1093 const Twine &NameStr, Instruction *InsertBefore)
1094 : Instruction(ParentPad->getType(), Op,
1095 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1096 InsertBefore) {
1097 init(ParentPad, Args, NameStr);
1098 }
1099
FuncletPadInst(Instruction::FuncletPadOps Op,Value * ParentPad,ArrayRef<Value * > Args,unsigned Values,const Twine & NameStr,BasicBlock * InsertAtEnd)1100 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1101 ArrayRef<Value *> Args, unsigned Values,
1102 const Twine &NameStr, BasicBlock *InsertAtEnd)
1103 : Instruction(ParentPad->getType(), Op,
1104 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1105 InsertAtEnd) {
1106 init(ParentPad, Args, NameStr);
1107 }
1108
1109 //===----------------------------------------------------------------------===//
1110 // UnreachableInst Implementation
1111 //===----------------------------------------------------------------------===//
1112
UnreachableInst(LLVMContext & Context,Instruction * InsertBefore)1113 UnreachableInst::UnreachableInst(LLVMContext &Context,
1114 Instruction *InsertBefore)
1115 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1116 0, InsertBefore) {}
UnreachableInst(LLVMContext & Context,BasicBlock * InsertAtEnd)1117 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1118 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1119 0, InsertAtEnd) {}
1120
1121 //===----------------------------------------------------------------------===//
1122 // BranchInst Implementation
1123 //===----------------------------------------------------------------------===//
1124
AssertOK()1125 void BranchInst::AssertOK() {
1126 if (isConditional())
1127 assert(getCondition()->getType()->isIntegerTy(1) &&
1128 "May only branch on boolean predicates!");
1129 }
1130
BranchInst(BasicBlock * IfTrue,Instruction * InsertBefore)1131 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1132 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1133 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1134 InsertBefore) {
1135 assert(IfTrue && "Branch destination may not be null!");
1136 Op<-1>() = IfTrue;
1137 }
1138
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,Instruction * InsertBefore)1139 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1140 Instruction *InsertBefore)
1141 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1142 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1143 InsertBefore) {
1144 Op<-1>() = IfTrue;
1145 Op<-2>() = IfFalse;
1146 Op<-3>() = Cond;
1147 #ifndef NDEBUG
1148 AssertOK();
1149 #endif
1150 }
1151
BranchInst(BasicBlock * IfTrue,BasicBlock * InsertAtEnd)1152 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1153 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1154 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1155 assert(IfTrue && "Branch destination may not be null!");
1156 Op<-1>() = IfTrue;
1157 }
1158
BranchInst(BasicBlock * IfTrue,BasicBlock * IfFalse,Value * Cond,BasicBlock * InsertAtEnd)1159 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1160 BasicBlock *InsertAtEnd)
1161 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1162 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1163 Op<-1>() = IfTrue;
1164 Op<-2>() = IfFalse;
1165 Op<-3>() = Cond;
1166 #ifndef NDEBUG
1167 AssertOK();
1168 #endif
1169 }
1170
BranchInst(const BranchInst & BI)1171 BranchInst::BranchInst(const BranchInst &BI)
1172 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1173 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1174 BI.getNumOperands()) {
1175 Op<-1>() = BI.Op<-1>();
1176 if (BI.getNumOperands() != 1) {
1177 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1178 Op<-3>() = BI.Op<-3>();
1179 Op<-2>() = BI.Op<-2>();
1180 }
1181 SubclassOptionalData = BI.SubclassOptionalData;
1182 }
1183
swapSuccessors()1184 void BranchInst::swapSuccessors() {
1185 assert(isConditional() &&
1186 "Cannot swap successors of an unconditional branch");
1187 Op<-1>().swap(Op<-2>());
1188
1189 // Update profile metadata if present and it matches our structural
1190 // expectations.
1191 swapProfMetadata();
1192 }
1193
1194 //===----------------------------------------------------------------------===//
1195 // AllocaInst Implementation
1196 //===----------------------------------------------------------------------===//
1197
getAISize(LLVMContext & Context,Value * Amt)1198 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1199 if (!Amt)
1200 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1201 else {
1202 assert(!isa<BasicBlock>(Amt) &&
1203 "Passed basic block into allocation size parameter! Use other ctor");
1204 assert(Amt->getType()->isIntegerTy() &&
1205 "Allocation array size is not an integer!");
1206 }
1207 return Amt;
1208 }
1209
AllocaInst(Type * Ty,unsigned AddrSpace,const Twine & Name,Instruction * InsertBefore)1210 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1211 Instruction *InsertBefore)
1212 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1213
AllocaInst(Type * Ty,unsigned AddrSpace,const Twine & Name,BasicBlock * InsertAtEnd)1214 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1215 BasicBlock *InsertAtEnd)
1216 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1217
AllocaInst(Type * Ty,unsigned AddrSpace,Value * ArraySize,const Twine & Name,Instruction * InsertBefore)1218 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1219 const Twine &Name, Instruction *InsertBefore)
1220 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/None, Name, InsertBefore) {
1221 }
1222
AllocaInst(Type * Ty,unsigned AddrSpace,Value * ArraySize,const Twine & Name,BasicBlock * InsertAtEnd)1223 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1224 const Twine &Name, BasicBlock *InsertAtEnd)
1225 : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/None, Name, InsertAtEnd) {}
1226
AllocaInst(Type * Ty,unsigned AddrSpace,Value * ArraySize,MaybeAlign Align,const Twine & Name,Instruction * InsertBefore)1227 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1228 MaybeAlign Align, const Twine &Name,
1229 Instruction *InsertBefore)
1230 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1231 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1232 AllocatedType(Ty) {
1233 setAlignment(MaybeAlign(Align));
1234 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1235 setName(Name);
1236 }
1237
AllocaInst(Type * Ty,unsigned AddrSpace,Value * ArraySize,MaybeAlign Align,const Twine & Name,BasicBlock * InsertAtEnd)1238 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1239 MaybeAlign Align, const Twine &Name,
1240 BasicBlock *InsertAtEnd)
1241 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1242 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1243 AllocatedType(Ty) {
1244 setAlignment(Align);
1245 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1246 setName(Name);
1247 }
1248
setAlignment(MaybeAlign Align)1249 void AllocaInst::setAlignment(MaybeAlign Align) {
1250 assert((!Align || *Align <= MaximumAlignment) &&
1251 "Alignment is greater than MaximumAlignment!");
1252 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1253 encode(Align));
1254 if (Align)
1255 assert(getAlignment() == Align->value() &&
1256 "Alignment representation error!");
1257 else
1258 assert(getAlignment() == 0 && "Alignment representation error!");
1259 }
1260
isArrayAllocation() const1261 bool AllocaInst::isArrayAllocation() const {
1262 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1263 return !CI->isOne();
1264 return true;
1265 }
1266
1267 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1268 /// function and is a constant size. If so, the code generator will fold it
1269 /// into the prolog/epilog code, so it is basically free.
isStaticAlloca() const1270 bool AllocaInst::isStaticAlloca() const {
1271 // Must be constant size.
1272 if (!isa<ConstantInt>(getArraySize())) return false;
1273
1274 // Must be in the entry block.
1275 const BasicBlock *Parent = getParent();
1276 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1277 }
1278
1279 //===----------------------------------------------------------------------===//
1280 // LoadInst Implementation
1281 //===----------------------------------------------------------------------===//
1282
AssertOK()1283 void LoadInst::AssertOK() {
1284 assert(getOperand(0)->getType()->isPointerTy() &&
1285 "Ptr must have pointer type.");
1286 assert(!(isAtomic() && getAlignment() == 0) &&
1287 "Alignment required for atomic load");
1288 }
1289
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,Instruction * InsertBef)1290 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1291 Instruction *InsertBef)
1292 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1293
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,BasicBlock * InsertAE)1294 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1295 BasicBlock *InsertAE)
1296 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1297
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,Instruction * InsertBef)1298 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1299 Instruction *InsertBef)
1300 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertBef) {}
1301
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,BasicBlock * InsertAE)1302 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1303 BasicBlock *InsertAE)
1304 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertAE) {}
1305
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,MaybeAlign Align,Instruction * InsertBef)1306 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1307 MaybeAlign Align, Instruction *InsertBef)
1308 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1309 SyncScope::System, InsertBef) {}
1310
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,MaybeAlign Align,BasicBlock * InsertAE)1311 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1312 MaybeAlign Align, BasicBlock *InsertAE)
1313 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1314 SyncScope::System, InsertAE) {}
1315
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,MaybeAlign Align,AtomicOrdering Order,SyncScope::ID SSID,Instruction * InsertBef)1316 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1317 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1318 Instruction *InsertBef)
1319 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1320 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1321 setVolatile(isVolatile);
1322 setAlignment(MaybeAlign(Align));
1323 setAtomic(Order, SSID);
1324 AssertOK();
1325 setName(Name);
1326 }
1327
LoadInst(Type * Ty,Value * Ptr,const Twine & Name,bool isVolatile,MaybeAlign Align,AtomicOrdering Order,SyncScope::ID SSID,BasicBlock * InsertAE)1328 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1329 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
1330 BasicBlock *InsertAE)
1331 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1332 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1333 setVolatile(isVolatile);
1334 setAlignment(Align);
1335 setAtomic(Order, SSID);
1336 AssertOK();
1337 setName(Name);
1338 }
1339
setAlignment(MaybeAlign Align)1340 void LoadInst::setAlignment(MaybeAlign Align) {
1341 assert((!Align || *Align <= MaximumAlignment) &&
1342 "Alignment is greater than MaximumAlignment!");
1343 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1344 (encode(Align) << 1));
1345 assert(getAlign() == Align && "Alignment representation error!");
1346 }
1347
1348 //===----------------------------------------------------------------------===//
1349 // StoreInst Implementation
1350 //===----------------------------------------------------------------------===//
1351
AssertOK()1352 void StoreInst::AssertOK() {
1353 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1354 assert(getOperand(1)->getType()->isPointerTy() &&
1355 "Ptr must have pointer type!");
1356 assert(getOperand(0)->getType() ==
1357 cast<PointerType>(getOperand(1)->getType())->getElementType()
1358 && "Ptr must be a pointer to Val type!");
1359 assert(!(isAtomic() && getAlignment() == 0) &&
1360 "Alignment required for atomic store");
1361 }
1362
StoreInst(Value * val,Value * addr,Instruction * InsertBefore)1363 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1364 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1365
StoreInst(Value * val,Value * addr,BasicBlock * InsertAtEnd)1366 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1367 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1368
StoreInst(Value * val,Value * addr,bool isVolatile,Instruction * InsertBefore)1369 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1370 Instruction *InsertBefore)
1371 : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertBefore) {}
1372
StoreInst(Value * val,Value * addr,bool isVolatile,BasicBlock * InsertAtEnd)1373 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1374 BasicBlock *InsertAtEnd)
1375 : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertAtEnd) {}
1376
StoreInst(Value * val,Value * addr,bool isVolatile,MaybeAlign Align,Instruction * InsertBefore)1377 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1378 Instruction *InsertBefore)
1379 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1380 SyncScope::System, InsertBefore) {}
1381
StoreInst(Value * val,Value * addr,bool isVolatile,MaybeAlign Align,BasicBlock * InsertAtEnd)1382 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1383 BasicBlock *InsertAtEnd)
1384 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1385 SyncScope::System, InsertAtEnd) {}
1386
StoreInst(Value * val,Value * addr,bool isVolatile,MaybeAlign Align,AtomicOrdering Order,SyncScope::ID SSID,Instruction * InsertBefore)1387 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1388 AtomicOrdering Order, SyncScope::ID SSID,
1389 Instruction *InsertBefore)
1390 : Instruction(Type::getVoidTy(val->getContext()), Store,
1391 OperandTraits<StoreInst>::op_begin(this),
1392 OperandTraits<StoreInst>::operands(this), InsertBefore) {
1393 Op<0>() = val;
1394 Op<1>() = addr;
1395 setVolatile(isVolatile);
1396 setAlignment(Align);
1397 setAtomic(Order, SSID);
1398 AssertOK();
1399 }
1400
StoreInst(Value * val,Value * addr,bool isVolatile,MaybeAlign Align,AtomicOrdering Order,SyncScope::ID SSID,BasicBlock * InsertAtEnd)1401 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align,
1402 AtomicOrdering Order, SyncScope::ID SSID,
1403 BasicBlock *InsertAtEnd)
1404 : Instruction(Type::getVoidTy(val->getContext()), Store,
1405 OperandTraits<StoreInst>::op_begin(this),
1406 OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1407 Op<0>() = val;
1408 Op<1>() = addr;
1409 setVolatile(isVolatile);
1410 setAlignment(Align);
1411 setAtomic(Order, SSID);
1412 AssertOK();
1413 }
1414
setAlignment(MaybeAlign Alignment)1415 void StoreInst::setAlignment(MaybeAlign Alignment) {
1416 assert((!Alignment || *Alignment <= MaximumAlignment) &&
1417 "Alignment is greater than MaximumAlignment!");
1418 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1419 (encode(Alignment) << 1));
1420 assert(getAlign() == Alignment && "Alignment representation error!");
1421 }
1422
1423 //===----------------------------------------------------------------------===//
1424 // AtomicCmpXchgInst Implementation
1425 //===----------------------------------------------------------------------===//
1426
Init(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID)1427 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1428 AtomicOrdering SuccessOrdering,
1429 AtomicOrdering FailureOrdering,
1430 SyncScope::ID SSID) {
1431 Op<0>() = Ptr;
1432 Op<1>() = Cmp;
1433 Op<2>() = NewVal;
1434 setSuccessOrdering(SuccessOrdering);
1435 setFailureOrdering(FailureOrdering);
1436 setSyncScopeID(SSID);
1437
1438 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1439 "All operands must be non-null!");
1440 assert(getOperand(0)->getType()->isPointerTy() &&
1441 "Ptr must have pointer type!");
1442 assert(getOperand(1)->getType() ==
1443 cast<PointerType>(getOperand(0)->getType())->getElementType()
1444 && "Ptr must be a pointer to Cmp type!");
1445 assert(getOperand(2)->getType() ==
1446 cast<PointerType>(getOperand(0)->getType())->getElementType()
1447 && "Ptr must be a pointer to NewVal type!");
1448 assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
1449 "AtomicCmpXchg instructions must be atomic!");
1450 assert(FailureOrdering != AtomicOrdering::NotAtomic &&
1451 "AtomicCmpXchg instructions must be atomic!");
1452 assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
1453 "AtomicCmpXchg failure argument shall be no stronger than the success "
1454 "argument");
1455 assert(FailureOrdering != AtomicOrdering::Release &&
1456 FailureOrdering != AtomicOrdering::AcquireRelease &&
1457 "AtomicCmpXchg failure ordering cannot include release semantics");
1458 }
1459
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID,Instruction * InsertBefore)1460 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1461 AtomicOrdering SuccessOrdering,
1462 AtomicOrdering FailureOrdering,
1463 SyncScope::ID SSID,
1464 Instruction *InsertBefore)
1465 : Instruction(
1466 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1467 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1468 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1469 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1470 }
1471
AtomicCmpXchgInst(Value * Ptr,Value * Cmp,Value * NewVal,AtomicOrdering SuccessOrdering,AtomicOrdering FailureOrdering,SyncScope::ID SSID,BasicBlock * InsertAtEnd)1472 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1473 AtomicOrdering SuccessOrdering,
1474 AtomicOrdering FailureOrdering,
1475 SyncScope::ID SSID,
1476 BasicBlock *InsertAtEnd)
1477 : Instruction(
1478 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1479 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1480 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1481 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
1482 }
1483
1484 //===----------------------------------------------------------------------===//
1485 // AtomicRMWInst Implementation
1486 //===----------------------------------------------------------------------===//
1487
Init(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SyncScope::ID SSID)1488 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1489 AtomicOrdering Ordering,
1490 SyncScope::ID SSID) {
1491 Op<0>() = Ptr;
1492 Op<1>() = Val;
1493 setOperation(Operation);
1494 setOrdering(Ordering);
1495 setSyncScopeID(SSID);
1496
1497 assert(getOperand(0) && getOperand(1) &&
1498 "All operands must be non-null!");
1499 assert(getOperand(0)->getType()->isPointerTy() &&
1500 "Ptr must have pointer type!");
1501 assert(getOperand(1)->getType() ==
1502 cast<PointerType>(getOperand(0)->getType())->getElementType()
1503 && "Ptr must be a pointer to Val type!");
1504 assert(Ordering != AtomicOrdering::NotAtomic &&
1505 "AtomicRMW instructions must be atomic!");
1506 }
1507
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SyncScope::ID SSID,Instruction * InsertBefore)1508 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1509 AtomicOrdering Ordering,
1510 SyncScope::ID SSID,
1511 Instruction *InsertBefore)
1512 : Instruction(Val->getType(), AtomicRMW,
1513 OperandTraits<AtomicRMWInst>::op_begin(this),
1514 OperandTraits<AtomicRMWInst>::operands(this),
1515 InsertBefore) {
1516 Init(Operation, Ptr, Val, Ordering, SSID);
1517 }
1518
AtomicRMWInst(BinOp Operation,Value * Ptr,Value * Val,AtomicOrdering Ordering,SyncScope::ID SSID,BasicBlock * InsertAtEnd)1519 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1520 AtomicOrdering Ordering,
1521 SyncScope::ID SSID,
1522 BasicBlock *InsertAtEnd)
1523 : Instruction(Val->getType(), AtomicRMW,
1524 OperandTraits<AtomicRMWInst>::op_begin(this),
1525 OperandTraits<AtomicRMWInst>::operands(this),
1526 InsertAtEnd) {
1527 Init(Operation, Ptr, Val, Ordering, SSID);
1528 }
1529
getOperationName(BinOp Op)1530 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1531 switch (Op) {
1532 case AtomicRMWInst::Xchg:
1533 return "xchg";
1534 case AtomicRMWInst::Add:
1535 return "add";
1536 case AtomicRMWInst::Sub:
1537 return "sub";
1538 case AtomicRMWInst::And:
1539 return "and";
1540 case AtomicRMWInst::Nand:
1541 return "nand";
1542 case AtomicRMWInst::Or:
1543 return "or";
1544 case AtomicRMWInst::Xor:
1545 return "xor";
1546 case AtomicRMWInst::Max:
1547 return "max";
1548 case AtomicRMWInst::Min:
1549 return "min";
1550 case AtomicRMWInst::UMax:
1551 return "umax";
1552 case AtomicRMWInst::UMin:
1553 return "umin";
1554 case AtomicRMWInst::FAdd:
1555 return "fadd";
1556 case AtomicRMWInst::FSub:
1557 return "fsub";
1558 case AtomicRMWInst::BAD_BINOP:
1559 return "<invalid operation>";
1560 }
1561
1562 llvm_unreachable("invalid atomicrmw operation");
1563 }
1564
1565 //===----------------------------------------------------------------------===//
1566 // FenceInst Implementation
1567 //===----------------------------------------------------------------------===//
1568
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SyncScope::ID SSID,Instruction * InsertBefore)1569 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1570 SyncScope::ID SSID,
1571 Instruction *InsertBefore)
1572 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1573 setOrdering(Ordering);
1574 setSyncScopeID(SSID);
1575 }
1576
FenceInst(LLVMContext & C,AtomicOrdering Ordering,SyncScope::ID SSID,BasicBlock * InsertAtEnd)1577 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1578 SyncScope::ID SSID,
1579 BasicBlock *InsertAtEnd)
1580 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1581 setOrdering(Ordering);
1582 setSyncScopeID(SSID);
1583 }
1584
1585 //===----------------------------------------------------------------------===//
1586 // GetElementPtrInst Implementation
1587 //===----------------------------------------------------------------------===//
1588
init(Value * Ptr,ArrayRef<Value * > IdxList,const Twine & Name)1589 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1590 const Twine &Name) {
1591 assert(getNumOperands() == 1 + IdxList.size() &&
1592 "NumOperands not initialized?");
1593 Op<0>() = Ptr;
1594 llvm::copy(IdxList, op_begin() + 1);
1595 setName(Name);
1596 }
1597
GetElementPtrInst(const GetElementPtrInst & GEPI)1598 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1599 : Instruction(GEPI.getType(), GetElementPtr,
1600 OperandTraits<GetElementPtrInst>::op_end(this) -
1601 GEPI.getNumOperands(),
1602 GEPI.getNumOperands()),
1603 SourceElementType(GEPI.SourceElementType),
1604 ResultElementType(GEPI.ResultElementType) {
1605 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1606 SubclassOptionalData = GEPI.SubclassOptionalData;
1607 }
1608
1609 /// getIndexedType - Returns the type of the element that would be accessed with
1610 /// a gep instruction with the specified parameters.
1611 ///
1612 /// The Idxs pointer should point to a continuous piece of memory containing the
1613 /// indices, either as Value* or uint64_t.
1614 ///
1615 /// A null type is returned if the indices are invalid for the specified
1616 /// pointer type.
1617 ///
1618 template <typename IndexTy>
getIndexedTypeInternal(Type * Agg,ArrayRef<IndexTy> IdxList)1619 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1620 // Handle the special case of the empty set index set, which is always valid.
1621 if (IdxList.empty())
1622 return Agg;
1623
1624 // If there is at least one index, the top level type must be sized, otherwise
1625 // it cannot be 'stepped over'.
1626 if (!Agg->isSized())
1627 return nullptr;
1628
1629 unsigned CurIdx = 1;
1630 for (; CurIdx != IdxList.size(); ++CurIdx) {
1631 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1632 if (!CT || CT->isPointerTy()) return nullptr;
1633 IndexTy Index = IdxList[CurIdx];
1634 if (!CT->indexValid(Index)) return nullptr;
1635 Agg = CT->getTypeAtIndex(Index);
1636 }
1637 return CurIdx == IdxList.size() ? Agg : nullptr;
1638 }
1639
getIndexedType(Type * Ty,ArrayRef<Value * > IdxList)1640 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1641 return getIndexedTypeInternal(Ty, IdxList);
1642 }
1643
getIndexedType(Type * Ty,ArrayRef<Constant * > IdxList)1644 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1645 ArrayRef<Constant *> IdxList) {
1646 return getIndexedTypeInternal(Ty, IdxList);
1647 }
1648
getIndexedType(Type * Ty,ArrayRef<uint64_t> IdxList)1649 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1650 return getIndexedTypeInternal(Ty, IdxList);
1651 }
1652
1653 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1654 /// zeros. If so, the result pointer and the first operand have the same
1655 /// value, just potentially different types.
hasAllZeroIndices() const1656 bool GetElementPtrInst::hasAllZeroIndices() const {
1657 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1658 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1659 if (!CI->isZero()) return false;
1660 } else {
1661 return false;
1662 }
1663 }
1664 return true;
1665 }
1666
1667 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1668 /// constant integers. If so, the result pointer and the first operand have
1669 /// a constant offset between them.
hasAllConstantIndices() const1670 bool GetElementPtrInst::hasAllConstantIndices() const {
1671 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1672 if (!isa<ConstantInt>(getOperand(i)))
1673 return false;
1674 }
1675 return true;
1676 }
1677
setIsInBounds(bool B)1678 void GetElementPtrInst::setIsInBounds(bool B) {
1679 cast<GEPOperator>(this)->setIsInBounds(B);
1680 }
1681
isInBounds() const1682 bool GetElementPtrInst::isInBounds() const {
1683 return cast<GEPOperator>(this)->isInBounds();
1684 }
1685
accumulateConstantOffset(const DataLayout & DL,APInt & Offset) const1686 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1687 APInt &Offset) const {
1688 // Delegate to the generic GEPOperator implementation.
1689 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1690 }
1691
1692 //===----------------------------------------------------------------------===//
1693 // ExtractElementInst Implementation
1694 //===----------------------------------------------------------------------===//
1695
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,Instruction * InsertBef)1696 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1697 const Twine &Name,
1698 Instruction *InsertBef)
1699 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1700 ExtractElement,
1701 OperandTraits<ExtractElementInst>::op_begin(this),
1702 2, InsertBef) {
1703 assert(isValidOperands(Val, Index) &&
1704 "Invalid extractelement instruction operands!");
1705 Op<0>() = Val;
1706 Op<1>() = Index;
1707 setName(Name);
1708 }
1709
ExtractElementInst(Value * Val,Value * Index,const Twine & Name,BasicBlock * InsertAE)1710 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1711 const Twine &Name,
1712 BasicBlock *InsertAE)
1713 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1714 ExtractElement,
1715 OperandTraits<ExtractElementInst>::op_begin(this),
1716 2, InsertAE) {
1717 assert(isValidOperands(Val, Index) &&
1718 "Invalid extractelement instruction operands!");
1719
1720 Op<0>() = Val;
1721 Op<1>() = Index;
1722 setName(Name);
1723 }
1724
isValidOperands(const Value * Val,const Value * Index)1725 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1726 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1727 return false;
1728 return true;
1729 }
1730
1731 //===----------------------------------------------------------------------===//
1732 // InsertElementInst Implementation
1733 //===----------------------------------------------------------------------===//
1734
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,Instruction * InsertBef)1735 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1736 const Twine &Name,
1737 Instruction *InsertBef)
1738 : Instruction(Vec->getType(), InsertElement,
1739 OperandTraits<InsertElementInst>::op_begin(this),
1740 3, InsertBef) {
1741 assert(isValidOperands(Vec, Elt, Index) &&
1742 "Invalid insertelement instruction operands!");
1743 Op<0>() = Vec;
1744 Op<1>() = Elt;
1745 Op<2>() = Index;
1746 setName(Name);
1747 }
1748
InsertElementInst(Value * Vec,Value * Elt,Value * Index,const Twine & Name,BasicBlock * InsertAE)1749 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1750 const Twine &Name,
1751 BasicBlock *InsertAE)
1752 : Instruction(Vec->getType(), InsertElement,
1753 OperandTraits<InsertElementInst>::op_begin(this),
1754 3, InsertAE) {
1755 assert(isValidOperands(Vec, Elt, Index) &&
1756 "Invalid insertelement instruction operands!");
1757
1758 Op<0>() = Vec;
1759 Op<1>() = Elt;
1760 Op<2>() = Index;
1761 setName(Name);
1762 }
1763
isValidOperands(const Value * Vec,const Value * Elt,const Value * Index)1764 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1765 const Value *Index) {
1766 if (!Vec->getType()->isVectorTy())
1767 return false; // First operand of insertelement must be vector type.
1768
1769 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1770 return false;// Second operand of insertelement must be vector element type.
1771
1772 if (!Index->getType()->isIntegerTy())
1773 return false; // Third operand of insertelement must be i32.
1774 return true;
1775 }
1776
1777 //===----------------------------------------------------------------------===//
1778 // ShuffleVectorInst Implementation
1779 //===----------------------------------------------------------------------===//
1780
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,Instruction * InsertBefore)1781 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1782 const Twine &Name,
1783 Instruction *InsertBefore)
1784 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1785 cast<VectorType>(Mask->getType())->getElementCount()),
1786 ShuffleVector,
1787 OperandTraits<ShuffleVectorInst>::op_begin(this),
1788 OperandTraits<ShuffleVectorInst>::operands(this),
1789 InsertBefore) {
1790 assert(isValidOperands(V1, V2, Mask) &&
1791 "Invalid shuffle vector instruction operands!");
1792 Op<0>() = V1;
1793 Op<1>() = V2;
1794 Op<2>() = Mask;
1795 setName(Name);
1796 }
1797
ShuffleVectorInst(Value * V1,Value * V2,Value * Mask,const Twine & Name,BasicBlock * InsertAtEnd)1798 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1799 const Twine &Name,
1800 BasicBlock *InsertAtEnd)
1801 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1802 cast<VectorType>(Mask->getType())->getElementCount()),
1803 ShuffleVector,
1804 OperandTraits<ShuffleVectorInst>::op_begin(this),
1805 OperandTraits<ShuffleVectorInst>::operands(this),
1806 InsertAtEnd) {
1807 assert(isValidOperands(V1, V2, Mask) &&
1808 "Invalid shuffle vector instruction operands!");
1809
1810 Op<0>() = V1;
1811 Op<1>() = V2;
1812 Op<2>() = Mask;
1813 setName(Name);
1814 }
1815
commute()1816 void ShuffleVectorInst::commute() {
1817 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
1818 int NumMaskElts = getMask()->getType()->getVectorNumElements();
1819 SmallVector<Constant*, 16> NewMask(NumMaskElts);
1820 Type *Int32Ty = Type::getInt32Ty(getContext());
1821 for (int i = 0; i != NumMaskElts; ++i) {
1822 int MaskElt = getMaskValue(i);
1823 if (MaskElt == -1) {
1824 NewMask[i] = UndefValue::get(Int32Ty);
1825 continue;
1826 }
1827 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1828 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1829 NewMask[i] = ConstantInt::get(Int32Ty, MaskElt);
1830 }
1831 Op<2>() = ConstantVector::get(NewMask);
1832 Op<0>().swap(Op<1>());
1833 }
1834
isValidOperands(const Value * V1,const Value * V2,const Value * Mask)1835 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1836 const Value *Mask) {
1837 // V1 and V2 must be vectors of the same type.
1838 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1839 return false;
1840
1841 // Mask must be vector of i32.
1842 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
1843 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1844 return false;
1845
1846 // Check to see if Mask is valid.
1847 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1848 return true;
1849
1850 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
1851 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1852 for (Value *Op : MV->operands()) {
1853 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
1854 if (CI->uge(V1Size*2))
1855 return false;
1856 } else if (!isa<UndefValue>(Op)) {
1857 return false;
1858 }
1859 }
1860 return true;
1861 }
1862
1863 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1864 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1865 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1866 if (CDS->getElementAsInteger(i) >= V1Size*2)
1867 return false;
1868 return true;
1869 }
1870
1871 // The bitcode reader can create a place holder for a forward reference
1872 // used as the shuffle mask. When this occurs, the shuffle mask will
1873 // fall into this case and fail. To avoid this error, do this bit of
1874 // ugliness to allow such a mask pass.
1875 if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
1876 if (CE->getOpcode() == Instruction::UserOp1)
1877 return true;
1878
1879 return false;
1880 }
1881
getMaskValue(const Constant * Mask,unsigned i)1882 int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
1883 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1884 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
1885 return CDS->getElementAsInteger(i);
1886 Constant *C = Mask->getAggregateElement(i);
1887 if (isa<UndefValue>(C))
1888 return -1;
1889 return cast<ConstantInt>(C)->getZExtValue();
1890 }
1891
getShuffleMask(const Constant * Mask,SmallVectorImpl<int> & Result)1892 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
1893 SmallVectorImpl<int> &Result) {
1894 unsigned NumElts = Mask->getType()->getVectorNumElements();
1895
1896 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
1897 for (unsigned i = 0; i != NumElts; ++i)
1898 Result.push_back(CDS->getElementAsInteger(i));
1899 return;
1900 }
1901 for (unsigned i = 0; i != NumElts; ++i) {
1902 Constant *C = Mask->getAggregateElement(i);
1903 Result.push_back(isa<UndefValue>(C) ? -1 :
1904 cast<ConstantInt>(C)->getZExtValue());
1905 }
1906 }
1907
isSingleSourceMaskImpl(ArrayRef<int> Mask,int NumOpElts)1908 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1909 assert(!Mask.empty() && "Shuffle mask must contain elements");
1910 bool UsesLHS = false;
1911 bool UsesRHS = false;
1912 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1913 if (Mask[i] == -1)
1914 continue;
1915 assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
1916 "Out-of-bounds shuffle mask element");
1917 UsesLHS |= (Mask[i] < NumOpElts);
1918 UsesRHS |= (Mask[i] >= NumOpElts);
1919 if (UsesLHS && UsesRHS)
1920 return false;
1921 }
1922 assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
1923 return true;
1924 }
1925
isSingleSourceMask(ArrayRef<int> Mask)1926 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
1927 // We don't have vector operand size information, so assume operands are the
1928 // same size as the mask.
1929 return isSingleSourceMaskImpl(Mask, Mask.size());
1930 }
1931
isIdentityMaskImpl(ArrayRef<int> Mask,int NumOpElts)1932 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
1933 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
1934 return false;
1935 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
1936 if (Mask[i] == -1)
1937 continue;
1938 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
1939 return false;
1940 }
1941 return true;
1942 }
1943
isIdentityMask(ArrayRef<int> Mask)1944 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
1945 // We don't have vector operand size information, so assume operands are the
1946 // same size as the mask.
1947 return isIdentityMaskImpl(Mask, Mask.size());
1948 }
1949
isReverseMask(ArrayRef<int> Mask)1950 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
1951 if (!isSingleSourceMask(Mask))
1952 return false;
1953 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1954 if (Mask[i] == -1)
1955 continue;
1956 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
1957 return false;
1958 }
1959 return true;
1960 }
1961
isZeroEltSplatMask(ArrayRef<int> Mask)1962 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
1963 if (!isSingleSourceMask(Mask))
1964 return false;
1965 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1966 if (Mask[i] == -1)
1967 continue;
1968 if (Mask[i] != 0 && Mask[i] != NumElts)
1969 return false;
1970 }
1971 return true;
1972 }
1973
isSelectMask(ArrayRef<int> Mask)1974 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
1975 // Select is differentiated from identity. It requires using both sources.
1976 if (isSingleSourceMask(Mask))
1977 return false;
1978 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
1979 if (Mask[i] == -1)
1980 continue;
1981 if (Mask[i] != i && Mask[i] != (NumElts + i))
1982 return false;
1983 }
1984 return true;
1985 }
1986
isTransposeMask(ArrayRef<int> Mask)1987 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
1988 // Example masks that will return true:
1989 // v1 = <a, b, c, d>
1990 // v2 = <e, f, g, h>
1991 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
1992 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
1993
1994 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
1995 int NumElts = Mask.size();
1996 if (NumElts < 2 || !isPowerOf2_32(NumElts))
1997 return false;
1998
1999 // 2. The first element of the mask must be either a 0 or a 1.
2000 if (Mask[0] != 0 && Mask[0] != 1)
2001 return false;
2002
2003 // 3. The difference between the first 2 elements must be equal to the
2004 // number of elements in the mask.
2005 if ((Mask[1] - Mask[0]) != NumElts)
2006 return false;
2007
2008 // 4. The difference between consecutive even-numbered and odd-numbered
2009 // elements must be equal to 2.
2010 for (int i = 2; i < NumElts; ++i) {
2011 int MaskEltVal = Mask[i];
2012 if (MaskEltVal == -1)
2013 return false;
2014 int MaskEltPrevVal = Mask[i - 2];
2015 if (MaskEltVal - MaskEltPrevVal != 2)
2016 return false;
2017 }
2018 return true;
2019 }
2020
isExtractSubvectorMask(ArrayRef<int> Mask,int NumSrcElts,int & Index)2021 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2022 int NumSrcElts, int &Index) {
2023 // Must extract from a single source.
2024 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2025 return false;
2026
2027 // Must be smaller (else this is an Identity shuffle).
2028 if (NumSrcElts <= (int)Mask.size())
2029 return false;
2030
2031 // Find start of extraction, accounting that we may start with an UNDEF.
2032 int SubIndex = -1;
2033 for (int i = 0, e = Mask.size(); i != e; ++i) {
2034 int M = Mask[i];
2035 if (M < 0)
2036 continue;
2037 int Offset = (M % NumSrcElts) - i;
2038 if (0 <= SubIndex && SubIndex != Offset)
2039 return false;
2040 SubIndex = Offset;
2041 }
2042
2043 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2044 Index = SubIndex;
2045 return true;
2046 }
2047 return false;
2048 }
2049
isIdentityWithPadding() const2050 bool ShuffleVectorInst::isIdentityWithPadding() const {
2051 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2052 int NumMaskElts = getType()->getVectorNumElements();
2053 if (NumMaskElts <= NumOpElts)
2054 return false;
2055
2056 // The first part of the mask must choose elements from exactly 1 source op.
2057 SmallVector<int, 16> Mask = getShuffleMask();
2058 if (!isIdentityMaskImpl(Mask, NumOpElts))
2059 return false;
2060
2061 // All extending must be with undef elements.
2062 for (int i = NumOpElts; i < NumMaskElts; ++i)
2063 if (Mask[i] != -1)
2064 return false;
2065
2066 return true;
2067 }
2068
isIdentityWithExtract() const2069 bool ShuffleVectorInst::isIdentityWithExtract() const {
2070 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2071 int NumMaskElts = getType()->getVectorNumElements();
2072 if (NumMaskElts >= NumOpElts)
2073 return false;
2074
2075 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2076 }
2077
isConcat() const2078 bool ShuffleVectorInst::isConcat() const {
2079 // Vector concatenation is differentiated from identity with padding.
2080 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
2081 return false;
2082
2083 int NumOpElts = Op<0>()->getType()->getVectorNumElements();
2084 int NumMaskElts = getType()->getVectorNumElements();
2085 if (NumMaskElts != NumOpElts * 2)
2086 return false;
2087
2088 // Use the mask length rather than the operands' vector lengths here. We
2089 // already know that the shuffle returns a vector twice as long as the inputs,
2090 // and neither of the inputs are undef vectors. If the mask picks consecutive
2091 // elements from both inputs, then this is a concatenation of the inputs.
2092 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2093 }
2094
2095 //===----------------------------------------------------------------------===//
2096 // InsertValueInst Class
2097 //===----------------------------------------------------------------------===//
2098
init(Value * Agg,Value * Val,ArrayRef<unsigned> Idxs,const Twine & Name)2099 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2100 const Twine &Name) {
2101 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2102
2103 // There's no fundamental reason why we require at least one index
2104 // (other than weirdness with &*IdxBegin being invalid; see
2105 // getelementptr's init routine for example). But there's no
2106 // present need to support it.
2107 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2108
2109 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2110 Val->getType() && "Inserted value must match indexed type!");
2111 Op<0>() = Agg;
2112 Op<1>() = Val;
2113
2114 Indices.append(Idxs.begin(), Idxs.end());
2115 setName(Name);
2116 }
2117
InsertValueInst(const InsertValueInst & IVI)2118 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2119 : Instruction(IVI.getType(), InsertValue,
2120 OperandTraits<InsertValueInst>::op_begin(this), 2),
2121 Indices(IVI.Indices) {
2122 Op<0>() = IVI.getOperand(0);
2123 Op<1>() = IVI.getOperand(1);
2124 SubclassOptionalData = IVI.SubclassOptionalData;
2125 }
2126
2127 //===----------------------------------------------------------------------===//
2128 // ExtractValueInst Class
2129 //===----------------------------------------------------------------------===//
2130
init(ArrayRef<unsigned> Idxs,const Twine & Name)2131 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2132 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2133
2134 // There's no fundamental reason why we require at least one index.
2135 // But there's no present need to support it.
2136 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2137
2138 Indices.append(Idxs.begin(), Idxs.end());
2139 setName(Name);
2140 }
2141
ExtractValueInst(const ExtractValueInst & EVI)2142 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2143 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2144 Indices(EVI.Indices) {
2145 SubclassOptionalData = EVI.SubclassOptionalData;
2146 }
2147
2148 // getIndexedType - Returns the type of the element that would be extracted
2149 // with an extractvalue instruction with the specified parameters.
2150 //
2151 // A null type is returned if the indices are invalid for the specified
2152 // pointer type.
2153 //
getIndexedType(Type * Agg,ArrayRef<unsigned> Idxs)2154 Type *ExtractValueInst::getIndexedType(Type *Agg,
2155 ArrayRef<unsigned> Idxs) {
2156 for (unsigned Index : Idxs) {
2157 // We can't use CompositeType::indexValid(Index) here.
2158 // indexValid() always returns true for arrays because getelementptr allows
2159 // out-of-bounds indices. Since we don't allow those for extractvalue and
2160 // insertvalue we need to check array indexing manually.
2161 // Since the only other types we can index into are struct types it's just
2162 // as easy to check those manually as well.
2163 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2164 if (Index >= AT->getNumElements())
2165 return nullptr;
2166 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2167 if (Index >= ST->getNumElements())
2168 return nullptr;
2169 } else {
2170 // Not a valid type to index into.
2171 return nullptr;
2172 }
2173
2174 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
2175 }
2176 return const_cast<Type*>(Agg);
2177 }
2178
2179 //===----------------------------------------------------------------------===//
2180 // UnaryOperator Class
2181 //===----------------------------------------------------------------------===//
2182
UnaryOperator(UnaryOps iType,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2183 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2184 Type *Ty, const Twine &Name,
2185 Instruction *InsertBefore)
2186 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2187 Op<0>() = S;
2188 setName(Name);
2189 AssertOK();
2190 }
2191
UnaryOperator(UnaryOps iType,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2192 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2193 Type *Ty, const Twine &Name,
2194 BasicBlock *InsertAtEnd)
2195 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2196 Op<0>() = S;
2197 setName(Name);
2198 AssertOK();
2199 }
2200
Create(UnaryOps Op,Value * S,const Twine & Name,Instruction * InsertBefore)2201 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2202 const Twine &Name,
2203 Instruction *InsertBefore) {
2204 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2205 }
2206
Create(UnaryOps Op,Value * S,const Twine & Name,BasicBlock * InsertAtEnd)2207 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2208 const Twine &Name,
2209 BasicBlock *InsertAtEnd) {
2210 UnaryOperator *Res = Create(Op, S, Name);
2211 InsertAtEnd->getInstList().push_back(Res);
2212 return Res;
2213 }
2214
AssertOK()2215 void UnaryOperator::AssertOK() {
2216 Value *LHS = getOperand(0);
2217 (void)LHS; // Silence warnings.
2218 #ifndef NDEBUG
2219 switch (getOpcode()) {
2220 case FNeg:
2221 assert(getType() == LHS->getType() &&
2222 "Unary operation should return same type as operand!");
2223 assert(getType()->isFPOrFPVectorTy() &&
2224 "Tried to create a floating-point operation on a "
2225 "non-floating-point type!");
2226 break;
2227 default: llvm_unreachable("Invalid opcode provided");
2228 }
2229 #endif
2230 }
2231
2232 //===----------------------------------------------------------------------===//
2233 // BinaryOperator Class
2234 //===----------------------------------------------------------------------===//
2235
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,Instruction * InsertBefore)2236 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2237 Type *Ty, const Twine &Name,
2238 Instruction *InsertBefore)
2239 : Instruction(Ty, iType,
2240 OperandTraits<BinaryOperator>::op_begin(this),
2241 OperandTraits<BinaryOperator>::operands(this),
2242 InsertBefore) {
2243 Op<0>() = S1;
2244 Op<1>() = S2;
2245 setName(Name);
2246 AssertOK();
2247 }
2248
BinaryOperator(BinaryOps iType,Value * S1,Value * S2,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2249 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2250 Type *Ty, const Twine &Name,
2251 BasicBlock *InsertAtEnd)
2252 : Instruction(Ty, iType,
2253 OperandTraits<BinaryOperator>::op_begin(this),
2254 OperandTraits<BinaryOperator>::operands(this),
2255 InsertAtEnd) {
2256 Op<0>() = S1;
2257 Op<1>() = S2;
2258 setName(Name);
2259 AssertOK();
2260 }
2261
AssertOK()2262 void BinaryOperator::AssertOK() {
2263 Value *LHS = getOperand(0), *RHS = getOperand(1);
2264 (void)LHS; (void)RHS; // Silence warnings.
2265 assert(LHS->getType() == RHS->getType() &&
2266 "Binary operator operand types must match!");
2267 #ifndef NDEBUG
2268 switch (getOpcode()) {
2269 case Add: case Sub:
2270 case Mul:
2271 assert(getType() == LHS->getType() &&
2272 "Arithmetic operation should return same type as operands!");
2273 assert(getType()->isIntOrIntVectorTy() &&
2274 "Tried to create an integer operation on a non-integer type!");
2275 break;
2276 case FAdd: case FSub:
2277 case FMul:
2278 assert(getType() == LHS->getType() &&
2279 "Arithmetic operation should return same type as operands!");
2280 assert(getType()->isFPOrFPVectorTy() &&
2281 "Tried to create a floating-point operation on a "
2282 "non-floating-point type!");
2283 break;
2284 case UDiv:
2285 case SDiv:
2286 assert(getType() == LHS->getType() &&
2287 "Arithmetic operation should return same type as operands!");
2288 assert(getType()->isIntOrIntVectorTy() &&
2289 "Incorrect operand type (not integer) for S/UDIV");
2290 break;
2291 case FDiv:
2292 assert(getType() == LHS->getType() &&
2293 "Arithmetic operation should return same type as operands!");
2294 assert(getType()->isFPOrFPVectorTy() &&
2295 "Incorrect operand type (not floating point) for FDIV");
2296 break;
2297 case URem:
2298 case SRem:
2299 assert(getType() == LHS->getType() &&
2300 "Arithmetic operation should return same type as operands!");
2301 assert(getType()->isIntOrIntVectorTy() &&
2302 "Incorrect operand type (not integer) for S/UREM");
2303 break;
2304 case FRem:
2305 assert(getType() == LHS->getType() &&
2306 "Arithmetic operation should return same type as operands!");
2307 assert(getType()->isFPOrFPVectorTy() &&
2308 "Incorrect operand type (not floating point) for FREM");
2309 break;
2310 case Shl:
2311 case LShr:
2312 case AShr:
2313 assert(getType() == LHS->getType() &&
2314 "Shift operation should return same type as operands!");
2315 assert(getType()->isIntOrIntVectorTy() &&
2316 "Tried to create a shift operation on a non-integral type!");
2317 break;
2318 case And: case Or:
2319 case Xor:
2320 assert(getType() == LHS->getType() &&
2321 "Logical operation should return same type as operands!");
2322 assert(getType()->isIntOrIntVectorTy() &&
2323 "Tried to create a logical operation on a non-integral type!");
2324 break;
2325 default: llvm_unreachable("Invalid opcode provided");
2326 }
2327 #endif
2328 }
2329
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)2330 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2331 const Twine &Name,
2332 Instruction *InsertBefore) {
2333 assert(S1->getType() == S2->getType() &&
2334 "Cannot create binary operator with two operands of differing type!");
2335 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2336 }
2337
Create(BinaryOps Op,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)2338 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2339 const Twine &Name,
2340 BasicBlock *InsertAtEnd) {
2341 BinaryOperator *Res = Create(Op, S1, S2, Name);
2342 InsertAtEnd->getInstList().push_back(Res);
2343 return Res;
2344 }
2345
CreateNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2346 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2347 Instruction *InsertBefore) {
2348 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2349 return new BinaryOperator(Instruction::Sub,
2350 zero, Op,
2351 Op->getType(), Name, InsertBefore);
2352 }
2353
CreateNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2354 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2355 BasicBlock *InsertAtEnd) {
2356 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2357 return new BinaryOperator(Instruction::Sub,
2358 zero, Op,
2359 Op->getType(), Name, InsertAtEnd);
2360 }
2361
CreateNSWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2362 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2363 Instruction *InsertBefore) {
2364 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2365 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2366 }
2367
CreateNSWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2368 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2369 BasicBlock *InsertAtEnd) {
2370 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2371 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2372 }
2373
CreateNUWNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2374 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2375 Instruction *InsertBefore) {
2376 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2377 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2378 }
2379
CreateNUWNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2380 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2381 BasicBlock *InsertAtEnd) {
2382 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2383 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2384 }
2385
CreateFNeg(Value * Op,const Twine & Name,Instruction * InsertBefore)2386 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2387 Instruction *InsertBefore) {
2388 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2389 return new BinaryOperator(Instruction::FSub, zero, Op,
2390 Op->getType(), Name, InsertBefore);
2391 }
2392
CreateFNeg(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2393 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2394 BasicBlock *InsertAtEnd) {
2395 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2396 return new BinaryOperator(Instruction::FSub, zero, Op,
2397 Op->getType(), Name, InsertAtEnd);
2398 }
2399
CreateNot(Value * Op,const Twine & Name,Instruction * InsertBefore)2400 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2401 Instruction *InsertBefore) {
2402 Constant *C = Constant::getAllOnesValue(Op->getType());
2403 return new BinaryOperator(Instruction::Xor, Op, C,
2404 Op->getType(), Name, InsertBefore);
2405 }
2406
CreateNot(Value * Op,const Twine & Name,BasicBlock * InsertAtEnd)2407 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2408 BasicBlock *InsertAtEnd) {
2409 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2410 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2411 Op->getType(), Name, InsertAtEnd);
2412 }
2413
2414 // Exchange the two operands to this instruction. This instruction is safe to
2415 // use on any binary instruction and does not modify the semantics of the
2416 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2417 // is changed.
swapOperands()2418 bool BinaryOperator::swapOperands() {
2419 if (!isCommutative())
2420 return true; // Can't commute operands
2421 Op<0>().swap(Op<1>());
2422 return false;
2423 }
2424
2425 //===----------------------------------------------------------------------===//
2426 // FPMathOperator Class
2427 //===----------------------------------------------------------------------===//
2428
getFPAccuracy() const2429 float FPMathOperator::getFPAccuracy() const {
2430 const MDNode *MD =
2431 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2432 if (!MD)
2433 return 0.0;
2434 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2435 return Accuracy->getValueAPF().convertToFloat();
2436 }
2437
2438 //===----------------------------------------------------------------------===//
2439 // CastInst Class
2440 //===----------------------------------------------------------------------===//
2441
2442 // Just determine if this cast only deals with integral->integral conversion.
isIntegerCast() const2443 bool CastInst::isIntegerCast() const {
2444 switch (getOpcode()) {
2445 default: return false;
2446 case Instruction::ZExt:
2447 case Instruction::SExt:
2448 case Instruction::Trunc:
2449 return true;
2450 case Instruction::BitCast:
2451 return getOperand(0)->getType()->isIntegerTy() &&
2452 getType()->isIntegerTy();
2453 }
2454 }
2455
isLosslessCast() const2456 bool CastInst::isLosslessCast() const {
2457 // Only BitCast can be lossless, exit fast if we're not BitCast
2458 if (getOpcode() != Instruction::BitCast)
2459 return false;
2460
2461 // Identity cast is always lossless
2462 Type *SrcTy = getOperand(0)->getType();
2463 Type *DstTy = getType();
2464 if (SrcTy == DstTy)
2465 return true;
2466
2467 // Pointer to pointer is always lossless.
2468 if (SrcTy->isPointerTy())
2469 return DstTy->isPointerTy();
2470 return false; // Other types have no identity values
2471 }
2472
2473 /// This function determines if the CastInst does not require any bits to be
2474 /// changed in order to effect the cast. Essentially, it identifies cases where
2475 /// no code gen is necessary for the cast, hence the name no-op cast. For
2476 /// example, the following are all no-op casts:
2477 /// # bitcast i32* %x to i8*
2478 /// # bitcast <2 x i32> %x to <4 x i16>
2479 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2480 /// Determine if the described cast is a no-op.
isNoopCast(Instruction::CastOps Opcode,Type * SrcTy,Type * DestTy,const DataLayout & DL)2481 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2482 Type *SrcTy,
2483 Type *DestTy,
2484 const DataLayout &DL) {
2485 switch (Opcode) {
2486 default: llvm_unreachable("Invalid CastOp");
2487 case Instruction::Trunc:
2488 case Instruction::ZExt:
2489 case Instruction::SExt:
2490 case Instruction::FPTrunc:
2491 case Instruction::FPExt:
2492 case Instruction::UIToFP:
2493 case Instruction::SIToFP:
2494 case Instruction::FPToUI:
2495 case Instruction::FPToSI:
2496 case Instruction::AddrSpaceCast:
2497 // TODO: Target informations may give a more accurate answer here.
2498 return false;
2499 case Instruction::BitCast:
2500 return true; // BitCast never modifies bits.
2501 case Instruction::PtrToInt:
2502 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2503 DestTy->getScalarSizeInBits();
2504 case Instruction::IntToPtr:
2505 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2506 SrcTy->getScalarSizeInBits();
2507 }
2508 }
2509
isNoopCast(const DataLayout & DL) const2510 bool CastInst::isNoopCast(const DataLayout &DL) const {
2511 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2512 }
2513
2514 /// This function determines if a pair of casts can be eliminated and what
2515 /// opcode should be used in the elimination. This assumes that there are two
2516 /// instructions like this:
2517 /// * %F = firstOpcode SrcTy %x to MidTy
2518 /// * %S = secondOpcode MidTy %F to DstTy
2519 /// The function returns a resultOpcode so these two casts can be replaced with:
2520 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2521 /// If no such cast is permitted, the function returns 0.
isEliminableCastPair(Instruction::CastOps firstOp,Instruction::CastOps secondOp,Type * SrcTy,Type * MidTy,Type * DstTy,Type * SrcIntPtrTy,Type * MidIntPtrTy,Type * DstIntPtrTy)2522 unsigned CastInst::isEliminableCastPair(
2523 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2524 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2525 Type *DstIntPtrTy) {
2526 // Define the 144 possibilities for these two cast instructions. The values
2527 // in this matrix determine what to do in a given situation and select the
2528 // case in the switch below. The rows correspond to firstOp, the columns
2529 // correspond to secondOp. In looking at the table below, keep in mind
2530 // the following cast properties:
2531 //
2532 // Size Compare Source Destination
2533 // Operator Src ? Size Type Sign Type Sign
2534 // -------- ------------ ------------------- ---------------------
2535 // TRUNC > Integer Any Integral Any
2536 // ZEXT < Integral Unsigned Integer Any
2537 // SEXT < Integral Signed Integer Any
2538 // FPTOUI n/a FloatPt n/a Integral Unsigned
2539 // FPTOSI n/a FloatPt n/a Integral Signed
2540 // UITOFP n/a Integral Unsigned FloatPt n/a
2541 // SITOFP n/a Integral Signed FloatPt n/a
2542 // FPTRUNC > FloatPt n/a FloatPt n/a
2543 // FPEXT < FloatPt n/a FloatPt n/a
2544 // PTRTOINT n/a Pointer n/a Integral Unsigned
2545 // INTTOPTR n/a Integral Unsigned Pointer n/a
2546 // BITCAST = FirstClass n/a FirstClass n/a
2547 // ADDRSPCST n/a Pointer n/a Pointer n/a
2548 //
2549 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2550 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2551 // into "fptoui double to i64", but this loses information about the range
2552 // of the produced value (we no longer know the top-part is all zeros).
2553 // Further this conversion is often much more expensive for typical hardware,
2554 // and causes issues when building libgcc. We disallow fptosi+sext for the
2555 // same reason.
2556 const unsigned numCastOps =
2557 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2558 static const uint8_t CastResults[numCastOps][numCastOps] = {
2559 // T F F U S F F P I B A -+
2560 // R Z S P P I I T P 2 N T S |
2561 // U E E 2 2 2 2 R E I T C C +- secondOp
2562 // N X X U S F F N X N 2 V V |
2563 // C T T I I P P C T T P T T -+
2564 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2565 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2566 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2567 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2568 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2569 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2570 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2571 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2572 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2573 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2574 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2575 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2576 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2577 };
2578
2579 // TODO: This logic could be encoded into the table above and handled in the
2580 // switch below.
2581 // If either of the casts are a bitcast from scalar to vector, disallow the
2582 // merging. However, any pair of bitcasts are allowed.
2583 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2584 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2585 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2586
2587 // Check if any of the casts convert scalars <-> vectors.
2588 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2589 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2590 if (!AreBothBitcasts)
2591 return 0;
2592
2593 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2594 [secondOp-Instruction::CastOpsBegin];
2595 switch (ElimCase) {
2596 case 0:
2597 // Categorically disallowed.
2598 return 0;
2599 case 1:
2600 // Allowed, use first cast's opcode.
2601 return firstOp;
2602 case 2:
2603 // Allowed, use second cast's opcode.
2604 return secondOp;
2605 case 3:
2606 // No-op cast in second op implies firstOp as long as the DestTy
2607 // is integer and we are not converting between a vector and a
2608 // non-vector type.
2609 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2610 return firstOp;
2611 return 0;
2612 case 4:
2613 // No-op cast in second op implies firstOp as long as the DestTy
2614 // is floating point.
2615 if (DstTy->isFloatingPointTy())
2616 return firstOp;
2617 return 0;
2618 case 5:
2619 // No-op cast in first op implies secondOp as long as the SrcTy
2620 // is an integer.
2621 if (SrcTy->isIntegerTy())
2622 return secondOp;
2623 return 0;
2624 case 6:
2625 // No-op cast in first op implies secondOp as long as the SrcTy
2626 // is a floating point.
2627 if (SrcTy->isFloatingPointTy())
2628 return secondOp;
2629 return 0;
2630 case 7: {
2631 // Cannot simplify if address spaces are different!
2632 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2633 return 0;
2634
2635 unsigned MidSize = MidTy->getScalarSizeInBits();
2636 // We can still fold this without knowing the actual sizes as long we
2637 // know that the intermediate pointer is the largest possible
2638 // pointer size.
2639 // FIXME: Is this always true?
2640 if (MidSize == 64)
2641 return Instruction::BitCast;
2642
2643 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2644 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2645 return 0;
2646 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2647 if (MidSize >= PtrSize)
2648 return Instruction::BitCast;
2649 return 0;
2650 }
2651 case 8: {
2652 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2653 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2654 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2655 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2656 unsigned DstSize = DstTy->getScalarSizeInBits();
2657 if (SrcSize == DstSize)
2658 return Instruction::BitCast;
2659 else if (SrcSize < DstSize)
2660 return firstOp;
2661 return secondOp;
2662 }
2663 case 9:
2664 // zext, sext -> zext, because sext can't sign extend after zext
2665 return Instruction::ZExt;
2666 case 11: {
2667 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2668 if (!MidIntPtrTy)
2669 return 0;
2670 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2671 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2672 unsigned DstSize = DstTy->getScalarSizeInBits();
2673 if (SrcSize <= PtrSize && SrcSize == DstSize)
2674 return Instruction::BitCast;
2675 return 0;
2676 }
2677 case 12:
2678 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2679 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2680 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2681 return Instruction::AddrSpaceCast;
2682 return Instruction::BitCast;
2683 case 13:
2684 // FIXME: this state can be merged with (1), but the following assert
2685 // is useful to check the correcteness of the sequence due to semantic
2686 // change of bitcast.
2687 assert(
2688 SrcTy->isPtrOrPtrVectorTy() &&
2689 MidTy->isPtrOrPtrVectorTy() &&
2690 DstTy->isPtrOrPtrVectorTy() &&
2691 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2692 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2693 "Illegal addrspacecast, bitcast sequence!");
2694 // Allowed, use first cast's opcode
2695 return firstOp;
2696 case 14:
2697 // bitcast, addrspacecast -> addrspacecast if the element type of
2698 // bitcast's source is the same as that of addrspacecast's destination.
2699 if (SrcTy->getScalarType()->getPointerElementType() ==
2700 DstTy->getScalarType()->getPointerElementType())
2701 return Instruction::AddrSpaceCast;
2702 return 0;
2703 case 15:
2704 // FIXME: this state can be merged with (1), but the following assert
2705 // is useful to check the correcteness of the sequence due to semantic
2706 // change of bitcast.
2707 assert(
2708 SrcTy->isIntOrIntVectorTy() &&
2709 MidTy->isPtrOrPtrVectorTy() &&
2710 DstTy->isPtrOrPtrVectorTy() &&
2711 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2712 "Illegal inttoptr, bitcast sequence!");
2713 // Allowed, use first cast's opcode
2714 return firstOp;
2715 case 16:
2716 // FIXME: this state can be merged with (2), but the following assert
2717 // is useful to check the correcteness of the sequence due to semantic
2718 // change of bitcast.
2719 assert(
2720 SrcTy->isPtrOrPtrVectorTy() &&
2721 MidTy->isPtrOrPtrVectorTy() &&
2722 DstTy->isIntOrIntVectorTy() &&
2723 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2724 "Illegal bitcast, ptrtoint sequence!");
2725 // Allowed, use second cast's opcode
2726 return secondOp;
2727 case 17:
2728 // (sitofp (zext x)) -> (uitofp x)
2729 return Instruction::UIToFP;
2730 case 99:
2731 // Cast combination can't happen (error in input). This is for all cases
2732 // where the MidTy is not the same for the two cast instructions.
2733 llvm_unreachable("Invalid Cast Combination");
2734 default:
2735 llvm_unreachable("Error in CastResults table!!!");
2736 }
2737 }
2738
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2739 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2740 const Twine &Name, Instruction *InsertBefore) {
2741 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2742 // Construct and return the appropriate CastInst subclass
2743 switch (op) {
2744 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2745 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2746 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2747 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2748 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2749 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2750 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2751 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2752 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2753 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2754 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2755 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2756 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2757 default: llvm_unreachable("Invalid opcode provided");
2758 }
2759 }
2760
Create(Instruction::CastOps op,Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2761 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2762 const Twine &Name, BasicBlock *InsertAtEnd) {
2763 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2764 // Construct and return the appropriate CastInst subclass
2765 switch (op) {
2766 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2767 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2768 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2769 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2770 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2771 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2772 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2773 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2774 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2775 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2776 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2777 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2778 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2779 default: llvm_unreachable("Invalid opcode provided");
2780 }
2781 }
2782
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2783 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2784 const Twine &Name,
2785 Instruction *InsertBefore) {
2786 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2787 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2788 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2789 }
2790
CreateZExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2791 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2792 const Twine &Name,
2793 BasicBlock *InsertAtEnd) {
2794 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2795 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2796 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2797 }
2798
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2799 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2800 const Twine &Name,
2801 Instruction *InsertBefore) {
2802 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2803 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2804 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2805 }
2806
CreateSExtOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2807 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2808 const Twine &Name,
2809 BasicBlock *InsertAtEnd) {
2810 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2811 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2812 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2813 }
2814
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2815 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2816 const Twine &Name,
2817 Instruction *InsertBefore) {
2818 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2819 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2820 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2821 }
2822
CreateTruncOrBitCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2823 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2824 const Twine &Name,
2825 BasicBlock *InsertAtEnd) {
2826 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2827 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2828 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2829 }
2830
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2831 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2832 const Twine &Name,
2833 BasicBlock *InsertAtEnd) {
2834 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2835 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2836 "Invalid cast");
2837 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2838 assert((!Ty->isVectorTy() ||
2839 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2840 "Invalid cast");
2841
2842 if (Ty->isIntOrIntVectorTy())
2843 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2844
2845 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2846 }
2847
2848 /// Create a BitCast or a PtrToInt cast instruction
CreatePointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2849 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2850 const Twine &Name,
2851 Instruction *InsertBefore) {
2852 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2853 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2854 "Invalid cast");
2855 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2856 assert((!Ty->isVectorTy() ||
2857 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2858 "Invalid cast");
2859
2860 if (Ty->isIntOrIntVectorTy())
2861 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2862
2863 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2864 }
2865
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2866 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2867 Value *S, Type *Ty,
2868 const Twine &Name,
2869 BasicBlock *InsertAtEnd) {
2870 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2871 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2872
2873 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2874 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2875
2876 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2877 }
2878
CreatePointerBitCastOrAddrSpaceCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2879 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2880 Value *S, Type *Ty,
2881 const Twine &Name,
2882 Instruction *InsertBefore) {
2883 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2884 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2885
2886 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2887 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2888
2889 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2890 }
2891
CreateBitOrPointerCast(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)2892 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2893 const Twine &Name,
2894 Instruction *InsertBefore) {
2895 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2896 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2897 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2898 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2899
2900 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2901 }
2902
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,Instruction * InsertBefore)2903 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2904 bool isSigned, const Twine &Name,
2905 Instruction *InsertBefore) {
2906 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2907 "Invalid integer cast");
2908 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2909 unsigned DstBits = Ty->getScalarSizeInBits();
2910 Instruction::CastOps opcode =
2911 (SrcBits == DstBits ? Instruction::BitCast :
2912 (SrcBits > DstBits ? Instruction::Trunc :
2913 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2914 return Create(opcode, C, Ty, Name, InsertBefore);
2915 }
2916
CreateIntegerCast(Value * C,Type * Ty,bool isSigned,const Twine & Name,BasicBlock * InsertAtEnd)2917 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2918 bool isSigned, const Twine &Name,
2919 BasicBlock *InsertAtEnd) {
2920 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2921 "Invalid cast");
2922 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2923 unsigned DstBits = Ty->getScalarSizeInBits();
2924 Instruction::CastOps opcode =
2925 (SrcBits == DstBits ? Instruction::BitCast :
2926 (SrcBits > DstBits ? Instruction::Trunc :
2927 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2928 return Create(opcode, C, Ty, Name, InsertAtEnd);
2929 }
2930
CreateFPCast(Value * C,Type * Ty,const Twine & Name,Instruction * InsertBefore)2931 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2932 const Twine &Name,
2933 Instruction *InsertBefore) {
2934 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2935 "Invalid cast");
2936 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2937 unsigned DstBits = Ty->getScalarSizeInBits();
2938 Instruction::CastOps opcode =
2939 (SrcBits == DstBits ? Instruction::BitCast :
2940 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2941 return Create(opcode, C, Ty, Name, InsertBefore);
2942 }
2943
CreateFPCast(Value * C,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)2944 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2945 const Twine &Name,
2946 BasicBlock *InsertAtEnd) {
2947 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2948 "Invalid cast");
2949 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2950 unsigned DstBits = Ty->getScalarSizeInBits();
2951 Instruction::CastOps opcode =
2952 (SrcBits == DstBits ? Instruction::BitCast :
2953 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2954 return Create(opcode, C, Ty, Name, InsertAtEnd);
2955 }
2956
2957 // Check whether it is valid to call getCastOpcode for these types.
2958 // This routine must be kept in sync with getCastOpcode.
isCastable(Type * SrcTy,Type * DestTy)2959 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2960 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2961 return false;
2962
2963 if (SrcTy == DestTy)
2964 return true;
2965
2966 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2967 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2968 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2969 // An element by element cast. Valid if casting the elements is valid.
2970 SrcTy = SrcVecTy->getElementType();
2971 DestTy = DestVecTy->getElementType();
2972 }
2973
2974 // Get the bit sizes, we'll need these
2975 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2976 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2977
2978 // Run through the possibilities ...
2979 if (DestTy->isIntegerTy()) { // Casting to integral
2980 if (SrcTy->isIntegerTy()) // Casting from integral
2981 return true;
2982 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2983 return true;
2984 if (SrcTy->isVectorTy()) // Casting from vector
2985 return DestBits == SrcBits;
2986 // Casting from something else
2987 return SrcTy->isPointerTy();
2988 }
2989 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2990 if (SrcTy->isIntegerTy()) // Casting from integral
2991 return true;
2992 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2993 return true;
2994 if (SrcTy->isVectorTy()) // Casting from vector
2995 return DestBits == SrcBits;
2996 // Casting from something else
2997 return false;
2998 }
2999 if (DestTy->isVectorTy()) // Casting to vector
3000 return DestBits == SrcBits;
3001 if (DestTy->isPointerTy()) { // Casting to pointer
3002 if (SrcTy->isPointerTy()) // Casting from pointer
3003 return true;
3004 return SrcTy->isIntegerTy(); // Casting from integral
3005 }
3006 if (DestTy->isX86_MMXTy()) {
3007 if (SrcTy->isVectorTy())
3008 return DestBits == SrcBits; // 64-bit vector to MMX
3009 return false;
3010 } // Casting to something else
3011 return false;
3012 }
3013
isBitCastable(Type * SrcTy,Type * DestTy)3014 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3015 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3016 return false;
3017
3018 if (SrcTy == DestTy)
3019 return true;
3020
3021 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3022 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3023 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3024 // An element by element cast. Valid if casting the elements is valid.
3025 SrcTy = SrcVecTy->getElementType();
3026 DestTy = DestVecTy->getElementType();
3027 }
3028 }
3029 }
3030
3031 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3032 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3033 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3034 }
3035 }
3036
3037 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3038 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3039
3040 // Could still have vectors of pointers if the number of elements doesn't
3041 // match
3042 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3043 return false;
3044
3045 if (SrcBits != DestBits)
3046 return false;
3047
3048 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3049 return false;
3050
3051 return true;
3052 }
3053
isBitOrNoopPointerCastable(Type * SrcTy,Type * DestTy,const DataLayout & DL)3054 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3055 const DataLayout &DL) {
3056 // ptrtoint and inttoptr are not allowed on non-integral pointers
3057 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3058 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3059 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3060 !DL.isNonIntegralPointerType(PtrTy));
3061 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3062 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3063 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3064 !DL.isNonIntegralPointerType(PtrTy));
3065
3066 return isBitCastable(SrcTy, DestTy);
3067 }
3068
3069 // Provide a way to get a "cast" where the cast opcode is inferred from the
3070 // types and size of the operand. This, basically, is a parallel of the
3071 // logic in the castIsValid function below. This axiom should hold:
3072 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3073 // should not assert in castIsValid. In other words, this produces a "correct"
3074 // casting opcode for the arguments passed to it.
3075 // This routine must be kept in sync with isCastable.
3076 Instruction::CastOps
getCastOpcode(const Value * Src,bool SrcIsSigned,Type * DestTy,bool DestIsSigned)3077 CastInst::getCastOpcode(
3078 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3079 Type *SrcTy = Src->getType();
3080
3081 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3082 "Only first class types are castable!");
3083
3084 if (SrcTy == DestTy)
3085 return BitCast;
3086
3087 // FIXME: Check address space sizes here
3088 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3089 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3090 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
3091 // An element by element cast. Find the appropriate opcode based on the
3092 // element types.
3093 SrcTy = SrcVecTy->getElementType();
3094 DestTy = DestVecTy->getElementType();
3095 }
3096
3097 // Get the bit sizes, we'll need these
3098 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3099 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3100
3101 // Run through the possibilities ...
3102 if (DestTy->isIntegerTy()) { // Casting to integral
3103 if (SrcTy->isIntegerTy()) { // Casting from integral
3104 if (DestBits < SrcBits)
3105 return Trunc; // int -> smaller int
3106 else if (DestBits > SrcBits) { // its an extension
3107 if (SrcIsSigned)
3108 return SExt; // signed -> SEXT
3109 else
3110 return ZExt; // unsigned -> ZEXT
3111 } else {
3112 return BitCast; // Same size, No-op cast
3113 }
3114 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3115 if (DestIsSigned)
3116 return FPToSI; // FP -> sint
3117 else
3118 return FPToUI; // FP -> uint
3119 } else if (SrcTy->isVectorTy()) {
3120 assert(DestBits == SrcBits &&
3121 "Casting vector to integer of different width");
3122 return BitCast; // Same size, no-op cast
3123 } else {
3124 assert(SrcTy->isPointerTy() &&
3125 "Casting from a value that is not first-class type");
3126 return PtrToInt; // ptr -> int
3127 }
3128 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3129 if (SrcTy->isIntegerTy()) { // Casting from integral
3130 if (SrcIsSigned)
3131 return SIToFP; // sint -> FP
3132 else
3133 return UIToFP; // uint -> FP
3134 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3135 if (DestBits < SrcBits) {
3136 return FPTrunc; // FP -> smaller FP
3137 } else if (DestBits > SrcBits) {
3138 return FPExt; // FP -> larger FP
3139 } else {
3140 return BitCast; // same size, no-op cast
3141 }
3142 } else if (SrcTy->isVectorTy()) {
3143 assert(DestBits == SrcBits &&
3144 "Casting vector to floating point of different width");
3145 return BitCast; // same size, no-op cast
3146 }
3147 llvm_unreachable("Casting pointer or non-first class to float");
3148 } else if (DestTy->isVectorTy()) {
3149 assert(DestBits == SrcBits &&
3150 "Illegal cast to vector (wrong type or size)");
3151 return BitCast;
3152 } else if (DestTy->isPointerTy()) {
3153 if (SrcTy->isPointerTy()) {
3154 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3155 return AddrSpaceCast;
3156 return BitCast; // ptr -> ptr
3157 } else if (SrcTy->isIntegerTy()) {
3158 return IntToPtr; // int -> ptr
3159 }
3160 llvm_unreachable("Casting pointer to other than pointer or int");
3161 } else if (DestTy->isX86_MMXTy()) {
3162 if (SrcTy->isVectorTy()) {
3163 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3164 return BitCast; // 64-bit vector to MMX
3165 }
3166 llvm_unreachable("Illegal cast to X86_MMX");
3167 }
3168 llvm_unreachable("Casting to type that is not first-class");
3169 }
3170
3171 //===----------------------------------------------------------------------===//
3172 // CastInst SubClass Constructors
3173 //===----------------------------------------------------------------------===//
3174
3175 /// Check that the construction parameters for a CastInst are correct. This
3176 /// could be broken out into the separate constructors but it is useful to have
3177 /// it in one place and to eliminate the redundant code for getting the sizes
3178 /// of the types involved.
3179 bool
castIsValid(Instruction::CastOps op,Value * S,Type * DstTy)3180 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3181 // Check for type sanity on the arguments
3182 Type *SrcTy = S->getType();
3183
3184 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3185 SrcTy->isAggregateType() || DstTy->isAggregateType())
3186 return false;
3187
3188 // Get the size of the types in bits, we'll need this later
3189 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3190 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3191
3192 // If these are vector types, get the lengths of the vectors (using zero for
3193 // scalar types means that checking that vector lengths match also checks that
3194 // scalars are not being converted to vectors or vectors to scalars).
3195 unsigned SrcLength = SrcTy->isVectorTy() ?
3196 cast<VectorType>(SrcTy)->getNumElements() : 0;
3197 unsigned DstLength = DstTy->isVectorTy() ?
3198 cast<VectorType>(DstTy)->getNumElements() : 0;
3199
3200 // Switch on the opcode provided
3201 switch (op) {
3202 default: return false; // This is an input error
3203 case Instruction::Trunc:
3204 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3205 SrcLength == DstLength && SrcBitSize > DstBitSize;
3206 case Instruction::ZExt:
3207 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3208 SrcLength == DstLength && SrcBitSize < DstBitSize;
3209 case Instruction::SExt:
3210 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3211 SrcLength == DstLength && SrcBitSize < DstBitSize;
3212 case Instruction::FPTrunc:
3213 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3214 SrcLength == DstLength && SrcBitSize > DstBitSize;
3215 case Instruction::FPExt:
3216 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3217 SrcLength == DstLength && SrcBitSize < DstBitSize;
3218 case Instruction::UIToFP:
3219 case Instruction::SIToFP:
3220 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3221 SrcLength == DstLength;
3222 case Instruction::FPToUI:
3223 case Instruction::FPToSI:
3224 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3225 SrcLength == DstLength;
3226 case Instruction::PtrToInt:
3227 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3228 return false;
3229 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3230 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3231 return false;
3232 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3233 case Instruction::IntToPtr:
3234 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3235 return false;
3236 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3237 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3238 return false;
3239 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3240 case Instruction::BitCast: {
3241 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3242 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3243
3244 // BitCast implies a no-op cast of type only. No bits change.
3245 // However, you can't cast pointers to anything but pointers.
3246 if (!SrcPtrTy != !DstPtrTy)
3247 return false;
3248
3249 // For non-pointer cases, the cast is okay if the source and destination bit
3250 // widths are identical.
3251 if (!SrcPtrTy)
3252 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3253
3254 // If both are pointers then the address spaces must match.
3255 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3256 return false;
3257
3258 // A vector of pointers must have the same number of elements.
3259 VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy);
3260 VectorType *DstVecTy = dyn_cast<VectorType>(DstTy);
3261 if (SrcVecTy && DstVecTy)
3262 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3263 if (SrcVecTy)
3264 return SrcVecTy->getNumElements() == 1;
3265 if (DstVecTy)
3266 return DstVecTy->getNumElements() == 1;
3267
3268 return true;
3269 }
3270 case Instruction::AddrSpaceCast: {
3271 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3272 if (!SrcPtrTy)
3273 return false;
3274
3275 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3276 if (!DstPtrTy)
3277 return false;
3278
3279 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3280 return false;
3281
3282 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3283 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3284 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3285
3286 return false;
3287 }
3288
3289 return true;
3290 }
3291 }
3292 }
3293
TruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3294 TruncInst::TruncInst(
3295 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3296 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3297 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3298 }
3299
TruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3300 TruncInst::TruncInst(
3301 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3302 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3303 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3304 }
3305
ZExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3306 ZExtInst::ZExtInst(
3307 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3308 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3309 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3310 }
3311
ZExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3312 ZExtInst::ZExtInst(
3313 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3314 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3315 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3316 }
SExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3317 SExtInst::SExtInst(
3318 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3319 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3320 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3321 }
3322
SExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3323 SExtInst::SExtInst(
3324 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3325 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3326 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3327 }
3328
FPTruncInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3329 FPTruncInst::FPTruncInst(
3330 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3331 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3332 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3333 }
3334
FPTruncInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3335 FPTruncInst::FPTruncInst(
3336 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3337 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3338 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3339 }
3340
FPExtInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3341 FPExtInst::FPExtInst(
3342 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3343 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3344 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3345 }
3346
FPExtInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3347 FPExtInst::FPExtInst(
3348 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3349 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3350 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3351 }
3352
UIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3353 UIToFPInst::UIToFPInst(
3354 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3355 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3356 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3357 }
3358
UIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3359 UIToFPInst::UIToFPInst(
3360 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3361 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3362 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3363 }
3364
SIToFPInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3365 SIToFPInst::SIToFPInst(
3366 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3367 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3368 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3369 }
3370
SIToFPInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3371 SIToFPInst::SIToFPInst(
3372 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3373 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3374 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3375 }
3376
FPToUIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3377 FPToUIInst::FPToUIInst(
3378 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3379 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3380 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3381 }
3382
FPToUIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3383 FPToUIInst::FPToUIInst(
3384 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3385 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3386 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3387 }
3388
FPToSIInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3389 FPToSIInst::FPToSIInst(
3390 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3391 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3392 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3393 }
3394
FPToSIInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3395 FPToSIInst::FPToSIInst(
3396 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3397 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3398 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3399 }
3400
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3401 PtrToIntInst::PtrToIntInst(
3402 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3403 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3404 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3405 }
3406
PtrToIntInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3407 PtrToIntInst::PtrToIntInst(
3408 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3409 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3410 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3411 }
3412
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3413 IntToPtrInst::IntToPtrInst(
3414 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3415 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3416 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3417 }
3418
IntToPtrInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3419 IntToPtrInst::IntToPtrInst(
3420 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3421 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3422 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3423 }
3424
BitCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3425 BitCastInst::BitCastInst(
3426 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3427 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3428 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3429 }
3430
BitCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3431 BitCastInst::BitCastInst(
3432 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3433 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3434 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3435 }
3436
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,Instruction * InsertBefore)3437 AddrSpaceCastInst::AddrSpaceCastInst(
3438 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3439 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3440 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3441 }
3442
AddrSpaceCastInst(Value * S,Type * Ty,const Twine & Name,BasicBlock * InsertAtEnd)3443 AddrSpaceCastInst::AddrSpaceCastInst(
3444 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3445 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3446 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3447 }
3448
3449 //===----------------------------------------------------------------------===//
3450 // CmpInst Classes
3451 //===----------------------------------------------------------------------===//
3452
CmpInst(Type * ty,OtherOps op,Predicate predicate,Value * LHS,Value * RHS,const Twine & Name,Instruction * InsertBefore,Instruction * FlagsSource)3453 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3454 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3455 Instruction *FlagsSource)
3456 : Instruction(ty, op,
3457 OperandTraits<CmpInst>::op_begin(this),
3458 OperandTraits<CmpInst>::operands(this),
3459 InsertBefore) {
3460 Op<0>() = LHS;
3461 Op<1>() = RHS;
3462 setPredicate((Predicate)predicate);
3463 setName(Name);
3464 if (FlagsSource)
3465 copyIRFlags(FlagsSource);
3466 }
3467
CmpInst(Type * ty,OtherOps op,Predicate predicate,Value * LHS,Value * RHS,const Twine & Name,BasicBlock * InsertAtEnd)3468 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3469 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3470 : Instruction(ty, op,
3471 OperandTraits<CmpInst>::op_begin(this),
3472 OperandTraits<CmpInst>::operands(this),
3473 InsertAtEnd) {
3474 Op<0>() = LHS;
3475 Op<1>() = RHS;
3476 setPredicate((Predicate)predicate);
3477 setName(Name);
3478 }
3479
3480 CmpInst *
Create(OtherOps Op,Predicate predicate,Value * S1,Value * S2,const Twine & Name,Instruction * InsertBefore)3481 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3482 const Twine &Name, Instruction *InsertBefore) {
3483 if (Op == Instruction::ICmp) {
3484 if (InsertBefore)
3485 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3486 S1, S2, Name);
3487 else
3488 return new ICmpInst(CmpInst::Predicate(predicate),
3489 S1, S2, Name);
3490 }
3491
3492 if (InsertBefore)
3493 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3494 S1, S2, Name);
3495 else
3496 return new FCmpInst(CmpInst::Predicate(predicate),
3497 S1, S2, Name);
3498 }
3499
3500 CmpInst *
Create(OtherOps Op,Predicate predicate,Value * S1,Value * S2,const Twine & Name,BasicBlock * InsertAtEnd)3501 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3502 const Twine &Name, BasicBlock *InsertAtEnd) {
3503 if (Op == Instruction::ICmp) {
3504 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3505 S1, S2, Name);
3506 }
3507 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3508 S1, S2, Name);
3509 }
3510
swapOperands()3511 void CmpInst::swapOperands() {
3512 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3513 IC->swapOperands();
3514 else
3515 cast<FCmpInst>(this)->swapOperands();
3516 }
3517
isCommutative() const3518 bool CmpInst::isCommutative() const {
3519 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3520 return IC->isCommutative();
3521 return cast<FCmpInst>(this)->isCommutative();
3522 }
3523
isEquality() const3524 bool CmpInst::isEquality() const {
3525 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3526 return IC->isEquality();
3527 return cast<FCmpInst>(this)->isEquality();
3528 }
3529
getInversePredicate(Predicate pred)3530 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3531 switch (pred) {
3532 default: llvm_unreachable("Unknown cmp predicate!");
3533 case ICMP_EQ: return ICMP_NE;
3534 case ICMP_NE: return ICMP_EQ;
3535 case ICMP_UGT: return ICMP_ULE;
3536 case ICMP_ULT: return ICMP_UGE;
3537 case ICMP_UGE: return ICMP_ULT;
3538 case ICMP_ULE: return ICMP_UGT;
3539 case ICMP_SGT: return ICMP_SLE;
3540 case ICMP_SLT: return ICMP_SGE;
3541 case ICMP_SGE: return ICMP_SLT;
3542 case ICMP_SLE: return ICMP_SGT;
3543
3544 case FCMP_OEQ: return FCMP_UNE;
3545 case FCMP_ONE: return FCMP_UEQ;
3546 case FCMP_OGT: return FCMP_ULE;
3547 case FCMP_OLT: return FCMP_UGE;
3548 case FCMP_OGE: return FCMP_ULT;
3549 case FCMP_OLE: return FCMP_UGT;
3550 case FCMP_UEQ: return FCMP_ONE;
3551 case FCMP_UNE: return FCMP_OEQ;
3552 case FCMP_UGT: return FCMP_OLE;
3553 case FCMP_ULT: return FCMP_OGE;
3554 case FCMP_UGE: return FCMP_OLT;
3555 case FCMP_ULE: return FCMP_OGT;
3556 case FCMP_ORD: return FCMP_UNO;
3557 case FCMP_UNO: return FCMP_ORD;
3558 case FCMP_TRUE: return FCMP_FALSE;
3559 case FCMP_FALSE: return FCMP_TRUE;
3560 }
3561 }
3562
getPredicateName(Predicate Pred)3563 StringRef CmpInst::getPredicateName(Predicate Pred) {
3564 switch (Pred) {
3565 default: return "unknown";
3566 case FCmpInst::FCMP_FALSE: return "false";
3567 case FCmpInst::FCMP_OEQ: return "oeq";
3568 case FCmpInst::FCMP_OGT: return "ogt";
3569 case FCmpInst::FCMP_OGE: return "oge";
3570 case FCmpInst::FCMP_OLT: return "olt";
3571 case FCmpInst::FCMP_OLE: return "ole";
3572 case FCmpInst::FCMP_ONE: return "one";
3573 case FCmpInst::FCMP_ORD: return "ord";
3574 case FCmpInst::FCMP_UNO: return "uno";
3575 case FCmpInst::FCMP_UEQ: return "ueq";
3576 case FCmpInst::FCMP_UGT: return "ugt";
3577 case FCmpInst::FCMP_UGE: return "uge";
3578 case FCmpInst::FCMP_ULT: return "ult";
3579 case FCmpInst::FCMP_ULE: return "ule";
3580 case FCmpInst::FCMP_UNE: return "une";
3581 case FCmpInst::FCMP_TRUE: return "true";
3582 case ICmpInst::ICMP_EQ: return "eq";
3583 case ICmpInst::ICMP_NE: return "ne";
3584 case ICmpInst::ICMP_SGT: return "sgt";
3585 case ICmpInst::ICMP_SGE: return "sge";
3586 case ICmpInst::ICMP_SLT: return "slt";
3587 case ICmpInst::ICMP_SLE: return "sle";
3588 case ICmpInst::ICMP_UGT: return "ugt";
3589 case ICmpInst::ICMP_UGE: return "uge";
3590 case ICmpInst::ICMP_ULT: return "ult";
3591 case ICmpInst::ICMP_ULE: return "ule";
3592 }
3593 }
3594
getSignedPredicate(Predicate pred)3595 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3596 switch (pred) {
3597 default: llvm_unreachable("Unknown icmp predicate!");
3598 case ICMP_EQ: case ICMP_NE:
3599 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3600 return pred;
3601 case ICMP_UGT: return ICMP_SGT;
3602 case ICMP_ULT: return ICMP_SLT;
3603 case ICMP_UGE: return ICMP_SGE;
3604 case ICMP_ULE: return ICMP_SLE;
3605 }
3606 }
3607
getUnsignedPredicate(Predicate pred)3608 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3609 switch (pred) {
3610 default: llvm_unreachable("Unknown icmp predicate!");
3611 case ICMP_EQ: case ICMP_NE:
3612 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3613 return pred;
3614 case ICMP_SGT: return ICMP_UGT;
3615 case ICMP_SLT: return ICMP_ULT;
3616 case ICMP_SGE: return ICMP_UGE;
3617 case ICMP_SLE: return ICMP_ULE;
3618 }
3619 }
3620
getFlippedStrictnessPredicate(Predicate pred)3621 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3622 switch (pred) {
3623 default: llvm_unreachable("Unknown or unsupported cmp predicate!");
3624 case ICMP_SGT: return ICMP_SGE;
3625 case ICMP_SLT: return ICMP_SLE;
3626 case ICMP_SGE: return ICMP_SGT;
3627 case ICMP_SLE: return ICMP_SLT;
3628 case ICMP_UGT: return ICMP_UGE;
3629 case ICMP_ULT: return ICMP_ULE;
3630 case ICMP_UGE: return ICMP_UGT;
3631 case ICMP_ULE: return ICMP_ULT;
3632
3633 case FCMP_OGT: return FCMP_OGE;
3634 case FCMP_OLT: return FCMP_OLE;
3635 case FCMP_OGE: return FCMP_OGT;
3636 case FCMP_OLE: return FCMP_OLT;
3637 case FCMP_UGT: return FCMP_UGE;
3638 case FCMP_ULT: return FCMP_ULE;
3639 case FCMP_UGE: return FCMP_UGT;
3640 case FCMP_ULE: return FCMP_ULT;
3641 }
3642 }
3643
getSwappedPredicate(Predicate pred)3644 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3645 switch (pred) {
3646 default: llvm_unreachable("Unknown cmp predicate!");
3647 case ICMP_EQ: case ICMP_NE:
3648 return pred;
3649 case ICMP_SGT: return ICMP_SLT;
3650 case ICMP_SLT: return ICMP_SGT;
3651 case ICMP_SGE: return ICMP_SLE;
3652 case ICMP_SLE: return ICMP_SGE;
3653 case ICMP_UGT: return ICMP_ULT;
3654 case ICMP_ULT: return ICMP_UGT;
3655 case ICMP_UGE: return ICMP_ULE;
3656 case ICMP_ULE: return ICMP_UGE;
3657
3658 case FCMP_FALSE: case FCMP_TRUE:
3659 case FCMP_OEQ: case FCMP_ONE:
3660 case FCMP_UEQ: case FCMP_UNE:
3661 case FCMP_ORD: case FCMP_UNO:
3662 return pred;
3663 case FCMP_OGT: return FCMP_OLT;
3664 case FCMP_OLT: return FCMP_OGT;
3665 case FCMP_OGE: return FCMP_OLE;
3666 case FCMP_OLE: return FCMP_OGE;
3667 case FCMP_UGT: return FCMP_ULT;
3668 case FCMP_ULT: return FCMP_UGT;
3669 case FCMP_UGE: return FCMP_ULE;
3670 case FCMP_ULE: return FCMP_UGE;
3671 }
3672 }
3673
getNonStrictPredicate(Predicate pred)3674 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3675 switch (pred) {
3676 case ICMP_SGT: return ICMP_SGE;
3677 case ICMP_SLT: return ICMP_SLE;
3678 case ICMP_UGT: return ICMP_UGE;
3679 case ICMP_ULT: return ICMP_ULE;
3680 case FCMP_OGT: return FCMP_OGE;
3681 case FCMP_OLT: return FCMP_OLE;
3682 case FCMP_UGT: return FCMP_UGE;
3683 case FCMP_ULT: return FCMP_ULE;
3684 default: return pred;
3685 }
3686 }
3687
getSignedPredicate(Predicate pred)3688 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3689 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3690
3691 switch (pred) {
3692 default:
3693 llvm_unreachable("Unknown predicate!");
3694 case CmpInst::ICMP_ULT:
3695 return CmpInst::ICMP_SLT;
3696 case CmpInst::ICMP_ULE:
3697 return CmpInst::ICMP_SLE;
3698 case CmpInst::ICMP_UGT:
3699 return CmpInst::ICMP_SGT;
3700 case CmpInst::ICMP_UGE:
3701 return CmpInst::ICMP_SGE;
3702 }
3703 }
3704
isUnsigned(Predicate predicate)3705 bool CmpInst::isUnsigned(Predicate predicate) {
3706 switch (predicate) {
3707 default: return false;
3708 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3709 case ICmpInst::ICMP_UGE: return true;
3710 }
3711 }
3712
isSigned(Predicate predicate)3713 bool CmpInst::isSigned(Predicate predicate) {
3714 switch (predicate) {
3715 default: return false;
3716 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3717 case ICmpInst::ICMP_SGE: return true;
3718 }
3719 }
3720
isOrdered(Predicate predicate)3721 bool CmpInst::isOrdered(Predicate predicate) {
3722 switch (predicate) {
3723 default: return false;
3724 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3725 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3726 case FCmpInst::FCMP_ORD: return true;
3727 }
3728 }
3729
isUnordered(Predicate predicate)3730 bool CmpInst::isUnordered(Predicate predicate) {
3731 switch (predicate) {
3732 default: return false;
3733 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3734 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3735 case FCmpInst::FCMP_UNO: return true;
3736 }
3737 }
3738
isTrueWhenEqual(Predicate predicate)3739 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3740 switch(predicate) {
3741 default: return false;
3742 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3743 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3744 }
3745 }
3746
isFalseWhenEqual(Predicate predicate)3747 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3748 switch(predicate) {
3749 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3750 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3751 default: return false;
3752 }
3753 }
3754
isImpliedTrueByMatchingCmp(Predicate Pred1,Predicate Pred2)3755 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3756 // If the predicates match, then we know the first condition implies the
3757 // second is true.
3758 if (Pred1 == Pred2)
3759 return true;
3760
3761 switch (Pred1) {
3762 default:
3763 break;
3764 case ICMP_EQ:
3765 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
3766 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
3767 Pred2 == ICMP_SLE;
3768 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
3769 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
3770 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
3771 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
3772 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
3773 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
3774 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
3775 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
3776 }
3777 return false;
3778 }
3779
isImpliedFalseByMatchingCmp(Predicate Pred1,Predicate Pred2)3780 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
3781 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
3782 }
3783
3784 //===----------------------------------------------------------------------===//
3785 // SwitchInst Implementation
3786 //===----------------------------------------------------------------------===//
3787
init(Value * Value,BasicBlock * Default,unsigned NumReserved)3788 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3789 assert(Value && Default && NumReserved);
3790 ReservedSpace = NumReserved;
3791 setNumHungOffUseOperands(2);
3792 allocHungoffUses(ReservedSpace);
3793
3794 Op<0>() = Value;
3795 Op<1>() = Default;
3796 }
3797
3798 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3799 /// switch on and a default destination. The number of additional cases can
3800 /// be specified here to make memory allocation more efficient. This
3801 /// constructor can also autoinsert before another instruction.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,Instruction * InsertBefore)3802 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3803 Instruction *InsertBefore)
3804 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3805 nullptr, 0, InsertBefore) {
3806 init(Value, Default, 2+NumCases*2);
3807 }
3808
3809 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3810 /// switch on and a default destination. The number of additional cases can
3811 /// be specified here to make memory allocation more efficient. This
3812 /// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value * Value,BasicBlock * Default,unsigned NumCases,BasicBlock * InsertAtEnd)3813 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3814 BasicBlock *InsertAtEnd)
3815 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3816 nullptr, 0, InsertAtEnd) {
3817 init(Value, Default, 2+NumCases*2);
3818 }
3819
SwitchInst(const SwitchInst & SI)3820 SwitchInst::SwitchInst(const SwitchInst &SI)
3821 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
3822 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3823 setNumHungOffUseOperands(SI.getNumOperands());
3824 Use *OL = getOperandList();
3825 const Use *InOL = SI.getOperandList();
3826 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3827 OL[i] = InOL[i];
3828 OL[i+1] = InOL[i+1];
3829 }
3830 SubclassOptionalData = SI.SubclassOptionalData;
3831 }
3832
3833 /// addCase - Add an entry to the switch instruction...
3834 ///
addCase(ConstantInt * OnVal,BasicBlock * Dest)3835 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3836 unsigned NewCaseIdx = getNumCases();
3837 unsigned OpNo = getNumOperands();
3838 if (OpNo+2 > ReservedSpace)
3839 growOperands(); // Get more space!
3840 // Initialize some new operands.
3841 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3842 setNumHungOffUseOperands(OpNo+2);
3843 CaseHandle Case(this, NewCaseIdx);
3844 Case.setValue(OnVal);
3845 Case.setSuccessor(Dest);
3846 }
3847
3848 /// removeCase - This method removes the specified case and its successor
3849 /// from the switch instruction.
removeCase(CaseIt I)3850 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
3851 unsigned idx = I->getCaseIndex();
3852
3853 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3854
3855 unsigned NumOps = getNumOperands();
3856 Use *OL = getOperandList();
3857
3858 // Overwrite this case with the end of the list.
3859 if (2 + (idx + 1) * 2 != NumOps) {
3860 OL[2 + idx * 2] = OL[NumOps - 2];
3861 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3862 }
3863
3864 // Nuke the last value.
3865 OL[NumOps-2].set(nullptr);
3866 OL[NumOps-2+1].set(nullptr);
3867 setNumHungOffUseOperands(NumOps-2);
3868
3869 return CaseIt(this, idx);
3870 }
3871
3872 /// growOperands - grow operands - This grows the operand list in response
3873 /// to a push_back style of operation. This grows the number of ops by 3 times.
3874 ///
growOperands()3875 void SwitchInst::growOperands() {
3876 unsigned e = getNumOperands();
3877 unsigned NumOps = e*3;
3878
3879 ReservedSpace = NumOps;
3880 growHungoffUses(ReservedSpace);
3881 }
3882
3883 MDNode *
getProfBranchWeightsMD(const SwitchInst & SI)3884 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
3885 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
3886 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
3887 if (MDName->getString() == "branch_weights")
3888 return ProfileData;
3889 return nullptr;
3890 }
3891
buildProfBranchWeightsMD()3892 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
3893 assert(Changed && "called only if metadata has changed");
3894
3895 if (!Weights)
3896 return nullptr;
3897
3898 assert(SI.getNumSuccessors() == Weights->size() &&
3899 "num of prof branch_weights must accord with num of successors");
3900
3901 bool AllZeroes =
3902 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
3903
3904 if (AllZeroes || Weights.getValue().size() < 2)
3905 return nullptr;
3906
3907 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
3908 }
3909
init()3910 void SwitchInstProfUpdateWrapper::init() {
3911 MDNode *ProfileData = getProfBranchWeightsMD(SI);
3912 if (!ProfileData)
3913 return;
3914
3915 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
3916 llvm_unreachable("number of prof branch_weights metadata operands does "
3917 "not correspond to number of succesors");
3918 }
3919
3920 SmallVector<uint32_t, 8> Weights;
3921 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
3922 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
3923 uint32_t CW = C->getValue().getZExtValue();
3924 Weights.push_back(CW);
3925 }
3926 this->Weights = std::move(Weights);
3927 }
3928
3929 SwitchInst::CaseIt
removeCase(SwitchInst::CaseIt I)3930 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
3931 if (Weights) {
3932 assert(SI.getNumSuccessors() == Weights->size() &&
3933 "num of prof branch_weights must accord with num of successors");
3934 Changed = true;
3935 // Copy the last case to the place of the removed one and shrink.
3936 // This is tightly coupled with the way SwitchInst::removeCase() removes
3937 // the cases in SwitchInst::removeCase(CaseIt).
3938 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
3939 Weights.getValue().pop_back();
3940 }
3941 return SI.removeCase(I);
3942 }
3943
addCase(ConstantInt * OnVal,BasicBlock * Dest,SwitchInstProfUpdateWrapper::CaseWeightOpt W)3944 void SwitchInstProfUpdateWrapper::addCase(
3945 ConstantInt *OnVal, BasicBlock *Dest,
3946 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3947 SI.addCase(OnVal, Dest);
3948
3949 if (!Weights && W && *W) {
3950 Changed = true;
3951 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3952 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
3953 } else if (Weights) {
3954 Changed = true;
3955 Weights.getValue().push_back(W ? *W : 0);
3956 }
3957 if (Weights)
3958 assert(SI.getNumSuccessors() == Weights->size() &&
3959 "num of prof branch_weights must accord with num of successors");
3960 }
3961
3962 SymbolTableList<Instruction>::iterator
eraseFromParent()3963 SwitchInstProfUpdateWrapper::eraseFromParent() {
3964 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
3965 Changed = false;
3966 if (Weights)
3967 Weights->resize(0);
3968 return SI.eraseFromParent();
3969 }
3970
3971 SwitchInstProfUpdateWrapper::CaseWeightOpt
getSuccessorWeight(unsigned idx)3972 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
3973 if (!Weights)
3974 return None;
3975 return Weights.getValue()[idx];
3976 }
3977
setSuccessorWeight(unsigned idx,SwitchInstProfUpdateWrapper::CaseWeightOpt W)3978 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
3979 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
3980 if (!W)
3981 return;
3982
3983 if (!Weights && *W)
3984 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
3985
3986 if (Weights) {
3987 auto &OldW = Weights.getValue()[idx];
3988 if (*W != OldW) {
3989 Changed = true;
3990 OldW = *W;
3991 }
3992 }
3993 }
3994
3995 SwitchInstProfUpdateWrapper::CaseWeightOpt
getSuccessorWeight(const SwitchInst & SI,unsigned idx)3996 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
3997 unsigned idx) {
3998 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
3999 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4000 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4001 ->getValue()
4002 .getZExtValue();
4003
4004 return None;
4005 }
4006
4007 //===----------------------------------------------------------------------===//
4008 // IndirectBrInst Implementation
4009 //===----------------------------------------------------------------------===//
4010
init(Value * Address,unsigned NumDests)4011 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4012 assert(Address && Address->getType()->isPointerTy() &&
4013 "Address of indirectbr must be a pointer");
4014 ReservedSpace = 1+NumDests;
4015 setNumHungOffUseOperands(1);
4016 allocHungoffUses(ReservedSpace);
4017
4018 Op<0>() = Address;
4019 }
4020
4021
4022 /// growOperands - grow operands - This grows the operand list in response
4023 /// to a push_back style of operation. This grows the number of ops by 2 times.
4024 ///
growOperands()4025 void IndirectBrInst::growOperands() {
4026 unsigned e = getNumOperands();
4027 unsigned NumOps = e*2;
4028
4029 ReservedSpace = NumOps;
4030 growHungoffUses(ReservedSpace);
4031 }
4032
IndirectBrInst(Value * Address,unsigned NumCases,Instruction * InsertBefore)4033 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4034 Instruction *InsertBefore)
4035 : Instruction(Type::getVoidTy(Address->getContext()),
4036 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4037 init(Address, NumCases);
4038 }
4039
IndirectBrInst(Value * Address,unsigned NumCases,BasicBlock * InsertAtEnd)4040 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4041 BasicBlock *InsertAtEnd)
4042 : Instruction(Type::getVoidTy(Address->getContext()),
4043 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4044 init(Address, NumCases);
4045 }
4046
IndirectBrInst(const IndirectBrInst & IBI)4047 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4048 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4049 nullptr, IBI.getNumOperands()) {
4050 allocHungoffUses(IBI.getNumOperands());
4051 Use *OL = getOperandList();
4052 const Use *InOL = IBI.getOperandList();
4053 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4054 OL[i] = InOL[i];
4055 SubclassOptionalData = IBI.SubclassOptionalData;
4056 }
4057
4058 /// addDestination - Add a destination.
4059 ///
addDestination(BasicBlock * DestBB)4060 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4061 unsigned OpNo = getNumOperands();
4062 if (OpNo+1 > ReservedSpace)
4063 growOperands(); // Get more space!
4064 // Initialize some new operands.
4065 assert(OpNo < ReservedSpace && "Growing didn't work!");
4066 setNumHungOffUseOperands(OpNo+1);
4067 getOperandList()[OpNo] = DestBB;
4068 }
4069
4070 /// removeDestination - This method removes the specified successor from the
4071 /// indirectbr instruction.
removeDestination(unsigned idx)4072 void IndirectBrInst::removeDestination(unsigned idx) {
4073 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4074
4075 unsigned NumOps = getNumOperands();
4076 Use *OL = getOperandList();
4077
4078 // Replace this value with the last one.
4079 OL[idx+1] = OL[NumOps-1];
4080
4081 // Nuke the last value.
4082 OL[NumOps-1].set(nullptr);
4083 setNumHungOffUseOperands(NumOps-1);
4084 }
4085
4086 //===----------------------------------------------------------------------===//
4087 // FreezeInst Implementation
4088 //===----------------------------------------------------------------------===//
4089
FreezeInst(Value * S,const Twine & Name,Instruction * InsertBefore)4090 FreezeInst::FreezeInst(Value *S,
4091 const Twine &Name, Instruction *InsertBefore)
4092 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4093 setName(Name);
4094 }
4095
FreezeInst(Value * S,const Twine & Name,BasicBlock * InsertAtEnd)4096 FreezeInst::FreezeInst(Value *S,
4097 const Twine &Name, BasicBlock *InsertAtEnd)
4098 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4099 setName(Name);
4100 }
4101
4102 //===----------------------------------------------------------------------===//
4103 // cloneImpl() implementations
4104 //===----------------------------------------------------------------------===//
4105
4106 // Define these methods here so vtables don't get emitted into every translation
4107 // unit that uses these classes.
4108
cloneImpl() const4109 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4110 return new (getNumOperands()) GetElementPtrInst(*this);
4111 }
4112
cloneImpl() const4113 UnaryOperator *UnaryOperator::cloneImpl() const {
4114 return Create(getOpcode(), Op<0>());
4115 }
4116
cloneImpl() const4117 BinaryOperator *BinaryOperator::cloneImpl() const {
4118 return Create(getOpcode(), Op<0>(), Op<1>());
4119 }
4120
cloneImpl() const4121 FCmpInst *FCmpInst::cloneImpl() const {
4122 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4123 }
4124
cloneImpl() const4125 ICmpInst *ICmpInst::cloneImpl() const {
4126 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4127 }
4128
cloneImpl() const4129 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4130 return new ExtractValueInst(*this);
4131 }
4132
cloneImpl() const4133 InsertValueInst *InsertValueInst::cloneImpl() const {
4134 return new InsertValueInst(*this);
4135 }
4136
cloneImpl() const4137 AllocaInst *AllocaInst::cloneImpl() const {
4138 AllocaInst *Result =
4139 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4140 (Value *)getOperand(0), MaybeAlign(getAlignment()));
4141 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4142 Result->setSwiftError(isSwiftError());
4143 return Result;
4144 }
4145
cloneImpl() const4146 LoadInst *LoadInst::cloneImpl() const {
4147 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4148 MaybeAlign(getAlignment()), getOrdering(),
4149 getSyncScopeID());
4150 }
4151
cloneImpl() const4152 StoreInst *StoreInst::cloneImpl() const {
4153 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
4154 MaybeAlign(getAlignment()), getOrdering(),
4155 getSyncScopeID());
4156 }
4157
cloneImpl() const4158 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4159 AtomicCmpXchgInst *Result =
4160 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
4161 getSuccessOrdering(), getFailureOrdering(),
4162 getSyncScopeID());
4163 Result->setVolatile(isVolatile());
4164 Result->setWeak(isWeak());
4165 return Result;
4166 }
4167
cloneImpl() const4168 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4169 AtomicRMWInst *Result =
4170 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4171 getOrdering(), getSyncScopeID());
4172 Result->setVolatile(isVolatile());
4173 return Result;
4174 }
4175
cloneImpl() const4176 FenceInst *FenceInst::cloneImpl() const {
4177 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4178 }
4179
cloneImpl() const4180 TruncInst *TruncInst::cloneImpl() const {
4181 return new TruncInst(getOperand(0), getType());
4182 }
4183
cloneImpl() const4184 ZExtInst *ZExtInst::cloneImpl() const {
4185 return new ZExtInst(getOperand(0), getType());
4186 }
4187
cloneImpl() const4188 SExtInst *SExtInst::cloneImpl() const {
4189 return new SExtInst(getOperand(0), getType());
4190 }
4191
cloneImpl() const4192 FPTruncInst *FPTruncInst::cloneImpl() const {
4193 return new FPTruncInst(getOperand(0), getType());
4194 }
4195
cloneImpl() const4196 FPExtInst *FPExtInst::cloneImpl() const {
4197 return new FPExtInst(getOperand(0), getType());
4198 }
4199
cloneImpl() const4200 UIToFPInst *UIToFPInst::cloneImpl() const {
4201 return new UIToFPInst(getOperand(0), getType());
4202 }
4203
cloneImpl() const4204 SIToFPInst *SIToFPInst::cloneImpl() const {
4205 return new SIToFPInst(getOperand(0), getType());
4206 }
4207
cloneImpl() const4208 FPToUIInst *FPToUIInst::cloneImpl() const {
4209 return new FPToUIInst(getOperand(0), getType());
4210 }
4211
cloneImpl() const4212 FPToSIInst *FPToSIInst::cloneImpl() const {
4213 return new FPToSIInst(getOperand(0), getType());
4214 }
4215
cloneImpl() const4216 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4217 return new PtrToIntInst(getOperand(0), getType());
4218 }
4219
cloneImpl() const4220 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4221 return new IntToPtrInst(getOperand(0), getType());
4222 }
4223
cloneImpl() const4224 BitCastInst *BitCastInst::cloneImpl() const {
4225 return new BitCastInst(getOperand(0), getType());
4226 }
4227
cloneImpl() const4228 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4229 return new AddrSpaceCastInst(getOperand(0), getType());
4230 }
4231
cloneImpl() const4232 CallInst *CallInst::cloneImpl() const {
4233 if (hasOperandBundles()) {
4234 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4235 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4236 }
4237 return new(getNumOperands()) CallInst(*this);
4238 }
4239
cloneImpl() const4240 SelectInst *SelectInst::cloneImpl() const {
4241 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4242 }
4243
cloneImpl() const4244 VAArgInst *VAArgInst::cloneImpl() const {
4245 return new VAArgInst(getOperand(0), getType());
4246 }
4247
cloneImpl() const4248 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4249 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4250 }
4251
cloneImpl() const4252 InsertElementInst *InsertElementInst::cloneImpl() const {
4253 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4254 }
4255
cloneImpl() const4256 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4257 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
4258 }
4259
cloneImpl() const4260 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4261
cloneImpl() const4262 LandingPadInst *LandingPadInst::cloneImpl() const {
4263 return new LandingPadInst(*this);
4264 }
4265
cloneImpl() const4266 ReturnInst *ReturnInst::cloneImpl() const {
4267 return new(getNumOperands()) ReturnInst(*this);
4268 }
4269
cloneImpl() const4270 BranchInst *BranchInst::cloneImpl() const {
4271 return new(getNumOperands()) BranchInst(*this);
4272 }
4273
cloneImpl() const4274 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4275
cloneImpl() const4276 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4277 return new IndirectBrInst(*this);
4278 }
4279
cloneImpl() const4280 InvokeInst *InvokeInst::cloneImpl() const {
4281 if (hasOperandBundles()) {
4282 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4283 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4284 }
4285 return new(getNumOperands()) InvokeInst(*this);
4286 }
4287
cloneImpl() const4288 CallBrInst *CallBrInst::cloneImpl() const {
4289 if (hasOperandBundles()) {
4290 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4291 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4292 }
4293 return new (getNumOperands()) CallBrInst(*this);
4294 }
4295
cloneImpl() const4296 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4297
cloneImpl() const4298 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4299 return new (getNumOperands()) CleanupReturnInst(*this);
4300 }
4301
cloneImpl() const4302 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4303 return new (getNumOperands()) CatchReturnInst(*this);
4304 }
4305
cloneImpl() const4306 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4307 return new CatchSwitchInst(*this);
4308 }
4309
cloneImpl() const4310 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4311 return new (getNumOperands()) FuncletPadInst(*this);
4312 }
4313
cloneImpl() const4314 UnreachableInst *UnreachableInst::cloneImpl() const {
4315 LLVMContext &Context = getContext();
4316 return new UnreachableInst(Context);
4317 }
4318
cloneImpl() const4319 FreezeInst *FreezeInst::cloneImpl() const {
4320 return new FreezeInst(getOperand(0));
4321 }
4322