1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73
74 #define DEBUG_TYPE "mips-fastisel"
75
76 using namespace llvm;
77
78 extern cl::opt<bool> EmitJalrReloc;
79
80 namespace {
81
82 class MipsFastISel final : public FastISel {
83
84 // All possible address modes.
85 class Address {
86 public:
87 using BaseKind = enum { RegBase, FrameIndexBase };
88
89 private:
90 BaseKind Kind = RegBase;
91 union {
92 unsigned Reg;
93 int FI;
94 } Base;
95
96 int64_t Offset = 0;
97
98 const GlobalValue *GV = nullptr;
99
100 public:
101 // Innocuous defaults for our address.
Address()102 Address() { Base.Reg = 0; }
103
setKind(BaseKind K)104 void setKind(BaseKind K) { Kind = K; }
getKind() const105 BaseKind getKind() const { return Kind; }
isRegBase() const106 bool isRegBase() const { return Kind == RegBase; }
isFIBase() const107 bool isFIBase() const { return Kind == FrameIndexBase; }
108
setReg(unsigned Reg)109 void setReg(unsigned Reg) {
110 assert(isRegBase() && "Invalid base register access!");
111 Base.Reg = Reg;
112 }
113
getReg() const114 unsigned getReg() const {
115 assert(isRegBase() && "Invalid base register access!");
116 return Base.Reg;
117 }
118
setFI(unsigned FI)119 void setFI(unsigned FI) {
120 assert(isFIBase() && "Invalid base frame index access!");
121 Base.FI = FI;
122 }
123
getFI() const124 unsigned getFI() const {
125 assert(isFIBase() && "Invalid base frame index access!");
126 return Base.FI;
127 }
128
setOffset(int64_t Offset_)129 void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const130 int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)131 void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()132 const GlobalValue *getGlobalValue() { return GV; }
133 };
134
135 /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136 /// make the right decision when generating code for different targets.
137 const TargetMachine &TM;
138 const MipsSubtarget *Subtarget;
139 const TargetInstrInfo &TII;
140 const TargetLowering &TLI;
141 MipsFunctionInfo *MFI;
142
143 // Convenience variables to avoid some queries.
144 LLVMContext *Context;
145
146 bool fastLowerArguments() override;
147 bool fastLowerCall(CallLoweringInfo &CLI) override;
148 bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
149
150 bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151 // floating point but not reject doing fast-isel in other
152 // situations
153
154 private:
155 // Selection routines.
156 bool selectLogicalOp(const Instruction *I);
157 bool selectLoad(const Instruction *I);
158 bool selectStore(const Instruction *I);
159 bool selectBranch(const Instruction *I);
160 bool selectSelect(const Instruction *I);
161 bool selectCmp(const Instruction *I);
162 bool selectFPExt(const Instruction *I);
163 bool selectFPTrunc(const Instruction *I);
164 bool selectFPToInt(const Instruction *I, bool IsSigned);
165 bool selectRet(const Instruction *I);
166 bool selectTrunc(const Instruction *I);
167 bool selectIntExt(const Instruction *I);
168 bool selectShift(const Instruction *I);
169 bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
170
171 // Utility helper routines.
172 bool isTypeLegal(Type *Ty, MVT &VT);
173 bool isTypeSupported(Type *Ty, MVT &VT);
174 bool isLoadTypeLegal(Type *Ty, MVT &VT);
175 bool computeAddress(const Value *Obj, Address &Addr);
176 bool computeCallAddress(const Value *V, Address &Addr);
177 void simplifyAddress(Address &Addr);
178
179 // Emit helper routines.
180 bool emitCmp(unsigned DestReg, const CmpInst *CI);
181 bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182 unsigned Alignment = 0);
183 bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
184 MachineMemOperand *MMO = nullptr);
185 bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
186 unsigned Alignment = 0);
187 unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
188 bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
189
190 bool IsZExt);
191 bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
192
193 bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
194 bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195 unsigned DestReg);
196 bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
197 unsigned DestReg);
198
199 unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
200
201 unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
202 const Value *RHS);
203
204 unsigned materializeFP(const ConstantFP *CFP, MVT VT);
205 unsigned materializeGV(const GlobalValue *GV, MVT VT);
206 unsigned materializeInt(const Constant *C, MVT VT);
207 unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
208 unsigned materializeExternalCallSym(MCSymbol *Syn);
209
emitInst(unsigned Opc)210 MachineInstrBuilder emitInst(unsigned Opc) {
211 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
212 }
213
emitInst(unsigned Opc,unsigned DstReg)214 MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
215 return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
216 DstReg);
217 }
218
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)219 MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
220 unsigned MemReg, int64_t MemOffset) {
221 return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
222 }
223
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)224 MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
225 unsigned MemReg, int64_t MemOffset) {
226 return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
227 }
228
229 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
230 const TargetRegisterClass *RC,
231 unsigned Op0, bool Op0IsKill,
232 unsigned Op1, bool Op1IsKill);
233
234 // for some reason, this default is not generated by tablegen
235 // so we explicitly generate it here.
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t imm1,uint64_t imm2,unsigned Op3,bool Op3IsKill)236 unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
237 unsigned Op0, bool Op0IsKill, uint64_t imm1,
238 uint64_t imm2, unsigned Op3, bool Op3IsKill) {
239 return 0;
240 }
241
242 // Call handling routines.
243 private:
244 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
245 bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
246 unsigned &NumBytes);
247 bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
248
getABI() const249 const MipsABIInfo &getABI() const {
250 return static_cast<const MipsTargetMachine &>(TM).getABI();
251 }
252
253 public:
254 // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)255 explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
256 const TargetLibraryInfo *libInfo)
257 : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
258 Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
259 TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
260 MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
261 Context = &funcInfo.Fn->getContext();
262 UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
263 }
264
265 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
266 unsigned fastMaterializeConstant(const Constant *C) override;
267 bool fastSelectInstruction(const Instruction *I) override;
268
269 #include "MipsGenFastISel.inc"
270 };
271
272 } // end anonymous namespace
273
274 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
275 CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
276 CCState &State) LLVM_ATTRIBUTE_UNUSED;
277
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)278 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
279 CCValAssign::LocInfo LocInfo,
280 ISD::ArgFlagsTy ArgFlags, CCState &State) {
281 llvm_unreachable("should not be called");
282 }
283
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)284 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
285 CCValAssign::LocInfo LocInfo,
286 ISD::ArgFlagsTy ArgFlags, CCState &State) {
287 llvm_unreachable("should not be called");
288 }
289
290 #include "MipsGenCallingConv.inc"
291
CCAssignFnForCall(CallingConv::ID CC) const292 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
293 return CC_MipsO32;
294 }
295
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)296 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
297 const Value *LHS, const Value *RHS) {
298 // Canonicalize immediates to the RHS first.
299 if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
300 std::swap(LHS, RHS);
301
302 unsigned Opc;
303 switch (ISDOpc) {
304 case ISD::AND:
305 Opc = Mips::AND;
306 break;
307 case ISD::OR:
308 Opc = Mips::OR;
309 break;
310 case ISD::XOR:
311 Opc = Mips::XOR;
312 break;
313 default:
314 llvm_unreachable("unexpected opcode");
315 }
316
317 unsigned LHSReg = getRegForValue(LHS);
318 if (!LHSReg)
319 return 0;
320
321 unsigned RHSReg;
322 if (const auto *C = dyn_cast<ConstantInt>(RHS))
323 RHSReg = materializeInt(C, MVT::i32);
324 else
325 RHSReg = getRegForValue(RHS);
326 if (!RHSReg)
327 return 0;
328
329 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
330 if (!ResultReg)
331 return 0;
332
333 emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
334 return ResultReg;
335 }
336
fastMaterializeAlloca(const AllocaInst * AI)337 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
338 assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
339 "Alloca should always return a pointer.");
340
341 DenseMap<const AllocaInst *, int>::iterator SI =
342 FuncInfo.StaticAllocaMap.find(AI);
343
344 if (SI != FuncInfo.StaticAllocaMap.end()) {
345 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
346 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
347 ResultReg)
348 .addFrameIndex(SI->second)
349 .addImm(0);
350 return ResultReg;
351 }
352
353 return 0;
354 }
355
materializeInt(const Constant * C,MVT VT)356 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
357 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
358 return 0;
359 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
360 const ConstantInt *CI = cast<ConstantInt>(C);
361 return materialize32BitInt(CI->getZExtValue(), RC);
362 }
363
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)364 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
365 const TargetRegisterClass *RC) {
366 unsigned ResultReg = createResultReg(RC);
367
368 if (isInt<16>(Imm)) {
369 unsigned Opc = Mips::ADDiu;
370 emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
371 return ResultReg;
372 } else if (isUInt<16>(Imm)) {
373 emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
374 return ResultReg;
375 }
376 unsigned Lo = Imm & 0xFFFF;
377 unsigned Hi = (Imm >> 16) & 0xFFFF;
378 if (Lo) {
379 // Both Lo and Hi have nonzero bits.
380 unsigned TmpReg = createResultReg(RC);
381 emitInst(Mips::LUi, TmpReg).addImm(Hi);
382 emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
383 } else {
384 emitInst(Mips::LUi, ResultReg).addImm(Hi);
385 }
386 return ResultReg;
387 }
388
materializeFP(const ConstantFP * CFP,MVT VT)389 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
390 if (UnsupportedFPMode)
391 return 0;
392 int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
393 if (VT == MVT::f32) {
394 const TargetRegisterClass *RC = &Mips::FGR32RegClass;
395 unsigned DestReg = createResultReg(RC);
396 unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
397 emitInst(Mips::MTC1, DestReg).addReg(TempReg);
398 return DestReg;
399 } else if (VT == MVT::f64) {
400 const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
401 unsigned DestReg = createResultReg(RC);
402 unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
403 unsigned TempReg2 =
404 materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
405 emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
406 return DestReg;
407 }
408 return 0;
409 }
410
materializeGV(const GlobalValue * GV,MVT VT)411 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
412 // For now 32-bit only.
413 if (VT != MVT::i32)
414 return 0;
415 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
416 unsigned DestReg = createResultReg(RC);
417 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
418 bool IsThreadLocal = GVar && GVar->isThreadLocal();
419 // TLS not supported at this time.
420 if (IsThreadLocal)
421 return 0;
422 emitInst(Mips::LW, DestReg)
423 .addReg(MFI->getGlobalBaseReg())
424 .addGlobalAddress(GV, 0, MipsII::MO_GOT);
425 if ((GV->hasInternalLinkage() ||
426 (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
427 unsigned TempReg = createResultReg(RC);
428 emitInst(Mips::ADDiu, TempReg)
429 .addReg(DestReg)
430 .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
431 DestReg = TempReg;
432 }
433 return DestReg;
434 }
435
materializeExternalCallSym(MCSymbol * Sym)436 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
437 const TargetRegisterClass *RC = &Mips::GPR32RegClass;
438 unsigned DestReg = createResultReg(RC);
439 emitInst(Mips::LW, DestReg)
440 .addReg(MFI->getGlobalBaseReg())
441 .addSym(Sym, MipsII::MO_GOT);
442 return DestReg;
443 }
444
445 // Materialize a constant into a register, and return the register
446 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)447 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
448 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
449
450 // Only handle simple types.
451 if (!CEVT.isSimple())
452 return 0;
453 MVT VT = CEVT.getSimpleVT();
454
455 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
456 return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
457 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
458 return materializeGV(GV, VT);
459 else if (isa<ConstantInt>(C))
460 return materializeInt(C, VT);
461
462 return 0;
463 }
464
computeAddress(const Value * Obj,Address & Addr)465 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
466 const User *U = nullptr;
467 unsigned Opcode = Instruction::UserOp1;
468 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
469 // Don't walk into other basic blocks unless the object is an alloca from
470 // another block, otherwise it may not have a virtual register assigned.
471 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
472 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
473 Opcode = I->getOpcode();
474 U = I;
475 }
476 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
477 Opcode = C->getOpcode();
478 U = C;
479 }
480 switch (Opcode) {
481 default:
482 break;
483 case Instruction::BitCast:
484 // Look through bitcasts.
485 return computeAddress(U->getOperand(0), Addr);
486 case Instruction::GetElementPtr: {
487 Address SavedAddr = Addr;
488 int64_t TmpOffset = Addr.getOffset();
489 // Iterate through the GEP folding the constants into offsets where
490 // we can.
491 gep_type_iterator GTI = gep_type_begin(U);
492 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
493 ++i, ++GTI) {
494 const Value *Op = *i;
495 if (StructType *STy = GTI.getStructTypeOrNull()) {
496 const StructLayout *SL = DL.getStructLayout(STy);
497 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
498 TmpOffset += SL->getElementOffset(Idx);
499 } else {
500 uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
501 while (true) {
502 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
503 // Constant-offset addressing.
504 TmpOffset += CI->getSExtValue() * S;
505 break;
506 }
507 if (canFoldAddIntoGEP(U, Op)) {
508 // A compatible add with a constant operand. Fold the constant.
509 ConstantInt *CI =
510 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
511 TmpOffset += CI->getSExtValue() * S;
512 // Iterate on the other operand.
513 Op = cast<AddOperator>(Op)->getOperand(0);
514 continue;
515 }
516 // Unsupported
517 goto unsupported_gep;
518 }
519 }
520 }
521 // Try to grab the base operand now.
522 Addr.setOffset(TmpOffset);
523 if (computeAddress(U->getOperand(0), Addr))
524 return true;
525 // We failed, restore everything and try the other options.
526 Addr = SavedAddr;
527 unsupported_gep:
528 break;
529 }
530 case Instruction::Alloca: {
531 const AllocaInst *AI = cast<AllocaInst>(Obj);
532 DenseMap<const AllocaInst *, int>::iterator SI =
533 FuncInfo.StaticAllocaMap.find(AI);
534 if (SI != FuncInfo.StaticAllocaMap.end()) {
535 Addr.setKind(Address::FrameIndexBase);
536 Addr.setFI(SI->second);
537 return true;
538 }
539 break;
540 }
541 }
542 Addr.setReg(getRegForValue(Obj));
543 return Addr.getReg() != 0;
544 }
545
computeCallAddress(const Value * V,Address & Addr)546 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
547 const User *U = nullptr;
548 unsigned Opcode = Instruction::UserOp1;
549
550 if (const auto *I = dyn_cast<Instruction>(V)) {
551 // Check if the value is defined in the same basic block. This information
552 // is crucial to know whether or not folding an operand is valid.
553 if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
554 Opcode = I->getOpcode();
555 U = I;
556 }
557 } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
558 Opcode = C->getOpcode();
559 U = C;
560 }
561
562 switch (Opcode) {
563 default:
564 break;
565 case Instruction::BitCast:
566 // Look past bitcasts if its operand is in the same BB.
567 return computeCallAddress(U->getOperand(0), Addr);
568 break;
569 case Instruction::IntToPtr:
570 // Look past no-op inttoptrs if its operand is in the same BB.
571 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
572 TLI.getPointerTy(DL))
573 return computeCallAddress(U->getOperand(0), Addr);
574 break;
575 case Instruction::PtrToInt:
576 // Look past no-op ptrtoints if its operand is in the same BB.
577 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
578 return computeCallAddress(U->getOperand(0), Addr);
579 break;
580 }
581
582 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
583 Addr.setGlobalValue(GV);
584 return true;
585 }
586
587 // If all else fails, try to materialize the value in a register.
588 if (!Addr.getGlobalValue()) {
589 Addr.setReg(getRegForValue(V));
590 return Addr.getReg() != 0;
591 }
592
593 return false;
594 }
595
isTypeLegal(Type * Ty,MVT & VT)596 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
597 EVT evt = TLI.getValueType(DL, Ty, true);
598 // Only handle simple types.
599 if (evt == MVT::Other || !evt.isSimple())
600 return false;
601 VT = evt.getSimpleVT();
602
603 // Handle all legal types, i.e. a register that will directly hold this
604 // value.
605 return TLI.isTypeLegal(VT);
606 }
607
isTypeSupported(Type * Ty,MVT & VT)608 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
609 if (Ty->isVectorTy())
610 return false;
611
612 if (isTypeLegal(Ty, VT))
613 return true;
614
615 // If this is a type than can be sign or zero-extended to a basic operation
616 // go ahead and accept it now.
617 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
618 return true;
619
620 return false;
621 }
622
isLoadTypeLegal(Type * Ty,MVT & VT)623 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
624 if (isTypeLegal(Ty, VT))
625 return true;
626 // We will extend this in a later patch:
627 // If this is a type than can be sign or zero-extended to a basic operation
628 // go ahead and accept it now.
629 if (VT == MVT::i8 || VT == MVT::i16)
630 return true;
631 return false;
632 }
633
634 // Because of how EmitCmp is called with fast-isel, you can
635 // end up with redundant "andi" instructions after the sequences emitted below.
636 // We should try and solve this issue in the future.
637 //
emitCmp(unsigned ResultReg,const CmpInst * CI)638 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
639 const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
640 bool IsUnsigned = CI->isUnsigned();
641 unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
642 if (LeftReg == 0)
643 return false;
644 unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
645 if (RightReg == 0)
646 return false;
647 CmpInst::Predicate P = CI->getPredicate();
648
649 switch (P) {
650 default:
651 return false;
652 case CmpInst::ICMP_EQ: {
653 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
654 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
655 emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
656 break;
657 }
658 case CmpInst::ICMP_NE: {
659 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
660 emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
661 emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
662 break;
663 }
664 case CmpInst::ICMP_UGT:
665 emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
666 break;
667 case CmpInst::ICMP_ULT:
668 emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
669 break;
670 case CmpInst::ICMP_UGE: {
671 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
672 emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
673 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
674 break;
675 }
676 case CmpInst::ICMP_ULE: {
677 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
678 emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
679 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
680 break;
681 }
682 case CmpInst::ICMP_SGT:
683 emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
684 break;
685 case CmpInst::ICMP_SLT:
686 emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
687 break;
688 case CmpInst::ICMP_SGE: {
689 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
690 emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
691 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
692 break;
693 }
694 case CmpInst::ICMP_SLE: {
695 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
696 emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
697 emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
698 break;
699 }
700 case CmpInst::FCMP_OEQ:
701 case CmpInst::FCMP_UNE:
702 case CmpInst::FCMP_OLT:
703 case CmpInst::FCMP_OLE:
704 case CmpInst::FCMP_OGT:
705 case CmpInst::FCMP_OGE: {
706 if (UnsupportedFPMode)
707 return false;
708 bool IsFloat = Left->getType()->isFloatTy();
709 bool IsDouble = Left->getType()->isDoubleTy();
710 if (!IsFloat && !IsDouble)
711 return false;
712 unsigned Opc, CondMovOpc;
713 switch (P) {
714 case CmpInst::FCMP_OEQ:
715 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
716 CondMovOpc = Mips::MOVT_I;
717 break;
718 case CmpInst::FCMP_UNE:
719 Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
720 CondMovOpc = Mips::MOVF_I;
721 break;
722 case CmpInst::FCMP_OLT:
723 Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
724 CondMovOpc = Mips::MOVT_I;
725 break;
726 case CmpInst::FCMP_OLE:
727 Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
728 CondMovOpc = Mips::MOVT_I;
729 break;
730 case CmpInst::FCMP_OGT:
731 Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
732 CondMovOpc = Mips::MOVF_I;
733 break;
734 case CmpInst::FCMP_OGE:
735 Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
736 CondMovOpc = Mips::MOVF_I;
737 break;
738 default:
739 llvm_unreachable("Only switching of a subset of CCs.");
740 }
741 unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
742 unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
743 emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
744 emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
745 emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
746 .addReg(RightReg);
747 emitInst(CondMovOpc, ResultReg)
748 .addReg(RegWithOne)
749 .addReg(Mips::FCC0)
750 .addReg(RegWithZero);
751 break;
752 }
753 }
754 return true;
755 }
756
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)757 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
758 unsigned Alignment) {
759 //
760 // more cases will be handled here in following patches.
761 //
762 unsigned Opc;
763 switch (VT.SimpleTy) {
764 case MVT::i32:
765 ResultReg = createResultReg(&Mips::GPR32RegClass);
766 Opc = Mips::LW;
767 break;
768 case MVT::i16:
769 ResultReg = createResultReg(&Mips::GPR32RegClass);
770 Opc = Mips::LHu;
771 break;
772 case MVT::i8:
773 ResultReg = createResultReg(&Mips::GPR32RegClass);
774 Opc = Mips::LBu;
775 break;
776 case MVT::f32:
777 if (UnsupportedFPMode)
778 return false;
779 ResultReg = createResultReg(&Mips::FGR32RegClass);
780 Opc = Mips::LWC1;
781 break;
782 case MVT::f64:
783 if (UnsupportedFPMode)
784 return false;
785 ResultReg = createResultReg(&Mips::AFGR64RegClass);
786 Opc = Mips::LDC1;
787 break;
788 default:
789 return false;
790 }
791 if (Addr.isRegBase()) {
792 simplifyAddress(Addr);
793 emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
794 return true;
795 }
796 if (Addr.isFIBase()) {
797 unsigned FI = Addr.getFI();
798 unsigned Align = 4;
799 int64_t Offset = Addr.getOffset();
800 MachineFrameInfo &MFI = MF->getFrameInfo();
801 MachineMemOperand *MMO = MF->getMachineMemOperand(
802 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
803 MFI.getObjectSize(FI), Align);
804 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
805 .addFrameIndex(FI)
806 .addImm(Offset)
807 .addMemOperand(MMO);
808 return true;
809 }
810 return false;
811 }
812
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)813 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
814 unsigned Alignment) {
815 //
816 // more cases will be handled here in following patches.
817 //
818 unsigned Opc;
819 switch (VT.SimpleTy) {
820 case MVT::i8:
821 Opc = Mips::SB;
822 break;
823 case MVT::i16:
824 Opc = Mips::SH;
825 break;
826 case MVT::i32:
827 Opc = Mips::SW;
828 break;
829 case MVT::f32:
830 if (UnsupportedFPMode)
831 return false;
832 Opc = Mips::SWC1;
833 break;
834 case MVT::f64:
835 if (UnsupportedFPMode)
836 return false;
837 Opc = Mips::SDC1;
838 break;
839 default:
840 return false;
841 }
842 if (Addr.isRegBase()) {
843 simplifyAddress(Addr);
844 emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
845 return true;
846 }
847 if (Addr.isFIBase()) {
848 unsigned FI = Addr.getFI();
849 unsigned Align = 4;
850 int64_t Offset = Addr.getOffset();
851 MachineFrameInfo &MFI = MF->getFrameInfo();
852 MachineMemOperand *MMO = MF->getMachineMemOperand(
853 MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
854 MFI.getObjectSize(FI), Align);
855 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
856 .addReg(SrcReg)
857 .addFrameIndex(FI)
858 .addImm(Offset)
859 .addMemOperand(MMO);
860 return true;
861 }
862 return false;
863 }
864
selectLogicalOp(const Instruction * I)865 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
866 MVT VT;
867 if (!isTypeSupported(I->getType(), VT))
868 return false;
869
870 unsigned ResultReg;
871 switch (I->getOpcode()) {
872 default:
873 llvm_unreachable("Unexpected instruction.");
874 case Instruction::And:
875 ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
876 break;
877 case Instruction::Or:
878 ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
879 break;
880 case Instruction::Xor:
881 ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
882 break;
883 }
884
885 if (!ResultReg)
886 return false;
887
888 updateValueMap(I, ResultReg);
889 return true;
890 }
891
selectLoad(const Instruction * I)892 bool MipsFastISel::selectLoad(const Instruction *I) {
893 // Atomic loads need special handling.
894 if (cast<LoadInst>(I)->isAtomic())
895 return false;
896
897 // Verify we have a legal type before going any further.
898 MVT VT;
899 if (!isLoadTypeLegal(I->getType(), VT))
900 return false;
901
902 // See if we can handle this address.
903 Address Addr;
904 if (!computeAddress(I->getOperand(0), Addr))
905 return false;
906
907 unsigned ResultReg;
908 if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
909 return false;
910 updateValueMap(I, ResultReg);
911 return true;
912 }
913
selectStore(const Instruction * I)914 bool MipsFastISel::selectStore(const Instruction *I) {
915 Value *Op0 = I->getOperand(0);
916 unsigned SrcReg = 0;
917
918 // Atomic stores need special handling.
919 if (cast<StoreInst>(I)->isAtomic())
920 return false;
921
922 // Verify we have a legal type before going any further.
923 MVT VT;
924 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
925 return false;
926
927 // Get the value to be stored into a register.
928 SrcReg = getRegForValue(Op0);
929 if (SrcReg == 0)
930 return false;
931
932 // See if we can handle this address.
933 Address Addr;
934 if (!computeAddress(I->getOperand(1), Addr))
935 return false;
936
937 if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
938 return false;
939 return true;
940 }
941
942 // This can cause a redundant sltiu to be generated.
943 // FIXME: try and eliminate this in a future patch.
selectBranch(const Instruction * I)944 bool MipsFastISel::selectBranch(const Instruction *I) {
945 const BranchInst *BI = cast<BranchInst>(I);
946 MachineBasicBlock *BrBB = FuncInfo.MBB;
947 //
948 // TBB is the basic block for the case where the comparison is true.
949 // FBB is the basic block for the case where the comparison is false.
950 // if (cond) goto TBB
951 // goto FBB
952 // TBB:
953 //
954 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
955 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
956
957 // Fold the common case of a conditional branch with a comparison
958 // in the same block.
959 unsigned ZExtCondReg = 0;
960 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
961 if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
962 ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
963 if (!emitCmp(ZExtCondReg, CI))
964 return false;
965 }
966 }
967
968 // For the general case, we need to mask with 1.
969 if (ZExtCondReg == 0) {
970 unsigned CondReg = getRegForValue(BI->getCondition());
971 if (CondReg == 0)
972 return false;
973
974 ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
975 if (ZExtCondReg == 0)
976 return false;
977 }
978
979 BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
980 .addReg(ZExtCondReg)
981 .addMBB(TBB);
982 finishCondBranch(BI->getParent(), TBB, FBB);
983 return true;
984 }
985
selectCmp(const Instruction * I)986 bool MipsFastISel::selectCmp(const Instruction *I) {
987 const CmpInst *CI = cast<CmpInst>(I);
988 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
989 if (!emitCmp(ResultReg, CI))
990 return false;
991 updateValueMap(I, ResultReg);
992 return true;
993 }
994
995 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)996 bool MipsFastISel::selectFPExt(const Instruction *I) {
997 if (UnsupportedFPMode)
998 return false;
999 Value *Src = I->getOperand(0);
1000 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1001 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1002
1003 if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1004 return false;
1005
1006 unsigned SrcReg =
1007 getRegForValue(Src); // this must be a 32bit floating point register class
1008 // maybe we should handle this differently
1009 if (!SrcReg)
1010 return false;
1011
1012 unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1013 emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1014 updateValueMap(I, DestReg);
1015 return true;
1016 }
1017
selectSelect(const Instruction * I)1018 bool MipsFastISel::selectSelect(const Instruction *I) {
1019 assert(isa<SelectInst>(I) && "Expected a select instruction.");
1020
1021 LLVM_DEBUG(dbgs() << "selectSelect\n");
1022
1023 MVT VT;
1024 if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1025 LLVM_DEBUG(
1026 dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1027 return false;
1028 }
1029
1030 unsigned CondMovOpc;
1031 const TargetRegisterClass *RC;
1032
1033 if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1034 CondMovOpc = Mips::MOVN_I_I;
1035 RC = &Mips::GPR32RegClass;
1036 } else if (VT == MVT::f32) {
1037 CondMovOpc = Mips::MOVN_I_S;
1038 RC = &Mips::FGR32RegClass;
1039 } else if (VT == MVT::f64) {
1040 CondMovOpc = Mips::MOVN_I_D32;
1041 RC = &Mips::AFGR64RegClass;
1042 } else
1043 return false;
1044
1045 const SelectInst *SI = cast<SelectInst>(I);
1046 const Value *Cond = SI->getCondition();
1047 unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1048 unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1049 unsigned CondReg = getRegForValue(Cond);
1050
1051 if (!Src1Reg || !Src2Reg || !CondReg)
1052 return false;
1053
1054 unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1055 if (!ZExtCondReg)
1056 return false;
1057
1058 if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1059 return false;
1060
1061 unsigned ResultReg = createResultReg(RC);
1062 unsigned TempReg = createResultReg(RC);
1063
1064 if (!ResultReg || !TempReg)
1065 return false;
1066
1067 emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1068 emitInst(CondMovOpc, ResultReg)
1069 .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1070 updateValueMap(I, ResultReg);
1071 return true;
1072 }
1073
1074 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1075 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1076 if (UnsupportedFPMode)
1077 return false;
1078 Value *Src = I->getOperand(0);
1079 EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1080 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1081
1082 if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1083 return false;
1084
1085 unsigned SrcReg = getRegForValue(Src);
1086 if (!SrcReg)
1087 return false;
1088
1089 unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1090 if (!DestReg)
1091 return false;
1092
1093 emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1094 updateValueMap(I, DestReg);
1095 return true;
1096 }
1097
1098 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1099 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1100 if (UnsupportedFPMode)
1101 return false;
1102 MVT DstVT, SrcVT;
1103 if (!IsSigned)
1104 return false; // We don't handle this case yet. There is no native
1105 // instruction for this but it can be synthesized.
1106 Type *DstTy = I->getType();
1107 if (!isTypeLegal(DstTy, DstVT))
1108 return false;
1109
1110 if (DstVT != MVT::i32)
1111 return false;
1112
1113 Value *Src = I->getOperand(0);
1114 Type *SrcTy = Src->getType();
1115 if (!isTypeLegal(SrcTy, SrcVT))
1116 return false;
1117
1118 if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1119 return false;
1120
1121 unsigned SrcReg = getRegForValue(Src);
1122 if (SrcReg == 0)
1123 return false;
1124
1125 // Determine the opcode for the conversion, which takes place
1126 // entirely within FPRs.
1127 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1128 unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1129 unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1130
1131 // Generate the convert.
1132 emitInst(Opc, TempReg).addReg(SrcReg);
1133 emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1134
1135 updateValueMap(I, DestReg);
1136 return true;
1137 }
1138
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1139 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1140 SmallVectorImpl<MVT> &OutVTs,
1141 unsigned &NumBytes) {
1142 CallingConv::ID CC = CLI.CallConv;
1143 SmallVector<CCValAssign, 16> ArgLocs;
1144 CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1145 CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1146 // Get a count of how many bytes are to be pushed on the stack.
1147 NumBytes = CCInfo.getNextStackOffset();
1148 // This is the minimum argument area used for A0-A3.
1149 if (NumBytes < 16)
1150 NumBytes = 16;
1151
1152 emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1153 // Process the args.
1154 MVT firstMVT;
1155 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156 CCValAssign &VA = ArgLocs[i];
1157 const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1158 MVT ArgVT = OutVTs[VA.getValNo()];
1159
1160 if (i == 0) {
1161 firstMVT = ArgVT;
1162 if (ArgVT == MVT::f32) {
1163 VA.convertToReg(Mips::F12);
1164 } else if (ArgVT == MVT::f64) {
1165 if (Subtarget->isFP64bit())
1166 VA.convertToReg(Mips::D6_64);
1167 else
1168 VA.convertToReg(Mips::D6);
1169 }
1170 } else if (i == 1) {
1171 if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1172 if (ArgVT == MVT::f32) {
1173 VA.convertToReg(Mips::F14);
1174 } else if (ArgVT == MVT::f64) {
1175 if (Subtarget->isFP64bit())
1176 VA.convertToReg(Mips::D7_64);
1177 else
1178 VA.convertToReg(Mips::D7);
1179 }
1180 }
1181 }
1182 if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1183 (ArgVT == MVT::i8)) &&
1184 VA.isMemLoc()) {
1185 switch (VA.getLocMemOffset()) {
1186 case 0:
1187 VA.convertToReg(Mips::A0);
1188 break;
1189 case 4:
1190 VA.convertToReg(Mips::A1);
1191 break;
1192 case 8:
1193 VA.convertToReg(Mips::A2);
1194 break;
1195 case 12:
1196 VA.convertToReg(Mips::A3);
1197 break;
1198 default:
1199 break;
1200 }
1201 }
1202 unsigned ArgReg = getRegForValue(ArgVal);
1203 if (!ArgReg)
1204 return false;
1205
1206 // Handle arg promotion: SExt, ZExt, AExt.
1207 switch (VA.getLocInfo()) {
1208 case CCValAssign::Full:
1209 break;
1210 case CCValAssign::AExt:
1211 case CCValAssign::SExt: {
1212 MVT DestVT = VA.getLocVT();
1213 MVT SrcVT = ArgVT;
1214 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1215 if (!ArgReg)
1216 return false;
1217 break;
1218 }
1219 case CCValAssign::ZExt: {
1220 MVT DestVT = VA.getLocVT();
1221 MVT SrcVT = ArgVT;
1222 ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1223 if (!ArgReg)
1224 return false;
1225 break;
1226 }
1227 default:
1228 llvm_unreachable("Unknown arg promotion!");
1229 }
1230
1231 // Now copy/store arg to correct locations.
1232 if (VA.isRegLoc() && !VA.needsCustom()) {
1233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1234 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1235 CLI.OutRegs.push_back(VA.getLocReg());
1236 } else if (VA.needsCustom()) {
1237 llvm_unreachable("Mips does not use custom args.");
1238 return false;
1239 } else {
1240 //
1241 // FIXME: This path will currently return false. It was copied
1242 // from the AArch64 port and should be essentially fine for Mips too.
1243 // The work to finish up this path will be done in a follow-on patch.
1244 //
1245 assert(VA.isMemLoc() && "Assuming store on stack.");
1246 // Don't emit stores for undef values.
1247 if (isa<UndefValue>(ArgVal))
1248 continue;
1249
1250 // Need to store on the stack.
1251 // FIXME: This alignment is incorrect but this path is disabled
1252 // for now (will return false). We need to determine the right alignment
1253 // based on the normal alignment for the underlying machine type.
1254 //
1255 unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1256
1257 unsigned BEAlign = 0;
1258 if (ArgSize < 8 && !Subtarget->isLittle())
1259 BEAlign = 8 - ArgSize;
1260
1261 Address Addr;
1262 Addr.setKind(Address::RegBase);
1263 Addr.setReg(Mips::SP);
1264 Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1265
1266 unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1267 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1268 MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1269 MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1270 (void)(MMO);
1271 // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1272 return false; // can't store on the stack yet.
1273 }
1274 }
1275
1276 return true;
1277 }
1278
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1279 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1280 unsigned NumBytes) {
1281 CallingConv::ID CC = CLI.CallConv;
1282 emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1283 if (RetVT != MVT::isVoid) {
1284 SmallVector<CCValAssign, 16> RVLocs;
1285 MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1286
1287 CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1288 CLI.Symbol ? CLI.Symbol->getName().data()
1289 : nullptr);
1290
1291 // Only handle a single return value.
1292 if (RVLocs.size() != 1)
1293 return false;
1294 // Copy all of the result registers out of their specified physreg.
1295 MVT CopyVT = RVLocs[0].getValVT();
1296 // Special handling for extended integers.
1297 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1298 CopyVT = MVT::i32;
1299
1300 unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1301 if (!ResultReg)
1302 return false;
1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1304 TII.get(TargetOpcode::COPY),
1305 ResultReg).addReg(RVLocs[0].getLocReg());
1306 CLI.InRegs.push_back(RVLocs[0].getLocReg());
1307
1308 CLI.ResultReg = ResultReg;
1309 CLI.NumResultRegs = 1;
1310 }
1311 return true;
1312 }
1313
fastLowerArguments()1314 bool MipsFastISel::fastLowerArguments() {
1315 LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1316
1317 if (!FuncInfo.CanLowerReturn) {
1318 LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1319 return false;
1320 }
1321
1322 const Function *F = FuncInfo.Fn;
1323 if (F->isVarArg()) {
1324 LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1325 return false;
1326 }
1327
1328 CallingConv::ID CC = F->getCallingConv();
1329 if (CC != CallingConv::C) {
1330 LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1331 return false;
1332 }
1333
1334 std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1335 Mips::A3}};
1336 std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1337 std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1338 auto NextGPR32 = GPR32ArgRegs.begin();
1339 auto NextFGR32 = FGR32ArgRegs.begin();
1340 auto NextAFGR64 = AFGR64ArgRegs.begin();
1341
1342 struct AllocatedReg {
1343 const TargetRegisterClass *RC;
1344 unsigned Reg;
1345 AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1346 : RC(RC), Reg(Reg) {}
1347 };
1348
1349 // Only handle simple cases. i.e. All arguments are directly mapped to
1350 // registers of the appropriate type.
1351 SmallVector<AllocatedReg, 4> Allocation;
1352 for (const auto &FormalArg : F->args()) {
1353 if (FormalArg.hasAttribute(Attribute::InReg) ||
1354 FormalArg.hasAttribute(Attribute::StructRet) ||
1355 FormalArg.hasAttribute(Attribute::ByVal)) {
1356 LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1357 return false;
1358 }
1359
1360 Type *ArgTy = FormalArg.getType();
1361 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1362 LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1363 return false;
1364 }
1365
1366 EVT ArgVT = TLI.getValueType(DL, ArgTy);
1367 LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1368 << ArgVT.getEVTString() << "\n");
1369 if (!ArgVT.isSimple()) {
1370 LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1371 return false;
1372 }
1373
1374 switch (ArgVT.getSimpleVT().SimpleTy) {
1375 case MVT::i1:
1376 case MVT::i8:
1377 case MVT::i16:
1378 if (!FormalArg.hasAttribute(Attribute::SExt) &&
1379 !FormalArg.hasAttribute(Attribute::ZExt)) {
1380 // It must be any extend, this shouldn't happen for clang-generated IR
1381 // so just fall back on SelectionDAG.
1382 LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1383 return false;
1384 }
1385
1386 if (NextGPR32 == GPR32ArgRegs.end()) {
1387 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1388 return false;
1389 }
1390
1391 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1392 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1393
1394 // Allocating any GPR32 prohibits further use of floating point arguments.
1395 NextFGR32 = FGR32ArgRegs.end();
1396 NextAFGR64 = AFGR64ArgRegs.end();
1397 break;
1398
1399 case MVT::i32:
1400 if (FormalArg.hasAttribute(Attribute::ZExt)) {
1401 // The O32 ABI does not permit a zero-extended i32.
1402 LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1403 return false;
1404 }
1405
1406 if (NextGPR32 == GPR32ArgRegs.end()) {
1407 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1408 return false;
1409 }
1410
1411 LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1412 Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1413
1414 // Allocating any GPR32 prohibits further use of floating point arguments.
1415 NextFGR32 = FGR32ArgRegs.end();
1416 NextAFGR64 = AFGR64ArgRegs.end();
1417 break;
1418
1419 case MVT::f32:
1420 if (UnsupportedFPMode) {
1421 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1422 return false;
1423 }
1424 if (NextFGR32 == FGR32ArgRegs.end()) {
1425 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1426 return false;
1427 }
1428 LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1429 Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1430 // Allocating an FGR32 also allocates the super-register AFGR64, and
1431 // ABI rules require us to skip the corresponding GPR32.
1432 if (NextGPR32 != GPR32ArgRegs.end())
1433 NextGPR32++;
1434 if (NextAFGR64 != AFGR64ArgRegs.end())
1435 NextAFGR64++;
1436 break;
1437
1438 case MVT::f64:
1439 if (UnsupportedFPMode) {
1440 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1441 return false;
1442 }
1443 if (NextAFGR64 == AFGR64ArgRegs.end()) {
1444 LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1445 return false;
1446 }
1447 LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1448 Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1449 // Allocating an FGR32 also allocates the super-register AFGR64, and
1450 // ABI rules require us to skip the corresponding GPR32 pair.
1451 if (NextGPR32 != GPR32ArgRegs.end())
1452 NextGPR32++;
1453 if (NextGPR32 != GPR32ArgRegs.end())
1454 NextGPR32++;
1455 if (NextFGR32 != FGR32ArgRegs.end())
1456 NextFGR32++;
1457 break;
1458
1459 default:
1460 LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1461 return false;
1462 }
1463 }
1464
1465 for (const auto &FormalArg : F->args()) {
1466 unsigned ArgNo = FormalArg.getArgNo();
1467 unsigned SrcReg = Allocation[ArgNo].Reg;
1468 unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1469 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1470 // Without this, EmitLiveInCopies may eliminate the livein if its only
1471 // use is a bitcast (which isn't turned into an instruction).
1472 unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1473 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1474 TII.get(TargetOpcode::COPY), ResultReg)
1475 .addReg(DstReg, getKillRegState(true));
1476 updateValueMap(&FormalArg, ResultReg);
1477 }
1478
1479 // Calculate the size of the incoming arguments area.
1480 // We currently reject all the cases where this would be non-zero.
1481 unsigned IncomingArgSizeInBytes = 0;
1482
1483 // Account for the reserved argument area on ABI's that have one (O32).
1484 // It seems strange to do this on the caller side but it's necessary in
1485 // SelectionDAG's implementation.
1486 IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1487 IncomingArgSizeInBytes);
1488
1489 MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1490 false);
1491
1492 return true;
1493 }
1494
fastLowerCall(CallLoweringInfo & CLI)1495 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1496 CallingConv::ID CC = CLI.CallConv;
1497 bool IsTailCall = CLI.IsTailCall;
1498 bool IsVarArg = CLI.IsVarArg;
1499 const Value *Callee = CLI.Callee;
1500 MCSymbol *Symbol = CLI.Symbol;
1501
1502 // Do not handle FastCC.
1503 if (CC == CallingConv::Fast)
1504 return false;
1505
1506 // Allow SelectionDAG isel to handle tail calls.
1507 if (IsTailCall)
1508 return false;
1509
1510 // Let SDISel handle vararg functions.
1511 if (IsVarArg)
1512 return false;
1513
1514 // FIXME: Only handle *simple* calls for now.
1515 MVT RetVT;
1516 if (CLI.RetTy->isVoidTy())
1517 RetVT = MVT::isVoid;
1518 else if (!isTypeSupported(CLI.RetTy, RetVT))
1519 return false;
1520
1521 for (auto Flag : CLI.OutFlags)
1522 if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1523 return false;
1524
1525 // Set up the argument vectors.
1526 SmallVector<MVT, 16> OutVTs;
1527 OutVTs.reserve(CLI.OutVals.size());
1528
1529 for (auto *Val : CLI.OutVals) {
1530 MVT VT;
1531 if (!isTypeLegal(Val->getType(), VT) &&
1532 !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1533 return false;
1534
1535 // We don't handle vector parameters yet.
1536 if (VT.isVector() || VT.getSizeInBits() > 64)
1537 return false;
1538
1539 OutVTs.push_back(VT);
1540 }
1541
1542 Address Addr;
1543 if (!computeCallAddress(Callee, Addr))
1544 return false;
1545
1546 // Handle the arguments now that we've gotten them.
1547 unsigned NumBytes;
1548 if (!processCallArgs(CLI, OutVTs, NumBytes))
1549 return false;
1550
1551 if (!Addr.getGlobalValue())
1552 return false;
1553
1554 // Issue the call.
1555 unsigned DestAddress;
1556 if (Symbol)
1557 DestAddress = materializeExternalCallSym(Symbol);
1558 else
1559 DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1560 emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1561 MachineInstrBuilder MIB =
1562 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1563 Mips::RA).addReg(Mips::T9);
1564
1565 // Add implicit physical register uses to the call.
1566 for (auto Reg : CLI.OutRegs)
1567 MIB.addReg(Reg, RegState::Implicit);
1568
1569 // Add a register mask with the call-preserved registers.
1570 // Proper defs for return values will be added by setPhysRegsDeadExcept().
1571 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1572
1573 CLI.Call = MIB;
1574
1575 if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1576 // Attach callee address to the instruction, let asm printer emit
1577 // .reloc R_MIPS_JALR.
1578 if (Symbol)
1579 MIB.addSym(Symbol, MipsII::MO_JALR);
1580 else
1581 MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1582 Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1583 }
1584
1585 // Finish off the call including any return values.
1586 return finishCall(CLI, RetVT, NumBytes);
1587 }
1588
fastLowerIntrinsicCall(const IntrinsicInst * II)1589 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1590 switch (II->getIntrinsicID()) {
1591 default:
1592 return false;
1593 case Intrinsic::bswap: {
1594 Type *RetTy = II->getCalledFunction()->getReturnType();
1595
1596 MVT VT;
1597 if (!isTypeSupported(RetTy, VT))
1598 return false;
1599
1600 unsigned SrcReg = getRegForValue(II->getOperand(0));
1601 if (SrcReg == 0)
1602 return false;
1603 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1604 if (DestReg == 0)
1605 return false;
1606 if (VT == MVT::i16) {
1607 if (Subtarget->hasMips32r2()) {
1608 emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1609 updateValueMap(II, DestReg);
1610 return true;
1611 } else {
1612 unsigned TempReg[3];
1613 for (int i = 0; i < 3; i++) {
1614 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1615 if (TempReg[i] == 0)
1616 return false;
1617 }
1618 emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1619 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1620 emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1621 emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1622 updateValueMap(II, DestReg);
1623 return true;
1624 }
1625 } else if (VT == MVT::i32) {
1626 if (Subtarget->hasMips32r2()) {
1627 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1628 emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1629 emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1630 updateValueMap(II, DestReg);
1631 return true;
1632 } else {
1633 unsigned TempReg[8];
1634 for (int i = 0; i < 8; i++) {
1635 TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1636 if (TempReg[i] == 0)
1637 return false;
1638 }
1639
1640 emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1641 emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1642 emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1643 emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1644
1645 emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1646 emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1647
1648 emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1649 emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1650 emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1651 updateValueMap(II, DestReg);
1652 return true;
1653 }
1654 }
1655 return false;
1656 }
1657 case Intrinsic::memcpy:
1658 case Intrinsic::memmove: {
1659 const auto *MTI = cast<MemTransferInst>(II);
1660 // Don't handle volatile.
1661 if (MTI->isVolatile())
1662 return false;
1663 if (!MTI->getLength()->getType()->isIntegerTy(32))
1664 return false;
1665 const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1666 return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1667 }
1668 case Intrinsic::memset: {
1669 const MemSetInst *MSI = cast<MemSetInst>(II);
1670 // Don't handle volatile.
1671 if (MSI->isVolatile())
1672 return false;
1673 if (!MSI->getLength()->getType()->isIntegerTy(32))
1674 return false;
1675 return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1676 }
1677 }
1678 return false;
1679 }
1680
selectRet(const Instruction * I)1681 bool MipsFastISel::selectRet(const Instruction *I) {
1682 const Function &F = *I->getParent()->getParent();
1683 const ReturnInst *Ret = cast<ReturnInst>(I);
1684
1685 LLVM_DEBUG(dbgs() << "selectRet\n");
1686
1687 if (!FuncInfo.CanLowerReturn)
1688 return false;
1689
1690 // Build a list of return value registers.
1691 SmallVector<unsigned, 4> RetRegs;
1692
1693 if (Ret->getNumOperands() > 0) {
1694 CallingConv::ID CC = F.getCallingConv();
1695
1696 // Do not handle FastCC.
1697 if (CC == CallingConv::Fast)
1698 return false;
1699
1700 SmallVector<ISD::OutputArg, 4> Outs;
1701 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1702
1703 // Analyze operands of the call, assigning locations to each operand.
1704 SmallVector<CCValAssign, 16> ValLocs;
1705 MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1706 I->getContext());
1707 CCAssignFn *RetCC = RetCC_Mips;
1708 CCInfo.AnalyzeReturn(Outs, RetCC);
1709
1710 // Only handle a single return value for now.
1711 if (ValLocs.size() != 1)
1712 return false;
1713
1714 CCValAssign &VA = ValLocs[0];
1715 const Value *RV = Ret->getOperand(0);
1716
1717 // Don't bother handling odd stuff for now.
1718 if ((VA.getLocInfo() != CCValAssign::Full) &&
1719 (VA.getLocInfo() != CCValAssign::BCvt))
1720 return false;
1721
1722 // Only handle register returns for now.
1723 if (!VA.isRegLoc())
1724 return false;
1725
1726 unsigned Reg = getRegForValue(RV);
1727 if (Reg == 0)
1728 return false;
1729
1730 unsigned SrcReg = Reg + VA.getValNo();
1731 Register DestReg = VA.getLocReg();
1732 // Avoid a cross-class copy. This is very unlikely.
1733 if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1734 return false;
1735
1736 EVT RVEVT = TLI.getValueType(DL, RV->getType());
1737 if (!RVEVT.isSimple())
1738 return false;
1739
1740 if (RVEVT.isVector())
1741 return false;
1742
1743 MVT RVVT = RVEVT.getSimpleVT();
1744 if (RVVT == MVT::f128)
1745 return false;
1746
1747 // Do not handle FGR64 returns for now.
1748 if (RVVT == MVT::f64 && UnsupportedFPMode) {
1749 LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1750 return false;
1751 }
1752
1753 MVT DestVT = VA.getValVT();
1754 // Special handling for extended integers.
1755 if (RVVT != DestVT) {
1756 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1757 return false;
1758
1759 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1760 bool IsZExt = Outs[0].Flags.isZExt();
1761 SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1762 if (SrcReg == 0)
1763 return false;
1764 }
1765 }
1766
1767 // Make the copy.
1768 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1769 TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1770
1771 // Add register to return instruction.
1772 RetRegs.push_back(VA.getLocReg());
1773 }
1774 MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1775 for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1776 MIB.addReg(RetRegs[i], RegState::Implicit);
1777 return true;
1778 }
1779
selectTrunc(const Instruction * I)1780 bool MipsFastISel::selectTrunc(const Instruction *I) {
1781 // The high bits for a type smaller than the register size are assumed to be
1782 // undefined.
1783 Value *Op = I->getOperand(0);
1784
1785 EVT SrcVT, DestVT;
1786 SrcVT = TLI.getValueType(DL, Op->getType(), true);
1787 DestVT = TLI.getValueType(DL, I->getType(), true);
1788
1789 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1790 return false;
1791 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1792 return false;
1793
1794 unsigned SrcReg = getRegForValue(Op);
1795 if (!SrcReg)
1796 return false;
1797
1798 // Because the high bits are undefined, a truncate doesn't generate
1799 // any code.
1800 updateValueMap(I, SrcReg);
1801 return true;
1802 }
1803
selectIntExt(const Instruction * I)1804 bool MipsFastISel::selectIntExt(const Instruction *I) {
1805 Type *DestTy = I->getType();
1806 Value *Src = I->getOperand(0);
1807 Type *SrcTy = Src->getType();
1808
1809 bool isZExt = isa<ZExtInst>(I);
1810 unsigned SrcReg = getRegForValue(Src);
1811 if (!SrcReg)
1812 return false;
1813
1814 EVT SrcEVT, DestEVT;
1815 SrcEVT = TLI.getValueType(DL, SrcTy, true);
1816 DestEVT = TLI.getValueType(DL, DestTy, true);
1817 if (!SrcEVT.isSimple())
1818 return false;
1819 if (!DestEVT.isSimple())
1820 return false;
1821
1822 MVT SrcVT = SrcEVT.getSimpleVT();
1823 MVT DestVT = DestEVT.getSimpleVT();
1824 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1825
1826 if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1827 return false;
1828 updateValueMap(I, ResultReg);
1829 return true;
1830 }
1831
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1832 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1833 unsigned DestReg) {
1834 unsigned ShiftAmt;
1835 switch (SrcVT.SimpleTy) {
1836 default:
1837 return false;
1838 case MVT::i8:
1839 ShiftAmt = 24;
1840 break;
1841 case MVT::i16:
1842 ShiftAmt = 16;
1843 break;
1844 }
1845 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1846 emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1847 emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1848 return true;
1849 }
1850
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1851 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1852 unsigned DestReg) {
1853 switch (SrcVT.SimpleTy) {
1854 default:
1855 return false;
1856 case MVT::i8:
1857 emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1858 break;
1859 case MVT::i16:
1860 emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1861 break;
1862 }
1863 return true;
1864 }
1865
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1866 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1867 unsigned DestReg) {
1868 if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1869 return false;
1870 if (Subtarget->hasMips32r2())
1871 return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1872 return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1873 }
1874
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1875 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1876 unsigned DestReg) {
1877 int64_t Imm;
1878
1879 switch (SrcVT.SimpleTy) {
1880 default:
1881 return false;
1882 case MVT::i1:
1883 Imm = 1;
1884 break;
1885 case MVT::i8:
1886 Imm = 0xff;
1887 break;
1888 case MVT::i16:
1889 Imm = 0xffff;
1890 break;
1891 }
1892
1893 emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1894 return true;
1895 }
1896
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1897 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1898 unsigned DestReg, bool IsZExt) {
1899 // FastISel does not have plumbing to deal with extensions where the SrcVT or
1900 // DestVT are odd things, so test to make sure that they are both types we can
1901 // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1902 // bail out to SelectionDAG.
1903 if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1904 ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1905 return false;
1906 if (IsZExt)
1907 return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1908 return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1909 }
1910
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1911 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1912 bool isZExt) {
1913 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1914 bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1915 return Success ? DestReg : 0;
1916 }
1917
selectDivRem(const Instruction * I,unsigned ISDOpcode)1918 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1919 EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1920 if (!DestEVT.isSimple())
1921 return false;
1922
1923 MVT DestVT = DestEVT.getSimpleVT();
1924 if (DestVT != MVT::i32)
1925 return false;
1926
1927 unsigned DivOpc;
1928 switch (ISDOpcode) {
1929 default:
1930 return false;
1931 case ISD::SDIV:
1932 case ISD::SREM:
1933 DivOpc = Mips::SDIV;
1934 break;
1935 case ISD::UDIV:
1936 case ISD::UREM:
1937 DivOpc = Mips::UDIV;
1938 break;
1939 }
1940
1941 unsigned Src0Reg = getRegForValue(I->getOperand(0));
1942 unsigned Src1Reg = getRegForValue(I->getOperand(1));
1943 if (!Src0Reg || !Src1Reg)
1944 return false;
1945
1946 emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1947 emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1948
1949 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1950 if (!ResultReg)
1951 return false;
1952
1953 unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1954 ? Mips::MFHI
1955 : Mips::MFLO;
1956 emitInst(MFOpc, ResultReg);
1957
1958 updateValueMap(I, ResultReg);
1959 return true;
1960 }
1961
selectShift(const Instruction * I)1962 bool MipsFastISel::selectShift(const Instruction *I) {
1963 MVT RetVT;
1964
1965 if (!isTypeSupported(I->getType(), RetVT))
1966 return false;
1967
1968 unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1969 if (!ResultReg)
1970 return false;
1971
1972 unsigned Opcode = I->getOpcode();
1973 const Value *Op0 = I->getOperand(0);
1974 unsigned Op0Reg = getRegForValue(Op0);
1975 if (!Op0Reg)
1976 return false;
1977
1978 // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1979 if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1980 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1981 if (!TempReg)
1982 return false;
1983
1984 MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1985 bool IsZExt = Opcode == Instruction::LShr;
1986 if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1987 return false;
1988
1989 Op0Reg = TempReg;
1990 }
1991
1992 if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1993 uint64_t ShiftVal = C->getZExtValue();
1994
1995 switch (Opcode) {
1996 default:
1997 llvm_unreachable("Unexpected instruction.");
1998 case Instruction::Shl:
1999 Opcode = Mips::SLL;
2000 break;
2001 case Instruction::AShr:
2002 Opcode = Mips::SRA;
2003 break;
2004 case Instruction::LShr:
2005 Opcode = Mips::SRL;
2006 break;
2007 }
2008
2009 emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2010 updateValueMap(I, ResultReg);
2011 return true;
2012 }
2013
2014 unsigned Op1Reg = getRegForValue(I->getOperand(1));
2015 if (!Op1Reg)
2016 return false;
2017
2018 switch (Opcode) {
2019 default:
2020 llvm_unreachable("Unexpected instruction.");
2021 case Instruction::Shl:
2022 Opcode = Mips::SLLV;
2023 break;
2024 case Instruction::AShr:
2025 Opcode = Mips::SRAV;
2026 break;
2027 case Instruction::LShr:
2028 Opcode = Mips::SRLV;
2029 break;
2030 }
2031
2032 emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2033 updateValueMap(I, ResultReg);
2034 return true;
2035 }
2036
fastSelectInstruction(const Instruction * I)2037 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2038 switch (I->getOpcode()) {
2039 default:
2040 break;
2041 case Instruction::Load:
2042 return selectLoad(I);
2043 case Instruction::Store:
2044 return selectStore(I);
2045 case Instruction::SDiv:
2046 if (!selectBinaryOp(I, ISD::SDIV))
2047 return selectDivRem(I, ISD::SDIV);
2048 return true;
2049 case Instruction::UDiv:
2050 if (!selectBinaryOp(I, ISD::UDIV))
2051 return selectDivRem(I, ISD::UDIV);
2052 return true;
2053 case Instruction::SRem:
2054 if (!selectBinaryOp(I, ISD::SREM))
2055 return selectDivRem(I, ISD::SREM);
2056 return true;
2057 case Instruction::URem:
2058 if (!selectBinaryOp(I, ISD::UREM))
2059 return selectDivRem(I, ISD::UREM);
2060 return true;
2061 case Instruction::Shl:
2062 case Instruction::LShr:
2063 case Instruction::AShr:
2064 return selectShift(I);
2065 case Instruction::And:
2066 case Instruction::Or:
2067 case Instruction::Xor:
2068 return selectLogicalOp(I);
2069 case Instruction::Br:
2070 return selectBranch(I);
2071 case Instruction::Ret:
2072 return selectRet(I);
2073 case Instruction::Trunc:
2074 return selectTrunc(I);
2075 case Instruction::ZExt:
2076 case Instruction::SExt:
2077 return selectIntExt(I);
2078 case Instruction::FPTrunc:
2079 return selectFPTrunc(I);
2080 case Instruction::FPExt:
2081 return selectFPExt(I);
2082 case Instruction::FPToSI:
2083 return selectFPToInt(I, /*isSigned*/ true);
2084 case Instruction::FPToUI:
2085 return selectFPToInt(I, /*isSigned*/ false);
2086 case Instruction::ICmp:
2087 case Instruction::FCmp:
2088 return selectCmp(I);
2089 case Instruction::Select:
2090 return selectSelect(I);
2091 }
2092 return false;
2093 }
2094
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)2095 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2096 bool IsUnsigned) {
2097 unsigned VReg = getRegForValue(V);
2098 if (VReg == 0)
2099 return 0;
2100 MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2101
2102 if (VMVT == MVT::i1)
2103 return 0;
2104
2105 if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2106 unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2107 if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2108 return 0;
2109 VReg = TempReg;
2110 }
2111 return VReg;
2112 }
2113
simplifyAddress(Address & Addr)2114 void MipsFastISel::simplifyAddress(Address &Addr) {
2115 if (!isInt<16>(Addr.getOffset())) {
2116 unsigned TempReg =
2117 materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2118 unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2119 emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2120 Addr.setReg(DestReg);
2121 Addr.setOffset(0);
2122 }
2123 }
2124
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2125 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2126 const TargetRegisterClass *RC,
2127 unsigned Op0, bool Op0IsKill,
2128 unsigned Op1, bool Op1IsKill) {
2129 // We treat the MUL instruction in a special way because it clobbers
2130 // the HI0 & LO0 registers. The TableGen definition of this instruction can
2131 // mark these registers only as implicitly defined. As a result, the
2132 // register allocator runs out of registers when this instruction is
2133 // followed by another instruction that defines the same registers too.
2134 // We can fix this by explicitly marking those registers as dead.
2135 if (MachineInstOpcode == Mips::MUL) {
2136 unsigned ResultReg = createResultReg(RC);
2137 const MCInstrDesc &II = TII.get(MachineInstOpcode);
2138 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2139 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2140 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2141 .addReg(Op0, getKillRegState(Op0IsKill))
2142 .addReg(Op1, getKillRegState(Op1IsKill))
2143 .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2144 .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2145 return ResultReg;
2146 }
2147
2148 return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2149 Op1IsKill);
2150 }
2151
2152 namespace llvm {
2153
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)2154 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2155 const TargetLibraryInfo *libInfo) {
2156 return new MipsFastISel(funcInfo, libInfo);
2157 }
2158
2159 } // end namespace llvm
2160