1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/LEB128.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <cassert>
41 #include <cstdint>
42 #include <cstring>
43 #include <tuple>
44 #include <utility>
45
46 using namespace llvm;
47
48 #define DEBUG_TYPE "assembler"
49
50 namespace {
51 namespace stats {
52
53 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
54 STATISTIC(EmittedRelaxableFragments,
55 "Number of emitted assembler fragments - relaxable");
56 STATISTIC(EmittedDataFragments,
57 "Number of emitted assembler fragments - data");
58 STATISTIC(EmittedCompactEncodedInstFragments,
59 "Number of emitted assembler fragments - compact encoded inst");
60 STATISTIC(EmittedAlignFragments,
61 "Number of emitted assembler fragments - align");
62 STATISTIC(EmittedFillFragments,
63 "Number of emitted assembler fragments - fill");
64 STATISTIC(EmittedOrgFragments,
65 "Number of emitted assembler fragments - org");
66 STATISTIC(evaluateFixup, "Number of evaluated fixups");
67 STATISTIC(FragmentLayouts, "Number of fragment layouts");
68 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
69 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
70 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
71
72 } // end namespace stats
73 } // end anonymous namespace
74
75 // FIXME FIXME FIXME: There are number of places in this file where we convert
76 // what is a 64-bit assembler value used for computation into a value in the
77 // object file, which may truncate it. We should detect that truncation where
78 // invalid and report errors back.
79
80 /* *** */
81
MCAssembler(MCContext & Context,std::unique_ptr<MCAsmBackend> Backend,std::unique_ptr<MCCodeEmitter> Emitter,std::unique_ptr<MCObjectWriter> Writer)82 MCAssembler::MCAssembler(MCContext &Context,
83 std::unique_ptr<MCAsmBackend> Backend,
84 std::unique_ptr<MCCodeEmitter> Emitter,
85 std::unique_ptr<MCObjectWriter> Writer)
86 : Context(Context), Backend(std::move(Backend)),
87 Emitter(std::move(Emitter)), Writer(std::move(Writer)),
88 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
89 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
90 VersionInfo.Major = 0; // Major version == 0 for "none specified"
91 }
92
93 MCAssembler::~MCAssembler() = default;
94
reset()95 void MCAssembler::reset() {
96 Sections.clear();
97 Symbols.clear();
98 IndirectSymbols.clear();
99 DataRegions.clear();
100 LinkerOptions.clear();
101 FileNames.clear();
102 ThumbFuncs.clear();
103 BundleAlignSize = 0;
104 RelaxAll = false;
105 SubsectionsViaSymbols = false;
106 IncrementalLinkerCompatible = false;
107 ELFHeaderEFlags = 0;
108 LOHContainer.reset();
109 VersionInfo.Major = 0;
110 VersionInfo.SDKVersion = VersionTuple();
111
112 // reset objects owned by us
113 if (getBackendPtr())
114 getBackendPtr()->reset();
115 if (getEmitterPtr())
116 getEmitterPtr()->reset();
117 if (getWriterPtr())
118 getWriterPtr()->reset();
119 getLOHContainer().reset();
120 }
121
registerSection(MCSection & Section)122 bool MCAssembler::registerSection(MCSection &Section) {
123 if (Section.isRegistered())
124 return false;
125 Sections.push_back(&Section);
126 Section.setIsRegistered(true);
127 return true;
128 }
129
isThumbFunc(const MCSymbol * Symbol) const130 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
131 if (ThumbFuncs.count(Symbol))
132 return true;
133
134 if (!Symbol->isVariable())
135 return false;
136
137 const MCExpr *Expr = Symbol->getVariableValue();
138
139 MCValue V;
140 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
141 return false;
142
143 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
144 return false;
145
146 const MCSymbolRefExpr *Ref = V.getSymA();
147 if (!Ref)
148 return false;
149
150 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
151 return false;
152
153 const MCSymbol &Sym = Ref->getSymbol();
154 if (!isThumbFunc(&Sym))
155 return false;
156
157 ThumbFuncs.insert(Symbol); // Cache it.
158 return true;
159 }
160
isSymbolLinkerVisible(const MCSymbol & Symbol) const161 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
162 // Non-temporary labels should always be visible to the linker.
163 if (!Symbol.isTemporary())
164 return true;
165
166 if (Symbol.isUsedInReloc())
167 return true;
168
169 return false;
170 }
171
getAtom(const MCSymbol & S) const172 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
173 // Linker visible symbols define atoms.
174 if (isSymbolLinkerVisible(S))
175 return &S;
176
177 // Absolute and undefined symbols have no defining atom.
178 if (!S.isInSection())
179 return nullptr;
180
181 // Non-linker visible symbols in sections which can't be atomized have no
182 // defining atom.
183 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
184 *S.getFragment()->getParent()))
185 return nullptr;
186
187 // Otherwise, return the atom for the containing fragment.
188 return S.getFragment()->getAtom();
189 }
190
evaluateFixup(const MCAsmLayout & Layout,const MCFixup & Fixup,const MCFragment * DF,MCValue & Target,uint64_t & Value,bool & WasForced) const191 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
192 const MCFixup &Fixup, const MCFragment *DF,
193 MCValue &Target, uint64_t &Value,
194 bool &WasForced) const {
195 ++stats::evaluateFixup;
196
197 // FIXME: This code has some duplication with recordRelocation. We should
198 // probably merge the two into a single callback that tries to evaluate a
199 // fixup and records a relocation if one is needed.
200
201 // On error claim to have completely evaluated the fixup, to prevent any
202 // further processing from being done.
203 const MCExpr *Expr = Fixup.getValue();
204 MCContext &Ctx = getContext();
205 Value = 0;
206 WasForced = false;
207 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
208 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
209 return true;
210 }
211 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
212 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
213 Ctx.reportError(Fixup.getLoc(),
214 "unsupported subtraction of qualified symbol");
215 return true;
216 }
217 }
218
219 assert(getBackendPtr() && "Expected assembler backend");
220 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
221 MCFixupKindInfo::FKF_IsTarget;
222
223 if (IsTarget)
224 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
225 Value, WasForced);
226
227 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
228 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
229 MCFixupKindInfo::FKF_IsPCRel;
230
231 bool IsResolved = false;
232 if (IsPCRel) {
233 if (Target.getSymB()) {
234 IsResolved = false;
235 } else if (!Target.getSymA()) {
236 IsResolved = false;
237 } else {
238 const MCSymbolRefExpr *A = Target.getSymA();
239 const MCSymbol &SA = A->getSymbol();
240 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
241 IsResolved = false;
242 } else if (auto *Writer = getWriterPtr()) {
243 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
244 Writer->isSymbolRefDifferenceFullyResolvedImpl(
245 *this, SA, *DF, false, true);
246 }
247 }
248 } else {
249 IsResolved = Target.isAbsolute();
250 }
251
252 Value = Target.getConstant();
253
254 if (const MCSymbolRefExpr *A = Target.getSymA()) {
255 const MCSymbol &Sym = A->getSymbol();
256 if (Sym.isDefined())
257 Value += Layout.getSymbolOffset(Sym);
258 }
259 if (const MCSymbolRefExpr *B = Target.getSymB()) {
260 const MCSymbol &Sym = B->getSymbol();
261 if (Sym.isDefined())
262 Value -= Layout.getSymbolOffset(Sym);
263 }
264
265 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
266 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
267 assert((ShouldAlignPC ? IsPCRel : true) &&
268 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
269
270 if (IsPCRel) {
271 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
272
273 // A number of ARM fixups in Thumb mode require that the effective PC
274 // address be determined as the 32-bit aligned version of the actual offset.
275 if (ShouldAlignPC) Offset &= ~0x3;
276 Value -= Offset;
277 }
278
279 // Let the backend force a relocation if needed.
280 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
281 IsResolved = false;
282 WasForced = true;
283 }
284
285 return IsResolved;
286 }
287
computeFragmentSize(const MCAsmLayout & Layout,const MCFragment & F) const288 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
289 const MCFragment &F) const {
290 assert(getBackendPtr() && "Requires assembler backend");
291 switch (F.getKind()) {
292 case MCFragment::FT_Data:
293 return cast<MCDataFragment>(F).getContents().size();
294 case MCFragment::FT_Relaxable:
295 return cast<MCRelaxableFragment>(F).getContents().size();
296 case MCFragment::FT_CompactEncodedInst:
297 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
298 case MCFragment::FT_Fill: {
299 auto &FF = cast<MCFillFragment>(F);
300 int64_t NumValues = 0;
301 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
302 getContext().reportError(FF.getLoc(),
303 "expected assembly-time absolute expression");
304 return 0;
305 }
306 int64_t Size = NumValues * FF.getValueSize();
307 if (Size < 0) {
308 getContext().reportError(FF.getLoc(), "invalid number of bytes");
309 return 0;
310 }
311 return Size;
312 }
313
314 case MCFragment::FT_LEB:
315 return cast<MCLEBFragment>(F).getContents().size();
316
317 case MCFragment::FT_BoundaryAlign:
318 return cast<MCBoundaryAlignFragment>(F).getSize();
319
320 case MCFragment::FT_SymbolId:
321 return 4;
322
323 case MCFragment::FT_Align: {
324 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
325 unsigned Offset = Layout.getFragmentOffset(&AF);
326 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
327
328 // Insert extra Nops for code alignment if the target define
329 // shouldInsertExtraNopBytesForCodeAlign target hook.
330 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
331 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
332 return Size;
333
334 // If we are padding with nops, force the padding to be larger than the
335 // minimum nop size.
336 if (Size > 0 && AF.hasEmitNops()) {
337 while (Size % getBackend().getMinimumNopSize())
338 Size += AF.getAlignment();
339 }
340 if (Size > AF.getMaxBytesToEmit())
341 return 0;
342 return Size;
343 }
344
345 case MCFragment::FT_Org: {
346 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
347 MCValue Value;
348 if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
349 getContext().reportError(OF.getLoc(),
350 "expected assembly-time absolute expression");
351 return 0;
352 }
353
354 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
355 int64_t TargetLocation = Value.getConstant();
356 if (const MCSymbolRefExpr *A = Value.getSymA()) {
357 uint64_t Val;
358 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
359 getContext().reportError(OF.getLoc(), "expected absolute expression");
360 return 0;
361 }
362 TargetLocation += Val;
363 }
364 int64_t Size = TargetLocation - FragmentOffset;
365 if (Size < 0 || Size >= 0x40000000) {
366 getContext().reportError(
367 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
368 "' (at offset '" + Twine(FragmentOffset) + "')");
369 return 0;
370 }
371 return Size;
372 }
373
374 case MCFragment::FT_Dwarf:
375 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
376 case MCFragment::FT_DwarfFrame:
377 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
378 case MCFragment::FT_CVInlineLines:
379 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
380 case MCFragment::FT_CVDefRange:
381 return cast<MCCVDefRangeFragment>(F).getContents().size();
382 case MCFragment::FT_Dummy:
383 llvm_unreachable("Should not have been added");
384 }
385
386 llvm_unreachable("invalid fragment kind");
387 }
388
layoutFragment(MCFragment * F)389 void MCAsmLayout::layoutFragment(MCFragment *F) {
390 MCFragment *Prev = F->getPrevNode();
391
392 // We should never try to recompute something which is valid.
393 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
394 // We should never try to compute the fragment layout if its predecessor
395 // isn't valid.
396 assert((!Prev || isFragmentValid(Prev)) &&
397 "Attempt to compute fragment before its predecessor!");
398
399 ++stats::FragmentLayouts;
400
401 // Compute fragment offset and size.
402 if (Prev)
403 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
404 else
405 F->Offset = 0;
406 LastValidFragment[F->getParent()] = F;
407
408 // If bundling is enabled and this fragment has instructions in it, it has to
409 // obey the bundling restrictions. With padding, we'll have:
410 //
411 //
412 // BundlePadding
413 // |||
414 // -------------------------------------
415 // Prev |##########| F |
416 // -------------------------------------
417 // ^
418 // |
419 // F->Offset
420 //
421 // The fragment's offset will point to after the padding, and its computed
422 // size won't include the padding.
423 //
424 // When the -mc-relax-all flag is used, we optimize bundling by writting the
425 // padding directly into fragments when the instructions are emitted inside
426 // the streamer. When the fragment is larger than the bundle size, we need to
427 // ensure that it's bundle aligned. This means that if we end up with
428 // multiple fragments, we must emit bundle padding between fragments.
429 //
430 // ".align N" is an example of a directive that introduces multiple
431 // fragments. We could add a special case to handle ".align N" by emitting
432 // within-fragment padding (which would produce less padding when N is less
433 // than the bundle size), but for now we don't.
434 //
435 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
436 assert(isa<MCEncodedFragment>(F) &&
437 "Only MCEncodedFragment implementations have instructions");
438 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
439 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
440
441 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
442 report_fatal_error("Fragment can't be larger than a bundle size");
443
444 uint64_t RequiredBundlePadding =
445 computeBundlePadding(Assembler, EF, EF->Offset, FSize);
446 if (RequiredBundlePadding > UINT8_MAX)
447 report_fatal_error("Padding cannot exceed 255 bytes");
448 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
449 EF->Offset += RequiredBundlePadding;
450 }
451 }
452
registerSymbol(const MCSymbol & Symbol,bool * Created)453 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
454 bool New = !Symbol.isRegistered();
455 if (Created)
456 *Created = New;
457 if (New) {
458 Symbol.setIsRegistered(true);
459 Symbols.push_back(&Symbol);
460 }
461 }
462
writeFragmentPadding(raw_ostream & OS,const MCEncodedFragment & EF,uint64_t FSize) const463 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
464 const MCEncodedFragment &EF,
465 uint64_t FSize) const {
466 assert(getBackendPtr() && "Expected assembler backend");
467 // Should NOP padding be written out before this fragment?
468 unsigned BundlePadding = EF.getBundlePadding();
469 if (BundlePadding > 0) {
470 assert(isBundlingEnabled() &&
471 "Writing bundle padding with disabled bundling");
472 assert(EF.hasInstructions() &&
473 "Writing bundle padding for a fragment without instructions");
474
475 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
476 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
477 // If the padding itself crosses a bundle boundary, it must be emitted
478 // in 2 pieces, since even nop instructions must not cross boundaries.
479 // v--------------v <- BundleAlignSize
480 // v---------v <- BundlePadding
481 // ----------------------------
482 // | Prev |####|####| F |
483 // ----------------------------
484 // ^-------------------^ <- TotalLength
485 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
486 if (!getBackend().writeNopData(OS, DistanceToBoundary))
487 report_fatal_error("unable to write NOP sequence of " +
488 Twine(DistanceToBoundary) + " bytes");
489 BundlePadding -= DistanceToBoundary;
490 }
491 if (!getBackend().writeNopData(OS, BundlePadding))
492 report_fatal_error("unable to write NOP sequence of " +
493 Twine(BundlePadding) + " bytes");
494 }
495 }
496
497 /// Write the fragment \p F to the output file.
writeFragment(raw_ostream & OS,const MCAssembler & Asm,const MCAsmLayout & Layout,const MCFragment & F)498 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
499 const MCAsmLayout &Layout, const MCFragment &F) {
500 // FIXME: Embed in fragments instead?
501 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
502
503 support::endianness Endian = Asm.getBackend().Endian;
504
505 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
506 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
507
508 // This variable (and its dummy usage) is to participate in the assert at
509 // the end of the function.
510 uint64_t Start = OS.tell();
511 (void) Start;
512
513 ++stats::EmittedFragments;
514
515 switch (F.getKind()) {
516 case MCFragment::FT_Align: {
517 ++stats::EmittedAlignFragments;
518 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
519 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
520
521 uint64_t Count = FragmentSize / AF.getValueSize();
522
523 // FIXME: This error shouldn't actually occur (the front end should emit
524 // multiple .align directives to enforce the semantics it wants), but is
525 // severe enough that we want to report it. How to handle this?
526 if (Count * AF.getValueSize() != FragmentSize)
527 report_fatal_error("undefined .align directive, value size '" +
528 Twine(AF.getValueSize()) +
529 "' is not a divisor of padding size '" +
530 Twine(FragmentSize) + "'");
531
532 // See if we are aligning with nops, and if so do that first to try to fill
533 // the Count bytes. Then if that did not fill any bytes or there are any
534 // bytes left to fill use the Value and ValueSize to fill the rest.
535 // If we are aligning with nops, ask that target to emit the right data.
536 if (AF.hasEmitNops()) {
537 if (!Asm.getBackend().writeNopData(OS, Count))
538 report_fatal_error("unable to write nop sequence of " +
539 Twine(Count) + " bytes");
540 break;
541 }
542
543 // Otherwise, write out in multiples of the value size.
544 for (uint64_t i = 0; i != Count; ++i) {
545 switch (AF.getValueSize()) {
546 default: llvm_unreachable("Invalid size!");
547 case 1: OS << char(AF.getValue()); break;
548 case 2:
549 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
550 break;
551 case 4:
552 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
553 break;
554 case 8:
555 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
556 break;
557 }
558 }
559 break;
560 }
561
562 case MCFragment::FT_Data:
563 ++stats::EmittedDataFragments;
564 OS << cast<MCDataFragment>(F).getContents();
565 break;
566
567 case MCFragment::FT_Relaxable:
568 ++stats::EmittedRelaxableFragments;
569 OS << cast<MCRelaxableFragment>(F).getContents();
570 break;
571
572 case MCFragment::FT_CompactEncodedInst:
573 ++stats::EmittedCompactEncodedInstFragments;
574 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
575 break;
576
577 case MCFragment::FT_Fill: {
578 ++stats::EmittedFillFragments;
579 const MCFillFragment &FF = cast<MCFillFragment>(F);
580 uint64_t V = FF.getValue();
581 unsigned VSize = FF.getValueSize();
582 const unsigned MaxChunkSize = 16;
583 char Data[MaxChunkSize];
584 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
585 // Duplicate V into Data as byte vector to reduce number of
586 // writes done. As such, do endian conversion here.
587 for (unsigned I = 0; I != VSize; ++I) {
588 unsigned index = Endian == support::little ? I : (VSize - I - 1);
589 Data[I] = uint8_t(V >> (index * 8));
590 }
591 for (unsigned I = VSize; I < MaxChunkSize; ++I)
592 Data[I] = Data[I - VSize];
593
594 // Set to largest multiple of VSize in Data.
595 const unsigned NumPerChunk = MaxChunkSize / VSize;
596 // Set ChunkSize to largest multiple of VSize in Data
597 const unsigned ChunkSize = VSize * NumPerChunk;
598
599 // Do copies by chunk.
600 StringRef Ref(Data, ChunkSize);
601 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
602 OS << Ref;
603
604 // do remainder if needed.
605 unsigned TrailingCount = FragmentSize % ChunkSize;
606 if (TrailingCount)
607 OS.write(Data, TrailingCount);
608 break;
609 }
610
611 case MCFragment::FT_LEB: {
612 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
613 OS << LF.getContents();
614 break;
615 }
616
617 case MCFragment::FT_BoundaryAlign: {
618 if (!Asm.getBackend().writeNopData(OS, FragmentSize))
619 report_fatal_error("unable to write nop sequence of " +
620 Twine(FragmentSize) + " bytes");
621 break;
622 }
623
624 case MCFragment::FT_SymbolId: {
625 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
626 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
627 break;
628 }
629
630 case MCFragment::FT_Org: {
631 ++stats::EmittedOrgFragments;
632 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
633
634 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
635 OS << char(OF.getValue());
636
637 break;
638 }
639
640 case MCFragment::FT_Dwarf: {
641 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
642 OS << OF.getContents();
643 break;
644 }
645 case MCFragment::FT_DwarfFrame: {
646 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
647 OS << CF.getContents();
648 break;
649 }
650 case MCFragment::FT_CVInlineLines: {
651 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
652 OS << OF.getContents();
653 break;
654 }
655 case MCFragment::FT_CVDefRange: {
656 const auto &DRF = cast<MCCVDefRangeFragment>(F);
657 OS << DRF.getContents();
658 break;
659 }
660 case MCFragment::FT_Dummy:
661 llvm_unreachable("Should not have been added");
662 }
663
664 assert(OS.tell() - Start == FragmentSize &&
665 "The stream should advance by fragment size");
666 }
667
writeSectionData(raw_ostream & OS,const MCSection * Sec,const MCAsmLayout & Layout) const668 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
669 const MCAsmLayout &Layout) const {
670 assert(getBackendPtr() && "Expected assembler backend");
671
672 // Ignore virtual sections.
673 if (Sec->isVirtualSection()) {
674 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
675
676 // Check that contents are only things legal inside a virtual section.
677 for (const MCFragment &F : *Sec) {
678 switch (F.getKind()) {
679 default: llvm_unreachable("Invalid fragment in virtual section!");
680 case MCFragment::FT_Data: {
681 // Check that we aren't trying to write a non-zero contents (or fixups)
682 // into a virtual section. This is to support clients which use standard
683 // directives to fill the contents of virtual sections.
684 const MCDataFragment &DF = cast<MCDataFragment>(F);
685 if (DF.fixup_begin() != DF.fixup_end())
686 report_fatal_error("cannot have fixups in virtual section!");
687 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
688 if (DF.getContents()[i]) {
689 if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
690 report_fatal_error("non-zero initializer found in section '" +
691 ELFSec->getSectionName() + "'");
692 else
693 report_fatal_error("non-zero initializer found in virtual section");
694 }
695 break;
696 }
697 case MCFragment::FT_Align:
698 // Check that we aren't trying to write a non-zero value into a virtual
699 // section.
700 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
701 cast<MCAlignFragment>(F).getValue() == 0) &&
702 "Invalid align in virtual section!");
703 break;
704 case MCFragment::FT_Fill:
705 assert((cast<MCFillFragment>(F).getValue() == 0) &&
706 "Invalid fill in virtual section!");
707 break;
708 }
709 }
710
711 return;
712 }
713
714 uint64_t Start = OS.tell();
715 (void)Start;
716
717 for (const MCFragment &F : *Sec)
718 writeFragment(OS, *this, Layout, F);
719
720 assert(OS.tell() - Start == Layout.getSectionAddressSize(Sec));
721 }
722
723 std::tuple<MCValue, uint64_t, bool>
handleFixup(const MCAsmLayout & Layout,MCFragment & F,const MCFixup & Fixup)724 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
725 const MCFixup &Fixup) {
726 // Evaluate the fixup.
727 MCValue Target;
728 uint64_t FixedValue;
729 bool WasForced;
730 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
731 WasForced);
732 if (!IsResolved) {
733 // The fixup was unresolved, we need a relocation. Inform the object
734 // writer of the relocation, and give it an opportunity to adjust the
735 // fixup value if need be.
736 if (Target.getSymA() && Target.getSymB() &&
737 getBackend().requiresDiffExpressionRelocations()) {
738 // The fixup represents the difference between two symbols, which the
739 // backend has indicated must be resolved at link time. Split up the fixup
740 // into two relocations, one for the add, and one for the sub, and emit
741 // both of these. The constant will be associated with the add half of the
742 // expression.
743 MCFixup FixupAdd = MCFixup::createAddFor(Fixup);
744 MCValue TargetAdd =
745 MCValue::get(Target.getSymA(), nullptr, Target.getConstant());
746 getWriter().recordRelocation(*this, Layout, &F, FixupAdd, TargetAdd,
747 FixedValue);
748 MCFixup FixupSub = MCFixup::createSubFor(Fixup);
749 MCValue TargetSub = MCValue::get(Target.getSymB());
750 getWriter().recordRelocation(*this, Layout, &F, FixupSub, TargetSub,
751 FixedValue);
752 } else {
753 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target,
754 FixedValue);
755 }
756 }
757 return std::make_tuple(Target, FixedValue, IsResolved);
758 }
759
layout(MCAsmLayout & Layout)760 void MCAssembler::layout(MCAsmLayout &Layout) {
761 assert(getBackendPtr() && "Expected assembler backend");
762 DEBUG_WITH_TYPE("mc-dump", {
763 errs() << "assembler backend - pre-layout\n--\n";
764 dump(); });
765
766 // Create dummy fragments and assign section ordinals.
767 unsigned SectionIndex = 0;
768 for (MCSection &Sec : *this) {
769 // Create dummy fragments to eliminate any empty sections, this simplifies
770 // layout.
771 if (Sec.getFragmentList().empty())
772 new MCDataFragment(&Sec);
773
774 Sec.setOrdinal(SectionIndex++);
775 }
776
777 // Assign layout order indices to sections and fragments.
778 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
779 MCSection *Sec = Layout.getSectionOrder()[i];
780 Sec->setLayoutOrder(i);
781
782 unsigned FragmentIndex = 0;
783 for (MCFragment &Frag : *Sec)
784 Frag.setLayoutOrder(FragmentIndex++);
785 }
786
787 // Layout until everything fits.
788 while (layoutOnce(Layout))
789 if (getContext().hadError())
790 return;
791
792 DEBUG_WITH_TYPE("mc-dump", {
793 errs() << "assembler backend - post-relaxation\n--\n";
794 dump(); });
795
796 // Finalize the layout, including fragment lowering.
797 finishLayout(Layout);
798
799 DEBUG_WITH_TYPE("mc-dump", {
800 errs() << "assembler backend - final-layout\n--\n";
801 dump(); });
802
803 // Allow the object writer a chance to perform post-layout binding (for
804 // example, to set the index fields in the symbol data).
805 getWriter().executePostLayoutBinding(*this, Layout);
806
807 // Evaluate and apply the fixups, generating relocation entries as necessary.
808 for (MCSection &Sec : *this) {
809 for (MCFragment &Frag : Sec) {
810 // Data and relaxable fragments both have fixups. So only process
811 // those here.
812 // FIXME: Is there a better way to do this? MCEncodedFragmentWithFixups
813 // being templated makes this tricky.
814 if (isa<MCEncodedFragment>(&Frag) &&
815 isa<MCCompactEncodedInstFragment>(&Frag))
816 continue;
817 if (!isa<MCEncodedFragment>(&Frag) && !isa<MCCVDefRangeFragment>(&Frag) &&
818 !isa<MCAlignFragment>(&Frag))
819 continue;
820 ArrayRef<MCFixup> Fixups;
821 MutableArrayRef<char> Contents;
822 const MCSubtargetInfo *STI = nullptr;
823 if (auto *FragWithFixups = dyn_cast<MCDataFragment>(&Frag)) {
824 Fixups = FragWithFixups->getFixups();
825 Contents = FragWithFixups->getContents();
826 STI = FragWithFixups->getSubtargetInfo();
827 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
828 } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(&Frag)) {
829 Fixups = FragWithFixups->getFixups();
830 Contents = FragWithFixups->getContents();
831 STI = FragWithFixups->getSubtargetInfo();
832 assert(!FragWithFixups->hasInstructions() || STI != nullptr);
833 } else if (auto *FragWithFixups = dyn_cast<MCCVDefRangeFragment>(&Frag)) {
834 Fixups = FragWithFixups->getFixups();
835 Contents = FragWithFixups->getContents();
836 } else if (auto *FragWithFixups = dyn_cast<MCDwarfLineAddrFragment>(&Frag)) {
837 Fixups = FragWithFixups->getFixups();
838 Contents = FragWithFixups->getContents();
839 } else if (auto *AF = dyn_cast<MCAlignFragment>(&Frag)) {
840 // Insert fixup type for code alignment if the target define
841 // shouldInsertFixupForCodeAlign target hook.
842 if (Sec.UseCodeAlign() && AF->hasEmitNops()) {
843 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, *AF);
844 }
845 continue;
846 } else if (auto *FragWithFixups =
847 dyn_cast<MCDwarfCallFrameFragment>(&Frag)) {
848 Fixups = FragWithFixups->getFixups();
849 Contents = FragWithFixups->getContents();
850 } else
851 llvm_unreachable("Unknown fragment with fixups!");
852 for (const MCFixup &Fixup : Fixups) {
853 uint64_t FixedValue;
854 bool IsResolved;
855 MCValue Target;
856 std::tie(Target, FixedValue, IsResolved) =
857 handleFixup(Layout, Frag, Fixup);
858 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
859 IsResolved, STI);
860 }
861 }
862 }
863 }
864
Finish()865 void MCAssembler::Finish() {
866 // Create the layout object.
867 MCAsmLayout Layout(*this);
868 layout(Layout);
869
870 // Write the object file.
871 stats::ObjectBytes += getWriter().writeObject(*this, Layout);
872 }
873
fixupNeedsRelaxation(const MCFixup & Fixup,const MCRelaxableFragment * DF,const MCAsmLayout & Layout) const874 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
875 const MCRelaxableFragment *DF,
876 const MCAsmLayout &Layout) const {
877 assert(getBackendPtr() && "Expected assembler backend");
878 MCValue Target;
879 uint64_t Value;
880 bool WasForced;
881 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
882 if (Target.getSymA() &&
883 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
884 Fixup.getKind() == FK_Data_1)
885 return false;
886 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
887 Layout, WasForced);
888 }
889
fragmentNeedsRelaxation(const MCRelaxableFragment * F,const MCAsmLayout & Layout) const890 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
891 const MCAsmLayout &Layout) const {
892 assert(getBackendPtr() && "Expected assembler backend");
893 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
894 // are intentionally pushing out inst fragments, or because we relaxed a
895 // previous instruction to one that doesn't need relaxation.
896 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
897 return false;
898
899 for (const MCFixup &Fixup : F->getFixups())
900 if (fixupNeedsRelaxation(Fixup, F, Layout))
901 return true;
902
903 return false;
904 }
905
relaxInstruction(MCAsmLayout & Layout,MCRelaxableFragment & F)906 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
907 MCRelaxableFragment &F) {
908 assert(getEmitterPtr() &&
909 "Expected CodeEmitter defined for relaxInstruction");
910 if (!fragmentNeedsRelaxation(&F, Layout))
911 return false;
912
913 ++stats::RelaxedInstructions;
914
915 // FIXME-PERF: We could immediately lower out instructions if we can tell
916 // they are fully resolved, to avoid retesting on later passes.
917
918 // Relax the fragment.
919
920 MCInst Relaxed;
921 getBackend().relaxInstruction(F.getInst(), *F.getSubtargetInfo(), Relaxed);
922
923 // Encode the new instruction.
924 //
925 // FIXME-PERF: If it matters, we could let the target do this. It can
926 // probably do so more efficiently in many cases.
927 SmallVector<MCFixup, 4> Fixups;
928 SmallString<256> Code;
929 raw_svector_ostream VecOS(Code);
930 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
931
932 // Update the fragment.
933 F.setInst(Relaxed);
934 F.getContents() = Code;
935 F.getFixups() = Fixups;
936
937 return true;
938 }
939
relaxLEB(MCAsmLayout & Layout,MCLEBFragment & LF)940 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
941 uint64_t OldSize = LF.getContents().size();
942 int64_t Value;
943 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
944 if (!Abs)
945 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
946 SmallString<8> &Data = LF.getContents();
947 Data.clear();
948 raw_svector_ostream OSE(Data);
949 // The compiler can generate EH table assembly that is impossible to assemble
950 // without either adding padding to an LEB fragment or adding extra padding
951 // to a later alignment fragment. To accommodate such tables, relaxation can
952 // only increase an LEB fragment size here, not decrease it. See PR35809.
953 if (LF.isSigned())
954 encodeSLEB128(Value, OSE, OldSize);
955 else
956 encodeULEB128(Value, OSE, OldSize);
957 return OldSize != LF.getContents().size();
958 }
959
960 /// Check if the branch crosses the boundary.
961 ///
962 /// \param StartAddr start address of the fused/unfused branch.
963 /// \param Size size of the fused/unfused branch.
964 /// \param BoundaryAlignment alignment requirement of the branch.
965 /// \returns true if the branch cross the boundary.
mayCrossBoundary(uint64_t StartAddr,uint64_t Size,Align BoundaryAlignment)966 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
967 Align BoundaryAlignment) {
968 uint64_t EndAddr = StartAddr + Size;
969 return (StartAddr >> Log2(BoundaryAlignment)) !=
970 ((EndAddr - 1) >> Log2(BoundaryAlignment));
971 }
972
973 /// Check if the branch is against the boundary.
974 ///
975 /// \param StartAddr start address of the fused/unfused branch.
976 /// \param Size size of the fused/unfused branch.
977 /// \param BoundaryAlignment alignment requirement of the branch.
978 /// \returns true if the branch is against the boundary.
isAgainstBoundary(uint64_t StartAddr,uint64_t Size,Align BoundaryAlignment)979 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
980 Align BoundaryAlignment) {
981 uint64_t EndAddr = StartAddr + Size;
982 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
983 }
984
985 /// Check if the branch needs padding.
986 ///
987 /// \param StartAddr start address of the fused/unfused branch.
988 /// \param Size size of the fused/unfused branch.
989 /// \param BoundaryAlignment alignment requirement of the branch.
990 /// \returns true if the branch needs padding.
needPadding(uint64_t StartAddr,uint64_t Size,Align BoundaryAlignment)991 static bool needPadding(uint64_t StartAddr, uint64_t Size,
992 Align BoundaryAlignment) {
993 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
994 isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
995 }
996
relaxBoundaryAlign(MCAsmLayout & Layout,MCBoundaryAlignFragment & BF)997 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
998 MCBoundaryAlignFragment &BF) {
999 // The MCBoundaryAlignFragment that doesn't emit NOP should not be relaxed.
1000 if (!BF.canEmitNops())
1001 return false;
1002
1003 uint64_t AlignedOffset = Layout.getFragmentOffset(BF.getNextNode());
1004 uint64_t AlignedSize = 0;
1005 const MCFragment *F = BF.getNextNode();
1006 // If the branch is unfused, it is emitted into one fragment, otherwise it is
1007 // emitted into two fragments at most, the next MCBoundaryAlignFragment(if
1008 // exists) also marks the end of the branch.
1009 for (auto i = 0, N = BF.isFused() ? 2 : 1;
1010 i != N && !isa<MCBoundaryAlignFragment>(F); ++i, F = F->getNextNode()) {
1011 AlignedSize += computeFragmentSize(Layout, *F);
1012 }
1013 uint64_t OldSize = BF.getSize();
1014 AlignedOffset -= OldSize;
1015 Align BoundaryAlignment = BF.getAlignment();
1016 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1017 ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1018 : 0U;
1019 if (NewSize == OldSize)
1020 return false;
1021 BF.setSize(NewSize);
1022 Layout.invalidateFragmentsFrom(&BF);
1023 return true;
1024 }
1025
relaxDwarfLineAddr(MCAsmLayout & Layout,MCDwarfLineAddrFragment & DF)1026 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1027 MCDwarfLineAddrFragment &DF) {
1028 MCContext &Context = Layout.getAssembler().getContext();
1029 uint64_t OldSize = DF.getContents().size();
1030 int64_t AddrDelta;
1031 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1032 assert(Abs && "We created a line delta with an invalid expression");
1033 (void)Abs;
1034 int64_t LineDelta;
1035 LineDelta = DF.getLineDelta();
1036 SmallVectorImpl<char> &Data = DF.getContents();
1037 Data.clear();
1038 raw_svector_ostream OSE(Data);
1039 DF.getFixups().clear();
1040
1041 if (!getBackend().requiresDiffExpressionRelocations()) {
1042 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1043 AddrDelta, OSE);
1044 } else {
1045 uint32_t Offset;
1046 uint32_t Size;
1047 bool SetDelta = MCDwarfLineAddr::FixedEncode(Context,
1048 getDWARFLinetableParams(),
1049 LineDelta, AddrDelta,
1050 OSE, &Offset, &Size);
1051 // Add Fixups for address delta or new address.
1052 const MCExpr *FixupExpr;
1053 if (SetDelta) {
1054 FixupExpr = &DF.getAddrDelta();
1055 } else {
1056 const MCBinaryExpr *ABE = cast<MCBinaryExpr>(&DF.getAddrDelta());
1057 FixupExpr = ABE->getLHS();
1058 }
1059 DF.getFixups().push_back(
1060 MCFixup::create(Offset, FixupExpr,
1061 MCFixup::getKindForSize(Size, false /*isPCRel*/)));
1062 }
1063
1064 return OldSize != Data.size();
1065 }
1066
relaxDwarfCallFrameFragment(MCAsmLayout & Layout,MCDwarfCallFrameFragment & DF)1067 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1068 MCDwarfCallFrameFragment &DF) {
1069 MCContext &Context = Layout.getAssembler().getContext();
1070 uint64_t OldSize = DF.getContents().size();
1071 int64_t AddrDelta;
1072 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1073 assert(Abs && "We created call frame with an invalid expression");
1074 (void) Abs;
1075 SmallVectorImpl<char> &Data = DF.getContents();
1076 Data.clear();
1077 raw_svector_ostream OSE(Data);
1078 DF.getFixups().clear();
1079
1080 if (getBackend().requiresDiffExpressionRelocations()) {
1081 uint32_t Offset;
1082 uint32_t Size;
1083 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE, &Offset,
1084 &Size);
1085 if (Size) {
1086 DF.getFixups().push_back(MCFixup::create(
1087 Offset, &DF.getAddrDelta(),
1088 MCFixup::getKindForSizeInBits(Size /*In bits.*/, false /*isPCRel*/)));
1089 }
1090 } else {
1091 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1092 }
1093
1094 return OldSize != Data.size();
1095 }
1096
relaxCVInlineLineTable(MCAsmLayout & Layout,MCCVInlineLineTableFragment & F)1097 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1098 MCCVInlineLineTableFragment &F) {
1099 unsigned OldSize = F.getContents().size();
1100 getContext().getCVContext().encodeInlineLineTable(Layout, F);
1101 return OldSize != F.getContents().size();
1102 }
1103
relaxCVDefRange(MCAsmLayout & Layout,MCCVDefRangeFragment & F)1104 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1105 MCCVDefRangeFragment &F) {
1106 unsigned OldSize = F.getContents().size();
1107 getContext().getCVContext().encodeDefRange(Layout, F);
1108 return OldSize != F.getContents().size();
1109 }
1110
layoutSectionOnce(MCAsmLayout & Layout,MCSection & Sec)1111 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1112 // Holds the first fragment which needed relaxing during this layout. It will
1113 // remain NULL if none were relaxed.
1114 // When a fragment is relaxed, all the fragments following it should get
1115 // invalidated because their offset is going to change.
1116 MCFragment *FirstRelaxedFragment = nullptr;
1117
1118 // Attempt to relax all the fragments in the section.
1119 for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1120 // Check if this is a fragment that needs relaxation.
1121 bool RelaxedFrag = false;
1122 switch(I->getKind()) {
1123 default:
1124 break;
1125 case MCFragment::FT_Relaxable:
1126 assert(!getRelaxAll() &&
1127 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1128 RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1129 break;
1130 case MCFragment::FT_Dwarf:
1131 RelaxedFrag = relaxDwarfLineAddr(Layout,
1132 *cast<MCDwarfLineAddrFragment>(I));
1133 break;
1134 case MCFragment::FT_DwarfFrame:
1135 RelaxedFrag =
1136 relaxDwarfCallFrameFragment(Layout,
1137 *cast<MCDwarfCallFrameFragment>(I));
1138 break;
1139 case MCFragment::FT_LEB:
1140 RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1141 break;
1142 case MCFragment::FT_BoundaryAlign:
1143 RelaxedFrag =
1144 relaxBoundaryAlign(Layout, *cast<MCBoundaryAlignFragment>(I));
1145 break;
1146 case MCFragment::FT_CVInlineLines:
1147 RelaxedFrag =
1148 relaxCVInlineLineTable(Layout, *cast<MCCVInlineLineTableFragment>(I));
1149 break;
1150 case MCFragment::FT_CVDefRange:
1151 RelaxedFrag = relaxCVDefRange(Layout, *cast<MCCVDefRangeFragment>(I));
1152 break;
1153 }
1154 if (RelaxedFrag && !FirstRelaxedFragment)
1155 FirstRelaxedFragment = &*I;
1156 }
1157 if (FirstRelaxedFragment) {
1158 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1159 return true;
1160 }
1161 return false;
1162 }
1163
layoutOnce(MCAsmLayout & Layout)1164 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1165 ++stats::RelaxationSteps;
1166
1167 bool WasRelaxed = false;
1168 for (iterator it = begin(), ie = end(); it != ie; ++it) {
1169 MCSection &Sec = *it;
1170 while (layoutSectionOnce(Layout, Sec))
1171 WasRelaxed = true;
1172 }
1173
1174 return WasRelaxed;
1175 }
1176
finishLayout(MCAsmLayout & Layout)1177 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1178 assert(getBackendPtr() && "Expected assembler backend");
1179 // The layout is done. Mark every fragment as valid.
1180 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1181 MCSection &Section = *Layout.getSectionOrder()[i];
1182 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1183 computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1184 }
1185 getBackend().finishLayout(*this, Layout);
1186 }
1187
1188 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1189 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1190 raw_ostream &OS = errs();
1191
1192 OS << "<MCAssembler\n";
1193 OS << " Sections:[\n ";
1194 for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1195 if (it != begin()) OS << ",\n ";
1196 it->dump();
1197 }
1198 OS << "],\n";
1199 OS << " Symbols:[";
1200
1201 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1202 if (it != symbol_begin()) OS << ",\n ";
1203 OS << "(";
1204 it->dump();
1205 OS << ", Index:" << it->getIndex() << ", ";
1206 OS << ")";
1207 }
1208 OS << "]>\n";
1209 }
1210 #endif
1211