• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file defines the MIPS-specific support for the FastISel class.
11 /// Some of the target-specific code is generated by tablegen in the file
12 /// MipsGenFastISel.inc, which is #included here.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "MCTargetDesc/MipsABIInfo.h"
17 #include "MCTargetDesc/MipsBaseInfo.h"
18 #include "MipsCCState.h"
19 #include "MipsISelLowering.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMachineFunction.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/CodeGen/CallingConvLower.h"
30 #include "llvm/CodeGen/FastISel.h"
31 #include "llvm/CodeGen/FunctionLoweringInfo.h"
32 #include "llvm/CodeGen/ISDOpcodes.h"
33 #include "llvm/CodeGen/MachineBasicBlock.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineInstrBuilder.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetLowering.h"
40 #include "llvm/CodeGen/ValueTypes.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/Constant.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Operator.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/MC/MCContext.h"
59 #include "llvm/MC/MCInstrDesc.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/MC/MCSymbol.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/MachineValueType.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73 
74 #define DEBUG_TYPE "mips-fastisel"
75 
76 using namespace llvm;
77 
78 extern cl::opt<bool> EmitJalrReloc;
79 
80 namespace {
81 
82 class MipsFastISel final : public FastISel {
83 
84   // All possible address modes.
85   class Address {
86   public:
87     using BaseKind = enum { RegBase, FrameIndexBase };
88 
89   private:
90     BaseKind Kind = RegBase;
91     union {
92       unsigned Reg;
93       int FI;
94     } Base;
95 
96     int64_t Offset = 0;
97 
98     const GlobalValue *GV = nullptr;
99 
100   public:
101     // Innocuous defaults for our address.
Address()102     Address() { Base.Reg = 0; }
103 
setKind(BaseKind K)104     void setKind(BaseKind K) { Kind = K; }
getKind() const105     BaseKind getKind() const { return Kind; }
isRegBase() const106     bool isRegBase() const { return Kind == RegBase; }
isFIBase() const107     bool isFIBase() const { return Kind == FrameIndexBase; }
108 
setReg(unsigned Reg)109     void setReg(unsigned Reg) {
110       assert(isRegBase() && "Invalid base register access!");
111       Base.Reg = Reg;
112     }
113 
getReg() const114     unsigned getReg() const {
115       assert(isRegBase() && "Invalid base register access!");
116       return Base.Reg;
117     }
118 
setFI(unsigned FI)119     void setFI(unsigned FI) {
120       assert(isFIBase() && "Invalid base frame index access!");
121       Base.FI = FI;
122     }
123 
getFI() const124     unsigned getFI() const {
125       assert(isFIBase() && "Invalid base frame index access!");
126       return Base.FI;
127     }
128 
setOffset(int64_t Offset_)129     void setOffset(int64_t Offset_) { Offset = Offset_; }
getOffset() const130     int64_t getOffset() const { return Offset; }
setGlobalValue(const GlobalValue * G)131     void setGlobalValue(const GlobalValue *G) { GV = G; }
getGlobalValue()132     const GlobalValue *getGlobalValue() { return GV; }
133   };
134 
135   /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136   /// make the right decision when generating code for different targets.
137   const TargetMachine &TM;
138   const MipsSubtarget *Subtarget;
139   const TargetInstrInfo &TII;
140   const TargetLowering &TLI;
141   MipsFunctionInfo *MFI;
142 
143   // Convenience variables to avoid some queries.
144   LLVMContext *Context;
145 
146   bool fastLowerArguments() override;
147   bool fastLowerCall(CallLoweringInfo &CLI) override;
148   bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
149 
150   bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151   // floating point but not reject doing fast-isel in other
152   // situations
153 
154 private:
155   // Selection routines.
156   bool selectLogicalOp(const Instruction *I);
157   bool selectLoad(const Instruction *I);
158   bool selectStore(const Instruction *I);
159   bool selectBranch(const Instruction *I);
160   bool selectSelect(const Instruction *I);
161   bool selectCmp(const Instruction *I);
162   bool selectFPExt(const Instruction *I);
163   bool selectFPTrunc(const Instruction *I);
164   bool selectFPToInt(const Instruction *I, bool IsSigned);
165   bool selectRet(const Instruction *I);
166   bool selectTrunc(const Instruction *I);
167   bool selectIntExt(const Instruction *I);
168   bool selectShift(const Instruction *I);
169   bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
170 
171   // Utility helper routines.
172   bool isTypeLegal(Type *Ty, MVT &VT);
173   bool isTypeSupported(Type *Ty, MVT &VT);
174   bool isLoadTypeLegal(Type *Ty, MVT &VT);
175   bool computeAddress(const Value *Obj, Address &Addr);
176   bool computeCallAddress(const Value *V, Address &Addr);
177   void simplifyAddress(Address &Addr);
178 
179   // Emit helper routines.
180   bool emitCmp(unsigned DestReg, const CmpInst *CI);
181   bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182                 unsigned Alignment = 0);
183   bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
184                  MachineMemOperand *MMO = nullptr);
185   bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
186                  unsigned Alignment = 0);
187   unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
188   bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
189 
190                   bool IsZExt);
191   bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
192 
193   bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
194   bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195                        unsigned DestReg);
196   bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
197                        unsigned DestReg);
198 
199   unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
200 
201   unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
202                          const Value *RHS);
203 
204   unsigned materializeFP(const ConstantFP *CFP, MVT VT);
205   unsigned materializeGV(const GlobalValue *GV, MVT VT);
206   unsigned materializeInt(const Constant *C, MVT VT);
207   unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
208   unsigned materializeExternalCallSym(MCSymbol *Syn);
209 
emitInst(unsigned Opc)210   MachineInstrBuilder emitInst(unsigned Opc) {
211     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
212   }
213 
emitInst(unsigned Opc,unsigned DstReg)214   MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
215     return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
216                    DstReg);
217   }
218 
emitInstStore(unsigned Opc,unsigned SrcReg,unsigned MemReg,int64_t MemOffset)219   MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
220                                     unsigned MemReg, int64_t MemOffset) {
221     return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
222   }
223 
emitInstLoad(unsigned Opc,unsigned DstReg,unsigned MemReg,int64_t MemOffset)224   MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
225                                    unsigned MemReg, int64_t MemOffset) {
226     return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
227   }
228 
229   unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
230                            const TargetRegisterClass *RC,
231                            unsigned Op0, bool Op0IsKill,
232                            unsigned Op1, bool Op1IsKill);
233 
234   // for some reason, this default is not generated by tablegen
235   // so we explicitly generate it here.
fastEmitInst_riir(uint64_t inst,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,uint64_t imm1,uint64_t imm2,unsigned Op3,bool Op3IsKill)236   unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
237                              unsigned Op0, bool Op0IsKill, uint64_t imm1,
238                              uint64_t imm2, unsigned Op3, bool Op3IsKill) {
239     return 0;
240   }
241 
242   // Call handling routines.
243 private:
244   CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
245   bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
246                        unsigned &NumBytes);
247   bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
248 
getABI() const249   const MipsABIInfo &getABI() const {
250     return static_cast<const MipsTargetMachine &>(TM).getABI();
251   }
252 
253 public:
254   // Backend specific FastISel code.
MipsFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)255   explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
256                         const TargetLibraryInfo *libInfo)
257       : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
258         Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
259         TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
260     MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
261     Context = &funcInfo.Fn->getContext();
262     UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
263   }
264 
265   unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
266   unsigned fastMaterializeConstant(const Constant *C) override;
267   bool fastSelectInstruction(const Instruction *I) override;
268 
269 #include "MipsGenFastISel.inc"
270 };
271 
272 } // end anonymous namespace
273 
274 static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
275                     CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
276                     CCState &State) LLVM_ATTRIBUTE_UNUSED;
277 
CC_MipsO32_FP32(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)278 static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
279                             CCValAssign::LocInfo LocInfo,
280                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
281   llvm_unreachable("should not be called");
282 }
283 
CC_MipsO32_FP64(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & State)284 static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
285                             CCValAssign::LocInfo LocInfo,
286                             ISD::ArgFlagsTy ArgFlags, CCState &State) {
287   llvm_unreachable("should not be called");
288 }
289 
290 #include "MipsGenCallingConv.inc"
291 
CCAssignFnForCall(CallingConv::ID CC) const292 CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
293   return CC_MipsO32;
294 }
295 
emitLogicalOp(unsigned ISDOpc,MVT RetVT,const Value * LHS,const Value * RHS)296 unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
297                                      const Value *LHS, const Value *RHS) {
298   // Canonicalize immediates to the RHS first.
299   if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
300     std::swap(LHS, RHS);
301 
302   unsigned Opc;
303   switch (ISDOpc) {
304   case ISD::AND:
305     Opc = Mips::AND;
306     break;
307   case ISD::OR:
308     Opc = Mips::OR;
309     break;
310   case ISD::XOR:
311     Opc = Mips::XOR;
312     break;
313   default:
314     llvm_unreachable("unexpected opcode");
315   }
316 
317   unsigned LHSReg = getRegForValue(LHS);
318   if (!LHSReg)
319     return 0;
320 
321   unsigned RHSReg;
322   if (const auto *C = dyn_cast<ConstantInt>(RHS))
323     RHSReg = materializeInt(C, MVT::i32);
324   else
325     RHSReg = getRegForValue(RHS);
326   if (!RHSReg)
327     return 0;
328 
329   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
330   if (!ResultReg)
331     return 0;
332 
333   emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
334   return ResultReg;
335 }
336 
fastMaterializeAlloca(const AllocaInst * AI)337 unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
338   assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
339          "Alloca should always return a pointer.");
340 
341   DenseMap<const AllocaInst *, int>::iterator SI =
342       FuncInfo.StaticAllocaMap.find(AI);
343 
344   if (SI != FuncInfo.StaticAllocaMap.end()) {
345     unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
346     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
347             ResultReg)
348         .addFrameIndex(SI->second)
349         .addImm(0);
350     return ResultReg;
351   }
352 
353   return 0;
354 }
355 
materializeInt(const Constant * C,MVT VT)356 unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
357   if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
358     return 0;
359   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
360   const ConstantInt *CI = cast<ConstantInt>(C);
361   return materialize32BitInt(CI->getZExtValue(), RC);
362 }
363 
materialize32BitInt(int64_t Imm,const TargetRegisterClass * RC)364 unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
365                                            const TargetRegisterClass *RC) {
366   unsigned ResultReg = createResultReg(RC);
367 
368   if (isInt<16>(Imm)) {
369     unsigned Opc = Mips::ADDiu;
370     emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
371     return ResultReg;
372   } else if (isUInt<16>(Imm)) {
373     emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
374     return ResultReg;
375   }
376   unsigned Lo = Imm & 0xFFFF;
377   unsigned Hi = (Imm >> 16) & 0xFFFF;
378   if (Lo) {
379     // Both Lo and Hi have nonzero bits.
380     unsigned TmpReg = createResultReg(RC);
381     emitInst(Mips::LUi, TmpReg).addImm(Hi);
382     emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
383   } else {
384     emitInst(Mips::LUi, ResultReg).addImm(Hi);
385   }
386   return ResultReg;
387 }
388 
materializeFP(const ConstantFP * CFP,MVT VT)389 unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
390   if (UnsupportedFPMode)
391     return 0;
392   int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
393   if (VT == MVT::f32) {
394     const TargetRegisterClass *RC = &Mips::FGR32RegClass;
395     unsigned DestReg = createResultReg(RC);
396     unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
397     emitInst(Mips::MTC1, DestReg).addReg(TempReg);
398     return DestReg;
399   } else if (VT == MVT::f64) {
400     const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
401     unsigned DestReg = createResultReg(RC);
402     unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
403     unsigned TempReg2 =
404         materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
405     emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
406     return DestReg;
407   }
408   return 0;
409 }
410 
materializeGV(const GlobalValue * GV,MVT VT)411 unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
412   // For now 32-bit only.
413   if (VT != MVT::i32)
414     return 0;
415   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
416   unsigned DestReg = createResultReg(RC);
417   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
418   bool IsThreadLocal = GVar && GVar->isThreadLocal();
419   // TLS not supported at this time.
420   if (IsThreadLocal)
421     return 0;
422   emitInst(Mips::LW, DestReg)
423       .addReg(MFI->getGlobalBaseReg())
424       .addGlobalAddress(GV, 0, MipsII::MO_GOT);
425   if ((GV->hasInternalLinkage() ||
426        (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
427     unsigned TempReg = createResultReg(RC);
428     emitInst(Mips::ADDiu, TempReg)
429         .addReg(DestReg)
430         .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
431     DestReg = TempReg;
432   }
433   return DestReg;
434 }
435 
materializeExternalCallSym(MCSymbol * Sym)436 unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
437   const TargetRegisterClass *RC = &Mips::GPR32RegClass;
438   unsigned DestReg = createResultReg(RC);
439   emitInst(Mips::LW, DestReg)
440       .addReg(MFI->getGlobalBaseReg())
441       .addSym(Sym, MipsII::MO_GOT);
442   return DestReg;
443 }
444 
445 // Materialize a constant into a register, and return the register
446 // number (or zero if we failed to handle it).
fastMaterializeConstant(const Constant * C)447 unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
448   EVT CEVT = TLI.getValueType(DL, C->getType(), true);
449 
450   // Only handle simple types.
451   if (!CEVT.isSimple())
452     return 0;
453   MVT VT = CEVT.getSimpleVT();
454 
455   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
456     return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
457   else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
458     return materializeGV(GV, VT);
459   else if (isa<ConstantInt>(C))
460     return materializeInt(C, VT);
461 
462   return 0;
463 }
464 
computeAddress(const Value * Obj,Address & Addr)465 bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
466   const User *U = nullptr;
467   unsigned Opcode = Instruction::UserOp1;
468   if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
469     // Don't walk into other basic blocks unless the object is an alloca from
470     // another block, otherwise it may not have a virtual register assigned.
471     if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
472         FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
473       Opcode = I->getOpcode();
474       U = I;
475     }
476   } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
477     Opcode = C->getOpcode();
478     U = C;
479   }
480   switch (Opcode) {
481   default:
482     break;
483   case Instruction::BitCast:
484     // Look through bitcasts.
485     return computeAddress(U->getOperand(0), Addr);
486   case Instruction::GetElementPtr: {
487     Address SavedAddr = Addr;
488     int64_t TmpOffset = Addr.getOffset();
489     // Iterate through the GEP folding the constants into offsets where
490     // we can.
491     gep_type_iterator GTI = gep_type_begin(U);
492     for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
493          ++i, ++GTI) {
494       const Value *Op = *i;
495       if (StructType *STy = GTI.getStructTypeOrNull()) {
496         const StructLayout *SL = DL.getStructLayout(STy);
497         unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
498         TmpOffset += SL->getElementOffset(Idx);
499       } else {
500         uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
501         while (true) {
502           if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
503             // Constant-offset addressing.
504             TmpOffset += CI->getSExtValue() * S;
505             break;
506           }
507           if (canFoldAddIntoGEP(U, Op)) {
508             // A compatible add with a constant operand. Fold the constant.
509             ConstantInt *CI =
510                 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
511             TmpOffset += CI->getSExtValue() * S;
512             // Iterate on the other operand.
513             Op = cast<AddOperator>(Op)->getOperand(0);
514             continue;
515           }
516           // Unsupported
517           goto unsupported_gep;
518         }
519       }
520     }
521     // Try to grab the base operand now.
522     Addr.setOffset(TmpOffset);
523     if (computeAddress(U->getOperand(0), Addr))
524       return true;
525     // We failed, restore everything and try the other options.
526     Addr = SavedAddr;
527   unsupported_gep:
528     break;
529   }
530   case Instruction::Alloca: {
531     const AllocaInst *AI = cast<AllocaInst>(Obj);
532     DenseMap<const AllocaInst *, int>::iterator SI =
533         FuncInfo.StaticAllocaMap.find(AI);
534     if (SI != FuncInfo.StaticAllocaMap.end()) {
535       Addr.setKind(Address::FrameIndexBase);
536       Addr.setFI(SI->second);
537       return true;
538     }
539     break;
540   }
541   }
542   Addr.setReg(getRegForValue(Obj));
543   return Addr.getReg() != 0;
544 }
545 
computeCallAddress(const Value * V,Address & Addr)546 bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
547   const User *U = nullptr;
548   unsigned Opcode = Instruction::UserOp1;
549 
550   if (const auto *I = dyn_cast<Instruction>(V)) {
551     // Check if the value is defined in the same basic block. This information
552     // is crucial to know whether or not folding an operand is valid.
553     if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
554       Opcode = I->getOpcode();
555       U = I;
556     }
557   } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
558     Opcode = C->getOpcode();
559     U = C;
560   }
561 
562   switch (Opcode) {
563   default:
564     break;
565   case Instruction::BitCast:
566     // Look past bitcasts if its operand is in the same BB.
567       return computeCallAddress(U->getOperand(0), Addr);
568     break;
569   case Instruction::IntToPtr:
570     // Look past no-op inttoptrs if its operand is in the same BB.
571     if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
572         TLI.getPointerTy(DL))
573       return computeCallAddress(U->getOperand(0), Addr);
574     break;
575   case Instruction::PtrToInt:
576     // Look past no-op ptrtoints if its operand is in the same BB.
577     if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
578       return computeCallAddress(U->getOperand(0), Addr);
579     break;
580   }
581 
582   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
583     Addr.setGlobalValue(GV);
584     return true;
585   }
586 
587   // If all else fails, try to materialize the value in a register.
588   if (!Addr.getGlobalValue()) {
589     Addr.setReg(getRegForValue(V));
590     return Addr.getReg() != 0;
591   }
592 
593   return false;
594 }
595 
isTypeLegal(Type * Ty,MVT & VT)596 bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
597   EVT evt = TLI.getValueType(DL, Ty, true);
598   // Only handle simple types.
599   if (evt == MVT::Other || !evt.isSimple())
600     return false;
601   VT = evt.getSimpleVT();
602 
603   // Handle all legal types, i.e. a register that will directly hold this
604   // value.
605   return TLI.isTypeLegal(VT);
606 }
607 
isTypeSupported(Type * Ty,MVT & VT)608 bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
609   if (Ty->isVectorTy())
610     return false;
611 
612   if (isTypeLegal(Ty, VT))
613     return true;
614 
615   // If this is a type than can be sign or zero-extended to a basic operation
616   // go ahead and accept it now.
617   if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
618     return true;
619 
620   return false;
621 }
622 
isLoadTypeLegal(Type * Ty,MVT & VT)623 bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
624   if (isTypeLegal(Ty, VT))
625     return true;
626   // We will extend this in a later patch:
627   //   If this is a type than can be sign or zero-extended to a basic operation
628   //   go ahead and accept it now.
629   if (VT == MVT::i8 || VT == MVT::i16)
630     return true;
631   return false;
632 }
633 
634 // Because of how EmitCmp is called with fast-isel, you can
635 // end up with redundant "andi" instructions after the sequences emitted below.
636 // We should try and solve this issue in the future.
637 //
emitCmp(unsigned ResultReg,const CmpInst * CI)638 bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
639   const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
640   bool IsUnsigned = CI->isUnsigned();
641   unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
642   if (LeftReg == 0)
643     return false;
644   unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
645   if (RightReg == 0)
646     return false;
647   CmpInst::Predicate P = CI->getPredicate();
648 
649   switch (P) {
650   default:
651     return false;
652   case CmpInst::ICMP_EQ: {
653     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
654     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
655     emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
656     break;
657   }
658   case CmpInst::ICMP_NE: {
659     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
660     emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
661     emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
662     break;
663   }
664   case CmpInst::ICMP_UGT:
665     emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
666     break;
667   case CmpInst::ICMP_ULT:
668     emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
669     break;
670   case CmpInst::ICMP_UGE: {
671     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
672     emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
673     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
674     break;
675   }
676   case CmpInst::ICMP_ULE: {
677     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
678     emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
679     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
680     break;
681   }
682   case CmpInst::ICMP_SGT:
683     emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
684     break;
685   case CmpInst::ICMP_SLT:
686     emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
687     break;
688   case CmpInst::ICMP_SGE: {
689     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
690     emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
691     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
692     break;
693   }
694   case CmpInst::ICMP_SLE: {
695     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
696     emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
697     emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
698     break;
699   }
700   case CmpInst::FCMP_OEQ:
701   case CmpInst::FCMP_UNE:
702   case CmpInst::FCMP_OLT:
703   case CmpInst::FCMP_OLE:
704   case CmpInst::FCMP_OGT:
705   case CmpInst::FCMP_OGE: {
706     if (UnsupportedFPMode)
707       return false;
708     bool IsFloat = Left->getType()->isFloatTy();
709     bool IsDouble = Left->getType()->isDoubleTy();
710     if (!IsFloat && !IsDouble)
711       return false;
712     unsigned Opc, CondMovOpc;
713     switch (P) {
714     case CmpInst::FCMP_OEQ:
715       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
716       CondMovOpc = Mips::MOVT_I;
717       break;
718     case CmpInst::FCMP_UNE:
719       Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
720       CondMovOpc = Mips::MOVF_I;
721       break;
722     case CmpInst::FCMP_OLT:
723       Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
724       CondMovOpc = Mips::MOVT_I;
725       break;
726     case CmpInst::FCMP_OLE:
727       Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
728       CondMovOpc = Mips::MOVT_I;
729       break;
730     case CmpInst::FCMP_OGT:
731       Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
732       CondMovOpc = Mips::MOVF_I;
733       break;
734     case CmpInst::FCMP_OGE:
735       Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
736       CondMovOpc = Mips::MOVF_I;
737       break;
738     default:
739       llvm_unreachable("Only switching of a subset of CCs.");
740     }
741     unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
742     unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
743     emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
744     emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
745     emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
746                  .addReg(RightReg);
747     emitInst(CondMovOpc, ResultReg)
748         .addReg(RegWithOne)
749         .addReg(Mips::FCC0)
750         .addReg(RegWithZero);
751     break;
752   }
753   }
754   return true;
755 }
756 
emitLoad(MVT VT,unsigned & ResultReg,Address & Addr,unsigned Alignment)757 bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
758                             unsigned Alignment) {
759   //
760   // more cases will be handled here in following patches.
761   //
762   unsigned Opc;
763   switch (VT.SimpleTy) {
764   case MVT::i32:
765     ResultReg = createResultReg(&Mips::GPR32RegClass);
766     Opc = Mips::LW;
767     break;
768   case MVT::i16:
769     ResultReg = createResultReg(&Mips::GPR32RegClass);
770     Opc = Mips::LHu;
771     break;
772   case MVT::i8:
773     ResultReg = createResultReg(&Mips::GPR32RegClass);
774     Opc = Mips::LBu;
775     break;
776   case MVT::f32:
777     if (UnsupportedFPMode)
778       return false;
779     ResultReg = createResultReg(&Mips::FGR32RegClass);
780     Opc = Mips::LWC1;
781     break;
782   case MVT::f64:
783     if (UnsupportedFPMode)
784       return false;
785     ResultReg = createResultReg(&Mips::AFGR64RegClass);
786     Opc = Mips::LDC1;
787     break;
788   default:
789     return false;
790   }
791   if (Addr.isRegBase()) {
792     simplifyAddress(Addr);
793     emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
794     return true;
795   }
796   if (Addr.isFIBase()) {
797     unsigned FI = Addr.getFI();
798     unsigned Align = 4;
799     int64_t Offset = Addr.getOffset();
800     MachineFrameInfo &MFI = MF->getFrameInfo();
801     MachineMemOperand *MMO = MF->getMachineMemOperand(
802         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
803         MFI.getObjectSize(FI), Align);
804     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
805         .addFrameIndex(FI)
806         .addImm(Offset)
807         .addMemOperand(MMO);
808     return true;
809   }
810   return false;
811 }
812 
emitStore(MVT VT,unsigned SrcReg,Address & Addr,unsigned Alignment)813 bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
814                              unsigned Alignment) {
815   //
816   // more cases will be handled here in following patches.
817   //
818   unsigned Opc;
819   switch (VT.SimpleTy) {
820   case MVT::i8:
821     Opc = Mips::SB;
822     break;
823   case MVT::i16:
824     Opc = Mips::SH;
825     break;
826   case MVT::i32:
827     Opc = Mips::SW;
828     break;
829   case MVT::f32:
830     if (UnsupportedFPMode)
831       return false;
832     Opc = Mips::SWC1;
833     break;
834   case MVT::f64:
835     if (UnsupportedFPMode)
836       return false;
837     Opc = Mips::SDC1;
838     break;
839   default:
840     return false;
841   }
842   if (Addr.isRegBase()) {
843     simplifyAddress(Addr);
844     emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
845     return true;
846   }
847   if (Addr.isFIBase()) {
848     unsigned FI = Addr.getFI();
849     unsigned Align = 4;
850     int64_t Offset = Addr.getOffset();
851     MachineFrameInfo &MFI = MF->getFrameInfo();
852     MachineMemOperand *MMO = MF->getMachineMemOperand(
853         MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
854         MFI.getObjectSize(FI), Align);
855     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
856         .addReg(SrcReg)
857         .addFrameIndex(FI)
858         .addImm(Offset)
859         .addMemOperand(MMO);
860     return true;
861   }
862   return false;
863 }
864 
selectLogicalOp(const Instruction * I)865 bool MipsFastISel::selectLogicalOp(const Instruction *I) {
866   MVT VT;
867   if (!isTypeSupported(I->getType(), VT))
868     return false;
869 
870   unsigned ResultReg;
871   switch (I->getOpcode()) {
872   default:
873     llvm_unreachable("Unexpected instruction.");
874   case Instruction::And:
875     ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
876     break;
877   case Instruction::Or:
878     ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
879     break;
880   case Instruction::Xor:
881     ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
882     break;
883   }
884 
885   if (!ResultReg)
886     return false;
887 
888   updateValueMap(I, ResultReg);
889   return true;
890 }
891 
selectLoad(const Instruction * I)892 bool MipsFastISel::selectLoad(const Instruction *I) {
893   // Atomic loads need special handling.
894   if (cast<LoadInst>(I)->isAtomic())
895     return false;
896 
897   // Verify we have a legal type before going any further.
898   MVT VT;
899   if (!isLoadTypeLegal(I->getType(), VT))
900     return false;
901 
902   // See if we can handle this address.
903   Address Addr;
904   if (!computeAddress(I->getOperand(0), Addr))
905     return false;
906 
907   unsigned ResultReg;
908   if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
909     return false;
910   updateValueMap(I, ResultReg);
911   return true;
912 }
913 
selectStore(const Instruction * I)914 bool MipsFastISel::selectStore(const Instruction *I) {
915   Value *Op0 = I->getOperand(0);
916   unsigned SrcReg = 0;
917 
918   // Atomic stores need special handling.
919   if (cast<StoreInst>(I)->isAtomic())
920     return false;
921 
922   // Verify we have a legal type before going any further.
923   MVT VT;
924   if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
925     return false;
926 
927   // Get the value to be stored into a register.
928   SrcReg = getRegForValue(Op0);
929   if (SrcReg == 0)
930     return false;
931 
932   // See if we can handle this address.
933   Address Addr;
934   if (!computeAddress(I->getOperand(1), Addr))
935     return false;
936 
937   if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
938     return false;
939   return true;
940 }
941 
942 // This can cause a redundant sltiu to be generated.
943 // FIXME: try and eliminate this in a future patch.
selectBranch(const Instruction * I)944 bool MipsFastISel::selectBranch(const Instruction *I) {
945   const BranchInst *BI = cast<BranchInst>(I);
946   MachineBasicBlock *BrBB = FuncInfo.MBB;
947   //
948   // TBB is the basic block for the case where the comparison is true.
949   // FBB is the basic block for the case where the comparison is false.
950   // if (cond) goto TBB
951   // goto FBB
952   // TBB:
953   //
954   MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
955   MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
956 
957   // Fold the common case of a conditional branch with a comparison
958   // in the same block.
959   unsigned ZExtCondReg = 0;
960   if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
961     if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
962       ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
963       if (!emitCmp(ZExtCondReg, CI))
964         return false;
965     }
966   }
967 
968   // For the general case, we need to mask with 1.
969   if (ZExtCondReg == 0) {
970     unsigned CondReg = getRegForValue(BI->getCondition());
971     if (CondReg == 0)
972       return false;
973 
974     ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
975     if (ZExtCondReg == 0)
976       return false;
977   }
978 
979   BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
980       .addReg(ZExtCondReg)
981       .addMBB(TBB);
982   finishCondBranch(BI->getParent(), TBB, FBB);
983   return true;
984 }
985 
selectCmp(const Instruction * I)986 bool MipsFastISel::selectCmp(const Instruction *I) {
987   const CmpInst *CI = cast<CmpInst>(I);
988   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
989   if (!emitCmp(ResultReg, CI))
990     return false;
991   updateValueMap(I, ResultReg);
992   return true;
993 }
994 
995 // Attempt to fast-select a floating-point extend instruction.
selectFPExt(const Instruction * I)996 bool MipsFastISel::selectFPExt(const Instruction *I) {
997   if (UnsupportedFPMode)
998     return false;
999   Value *Src = I->getOperand(0);
1000   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1001   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1002 
1003   if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1004     return false;
1005 
1006   unsigned SrcReg =
1007       getRegForValue(Src); // this must be a 32bit floating point register class
1008                            // maybe we should handle this differently
1009   if (!SrcReg)
1010     return false;
1011 
1012   unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1013   emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1014   updateValueMap(I, DestReg);
1015   return true;
1016 }
1017 
selectSelect(const Instruction * I)1018 bool MipsFastISel::selectSelect(const Instruction *I) {
1019   assert(isa<SelectInst>(I) && "Expected a select instruction.");
1020 
1021   LLVM_DEBUG(dbgs() << "selectSelect\n");
1022 
1023   MVT VT;
1024   if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1025     LLVM_DEBUG(
1026         dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1027     return false;
1028   }
1029 
1030   unsigned CondMovOpc;
1031   const TargetRegisterClass *RC;
1032 
1033   if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1034     CondMovOpc = Mips::MOVN_I_I;
1035     RC = &Mips::GPR32RegClass;
1036   } else if (VT == MVT::f32) {
1037     CondMovOpc = Mips::MOVN_I_S;
1038     RC = &Mips::FGR32RegClass;
1039   } else if (VT == MVT::f64) {
1040     CondMovOpc = Mips::MOVN_I_D32;
1041     RC = &Mips::AFGR64RegClass;
1042   } else
1043     return false;
1044 
1045   const SelectInst *SI = cast<SelectInst>(I);
1046   const Value *Cond = SI->getCondition();
1047   unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1048   unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1049   unsigned CondReg = getRegForValue(Cond);
1050 
1051   if (!Src1Reg || !Src2Reg || !CondReg)
1052     return false;
1053 
1054   unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1055   if (!ZExtCondReg)
1056     return false;
1057 
1058   if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1059     return false;
1060 
1061   unsigned ResultReg = createResultReg(RC);
1062   unsigned TempReg = createResultReg(RC);
1063 
1064   if (!ResultReg || !TempReg)
1065     return false;
1066 
1067   emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1068   emitInst(CondMovOpc, ResultReg)
1069     .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1070   updateValueMap(I, ResultReg);
1071   return true;
1072 }
1073 
1074 // Attempt to fast-select a floating-point truncate instruction.
selectFPTrunc(const Instruction * I)1075 bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1076   if (UnsupportedFPMode)
1077     return false;
1078   Value *Src = I->getOperand(0);
1079   EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1080   EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1081 
1082   if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1083     return false;
1084 
1085   unsigned SrcReg = getRegForValue(Src);
1086   if (!SrcReg)
1087     return false;
1088 
1089   unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1090   if (!DestReg)
1091     return false;
1092 
1093   emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1094   updateValueMap(I, DestReg);
1095   return true;
1096 }
1097 
1098 // Attempt to fast-select a floating-point-to-integer conversion.
selectFPToInt(const Instruction * I,bool IsSigned)1099 bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1100   if (UnsupportedFPMode)
1101     return false;
1102   MVT DstVT, SrcVT;
1103   if (!IsSigned)
1104     return false; // We don't handle this case yet. There is no native
1105                   // instruction for this but it can be synthesized.
1106   Type *DstTy = I->getType();
1107   if (!isTypeLegal(DstTy, DstVT))
1108     return false;
1109 
1110   if (DstVT != MVT::i32)
1111     return false;
1112 
1113   Value *Src = I->getOperand(0);
1114   Type *SrcTy = Src->getType();
1115   if (!isTypeLegal(SrcTy, SrcVT))
1116     return false;
1117 
1118   if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1119     return false;
1120 
1121   unsigned SrcReg = getRegForValue(Src);
1122   if (SrcReg == 0)
1123     return false;
1124 
1125   // Determine the opcode for the conversion, which takes place
1126   // entirely within FPRs.
1127   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1128   unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1129   unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1130 
1131   // Generate the convert.
1132   emitInst(Opc, TempReg).addReg(SrcReg);
1133   emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1134 
1135   updateValueMap(I, DestReg);
1136   return true;
1137 }
1138 
processCallArgs(CallLoweringInfo & CLI,SmallVectorImpl<MVT> & OutVTs,unsigned & NumBytes)1139 bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1140                                    SmallVectorImpl<MVT> &OutVTs,
1141                                    unsigned &NumBytes) {
1142   CallingConv::ID CC = CLI.CallConv;
1143   SmallVector<CCValAssign, 16> ArgLocs;
1144   CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1145   CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1146   // Get a count of how many bytes are to be pushed on the stack.
1147   NumBytes = CCInfo.getNextStackOffset();
1148   // This is the minimum argument area used for A0-A3.
1149   if (NumBytes < 16)
1150     NumBytes = 16;
1151 
1152   emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1153   // Process the args.
1154   MVT firstMVT;
1155   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156     CCValAssign &VA = ArgLocs[i];
1157     const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1158     MVT ArgVT = OutVTs[VA.getValNo()];
1159 
1160     if (i == 0) {
1161       firstMVT = ArgVT;
1162       if (ArgVT == MVT::f32) {
1163         VA.convertToReg(Mips::F12);
1164       } else if (ArgVT == MVT::f64) {
1165         if (Subtarget->isFP64bit())
1166           VA.convertToReg(Mips::D6_64);
1167         else
1168           VA.convertToReg(Mips::D6);
1169       }
1170     } else if (i == 1) {
1171       if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1172         if (ArgVT == MVT::f32) {
1173           VA.convertToReg(Mips::F14);
1174         } else if (ArgVT == MVT::f64) {
1175           if (Subtarget->isFP64bit())
1176             VA.convertToReg(Mips::D7_64);
1177           else
1178             VA.convertToReg(Mips::D7);
1179         }
1180       }
1181     }
1182     if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1183          (ArgVT == MVT::i8)) &&
1184         VA.isMemLoc()) {
1185       switch (VA.getLocMemOffset()) {
1186       case 0:
1187         VA.convertToReg(Mips::A0);
1188         break;
1189       case 4:
1190         VA.convertToReg(Mips::A1);
1191         break;
1192       case 8:
1193         VA.convertToReg(Mips::A2);
1194         break;
1195       case 12:
1196         VA.convertToReg(Mips::A3);
1197         break;
1198       default:
1199         break;
1200       }
1201     }
1202     unsigned ArgReg = getRegForValue(ArgVal);
1203     if (!ArgReg)
1204       return false;
1205 
1206     // Handle arg promotion: SExt, ZExt, AExt.
1207     switch (VA.getLocInfo()) {
1208     case CCValAssign::Full:
1209       break;
1210     case CCValAssign::AExt:
1211     case CCValAssign::SExt: {
1212       MVT DestVT = VA.getLocVT();
1213       MVT SrcVT = ArgVT;
1214       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1215       if (!ArgReg)
1216         return false;
1217       break;
1218     }
1219     case CCValAssign::ZExt: {
1220       MVT DestVT = VA.getLocVT();
1221       MVT SrcVT = ArgVT;
1222       ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1223       if (!ArgReg)
1224         return false;
1225       break;
1226     }
1227     default:
1228       llvm_unreachable("Unknown arg promotion!");
1229     }
1230 
1231     // Now copy/store arg to correct locations.
1232     if (VA.isRegLoc() && !VA.needsCustom()) {
1233       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1234               TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1235       CLI.OutRegs.push_back(VA.getLocReg());
1236     } else if (VA.needsCustom()) {
1237       llvm_unreachable("Mips does not use custom args.");
1238       return false;
1239     } else {
1240       //
1241       // FIXME: This path will currently return false. It was copied
1242       // from the AArch64 port and should be essentially fine for Mips too.
1243       // The work to finish up this path will be done in a follow-on patch.
1244       //
1245       assert(VA.isMemLoc() && "Assuming store on stack.");
1246       // Don't emit stores for undef values.
1247       if (isa<UndefValue>(ArgVal))
1248         continue;
1249 
1250       // Need to store on the stack.
1251       // FIXME: This alignment is incorrect but this path is disabled
1252       // for now (will return false). We need to determine the right alignment
1253       // based on the normal alignment for the underlying machine type.
1254       //
1255       unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1256 
1257       unsigned BEAlign = 0;
1258       if (ArgSize < 8 && !Subtarget->isLittle())
1259         BEAlign = 8 - ArgSize;
1260 
1261       Address Addr;
1262       Addr.setKind(Address::RegBase);
1263       Addr.setReg(Mips::SP);
1264       Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1265 
1266       unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1267       MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1268           MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1269           MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1270       (void)(MMO);
1271       // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1272       return false; // can't store on the stack yet.
1273     }
1274   }
1275 
1276   return true;
1277 }
1278 
finishCall(CallLoweringInfo & CLI,MVT RetVT,unsigned NumBytes)1279 bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1280                               unsigned NumBytes) {
1281   CallingConv::ID CC = CLI.CallConv;
1282   emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1283   if (RetVT != MVT::isVoid) {
1284     SmallVector<CCValAssign, 16> RVLocs;
1285     MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1286 
1287     CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1288                              CLI.Symbol ? CLI.Symbol->getName().data()
1289                                         : nullptr);
1290 
1291     // Only handle a single return value.
1292     if (RVLocs.size() != 1)
1293       return false;
1294     // Copy all of the result registers out of their specified physreg.
1295     MVT CopyVT = RVLocs[0].getValVT();
1296     // Special handling for extended integers.
1297     if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1298       CopyVT = MVT::i32;
1299 
1300     unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1301     if (!ResultReg)
1302       return false;
1303     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1304             TII.get(TargetOpcode::COPY),
1305             ResultReg).addReg(RVLocs[0].getLocReg());
1306     CLI.InRegs.push_back(RVLocs[0].getLocReg());
1307 
1308     CLI.ResultReg = ResultReg;
1309     CLI.NumResultRegs = 1;
1310   }
1311   return true;
1312 }
1313 
fastLowerArguments()1314 bool MipsFastISel::fastLowerArguments() {
1315   LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1316 
1317   if (!FuncInfo.CanLowerReturn) {
1318     LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1319     return false;
1320   }
1321 
1322   const Function *F = FuncInfo.Fn;
1323   if (F->isVarArg()) {
1324     LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1325     return false;
1326   }
1327 
1328   CallingConv::ID CC = F->getCallingConv();
1329   if (CC != CallingConv::C) {
1330     LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1331     return false;
1332   }
1333 
1334   std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1335                                            Mips::A3}};
1336   std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1337   std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1338   auto NextGPR32 = GPR32ArgRegs.begin();
1339   auto NextFGR32 = FGR32ArgRegs.begin();
1340   auto NextAFGR64 = AFGR64ArgRegs.begin();
1341 
1342   struct AllocatedReg {
1343     const TargetRegisterClass *RC;
1344     unsigned Reg;
1345     AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1346         : RC(RC), Reg(Reg) {}
1347   };
1348 
1349   // Only handle simple cases. i.e. All arguments are directly mapped to
1350   // registers of the appropriate type.
1351   SmallVector<AllocatedReg, 4> Allocation;
1352   for (const auto &FormalArg : F->args()) {
1353     if (FormalArg.hasAttribute(Attribute::InReg) ||
1354         FormalArg.hasAttribute(Attribute::StructRet) ||
1355         FormalArg.hasAttribute(Attribute::ByVal)) {
1356       LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1357       return false;
1358     }
1359 
1360     Type *ArgTy = FormalArg.getType();
1361     if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1362       LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1363       return false;
1364     }
1365 
1366     EVT ArgVT = TLI.getValueType(DL, ArgTy);
1367     LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1368                       << ArgVT.getEVTString() << "\n");
1369     if (!ArgVT.isSimple()) {
1370       LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1371       return false;
1372     }
1373 
1374     switch (ArgVT.getSimpleVT().SimpleTy) {
1375     case MVT::i1:
1376     case MVT::i8:
1377     case MVT::i16:
1378       if (!FormalArg.hasAttribute(Attribute::SExt) &&
1379           !FormalArg.hasAttribute(Attribute::ZExt)) {
1380         // It must be any extend, this shouldn't happen for clang-generated IR
1381         // so just fall back on SelectionDAG.
1382         LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1383         return false;
1384       }
1385 
1386       if (NextGPR32 == GPR32ArgRegs.end()) {
1387         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1388         return false;
1389       }
1390 
1391       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1392       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1393 
1394       // Allocating any GPR32 prohibits further use of floating point arguments.
1395       NextFGR32 = FGR32ArgRegs.end();
1396       NextAFGR64 = AFGR64ArgRegs.end();
1397       break;
1398 
1399     case MVT::i32:
1400       if (FormalArg.hasAttribute(Attribute::ZExt)) {
1401         // The O32 ABI does not permit a zero-extended i32.
1402         LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1403         return false;
1404       }
1405 
1406       if (NextGPR32 == GPR32ArgRegs.end()) {
1407         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1408         return false;
1409       }
1410 
1411       LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1412       Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1413 
1414       // Allocating any GPR32 prohibits further use of floating point arguments.
1415       NextFGR32 = FGR32ArgRegs.end();
1416       NextAFGR64 = AFGR64ArgRegs.end();
1417       break;
1418 
1419     case MVT::f32:
1420       if (UnsupportedFPMode) {
1421         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1422         return false;
1423       }
1424       if (NextFGR32 == FGR32ArgRegs.end()) {
1425         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1426         return false;
1427       }
1428       LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1429       Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1430       // Allocating an FGR32 also allocates the super-register AFGR64, and
1431       // ABI rules require us to skip the corresponding GPR32.
1432       if (NextGPR32 != GPR32ArgRegs.end())
1433         NextGPR32++;
1434       if (NextAFGR64 != AFGR64ArgRegs.end())
1435         NextAFGR64++;
1436       break;
1437 
1438     case MVT::f64:
1439       if (UnsupportedFPMode) {
1440         LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1441         return false;
1442       }
1443       if (NextAFGR64 == AFGR64ArgRegs.end()) {
1444         LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1445         return false;
1446       }
1447       LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1448       Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1449       // Allocating an FGR32 also allocates the super-register AFGR64, and
1450       // ABI rules require us to skip the corresponding GPR32 pair.
1451       if (NextGPR32 != GPR32ArgRegs.end())
1452         NextGPR32++;
1453       if (NextGPR32 != GPR32ArgRegs.end())
1454         NextGPR32++;
1455       if (NextFGR32 != FGR32ArgRegs.end())
1456         NextFGR32++;
1457       break;
1458 
1459     default:
1460       LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1461       return false;
1462     }
1463   }
1464 
1465   for (const auto &FormalArg : F->args()) {
1466     unsigned ArgNo = FormalArg.getArgNo();
1467     unsigned SrcReg = Allocation[ArgNo].Reg;
1468     unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1469     // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1470     // Without this, EmitLiveInCopies may eliminate the livein if its only
1471     // use is a bitcast (which isn't turned into an instruction).
1472     unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1473     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1474             TII.get(TargetOpcode::COPY), ResultReg)
1475         .addReg(DstReg, getKillRegState(true));
1476     updateValueMap(&FormalArg, ResultReg);
1477   }
1478 
1479   // Calculate the size of the incoming arguments area.
1480   // We currently reject all the cases where this would be non-zero.
1481   unsigned IncomingArgSizeInBytes = 0;
1482 
1483   // Account for the reserved argument area on ABI's that have one (O32).
1484   // It seems strange to do this on the caller side but it's necessary in
1485   // SelectionDAG's implementation.
1486   IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1487                                     IncomingArgSizeInBytes);
1488 
1489   MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1490                                                     false);
1491 
1492   return true;
1493 }
1494 
fastLowerCall(CallLoweringInfo & CLI)1495 bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1496   CallingConv::ID CC = CLI.CallConv;
1497   bool IsTailCall = CLI.IsTailCall;
1498   bool IsVarArg = CLI.IsVarArg;
1499   const Value *Callee = CLI.Callee;
1500   MCSymbol *Symbol = CLI.Symbol;
1501 
1502   // Do not handle FastCC.
1503   if (CC == CallingConv::Fast)
1504     return false;
1505 
1506   // Allow SelectionDAG isel to handle tail calls.
1507   if (IsTailCall)
1508     return false;
1509 
1510   // Let SDISel handle vararg functions.
1511   if (IsVarArg)
1512     return false;
1513 
1514   // FIXME: Only handle *simple* calls for now.
1515   MVT RetVT;
1516   if (CLI.RetTy->isVoidTy())
1517     RetVT = MVT::isVoid;
1518   else if (!isTypeSupported(CLI.RetTy, RetVT))
1519     return false;
1520 
1521   for (auto Flag : CLI.OutFlags)
1522     if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1523       return false;
1524 
1525   // Set up the argument vectors.
1526   SmallVector<MVT, 16> OutVTs;
1527   OutVTs.reserve(CLI.OutVals.size());
1528 
1529   for (auto *Val : CLI.OutVals) {
1530     MVT VT;
1531     if (!isTypeLegal(Val->getType(), VT) &&
1532         !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1533       return false;
1534 
1535     // We don't handle vector parameters yet.
1536     if (VT.isVector() || VT.getSizeInBits() > 64)
1537       return false;
1538 
1539     OutVTs.push_back(VT);
1540   }
1541 
1542   Address Addr;
1543   if (!computeCallAddress(Callee, Addr))
1544     return false;
1545 
1546   // Handle the arguments now that we've gotten them.
1547   unsigned NumBytes;
1548   if (!processCallArgs(CLI, OutVTs, NumBytes))
1549     return false;
1550 
1551   if (!Addr.getGlobalValue())
1552     return false;
1553 
1554   // Issue the call.
1555   unsigned DestAddress;
1556   if (Symbol)
1557     DestAddress = materializeExternalCallSym(Symbol);
1558   else
1559     DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1560   emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1561   MachineInstrBuilder MIB =
1562       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1563               Mips::RA).addReg(Mips::T9);
1564 
1565   // Add implicit physical register uses to the call.
1566   for (auto Reg : CLI.OutRegs)
1567     MIB.addReg(Reg, RegState::Implicit);
1568 
1569   // Add a register mask with the call-preserved registers.
1570   // Proper defs for return values will be added by setPhysRegsDeadExcept().
1571   MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1572 
1573   CLI.Call = MIB;
1574 
1575   if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1576     // Attach callee address to the instruction, let asm printer emit
1577     // .reloc R_MIPS_JALR.
1578     if (Symbol)
1579       MIB.addSym(Symbol, MipsII::MO_JALR);
1580     else
1581       MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1582 	                   Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1583   }
1584 
1585   // Finish off the call including any return values.
1586   return finishCall(CLI, RetVT, NumBytes);
1587 }
1588 
fastLowerIntrinsicCall(const IntrinsicInst * II)1589 bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1590   switch (II->getIntrinsicID()) {
1591   default:
1592     return false;
1593   case Intrinsic::bswap: {
1594     Type *RetTy = II->getCalledFunction()->getReturnType();
1595 
1596     MVT VT;
1597     if (!isTypeSupported(RetTy, VT))
1598       return false;
1599 
1600     unsigned SrcReg = getRegForValue(II->getOperand(0));
1601     if (SrcReg == 0)
1602       return false;
1603     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1604     if (DestReg == 0)
1605       return false;
1606     if (VT == MVT::i16) {
1607       if (Subtarget->hasMips32r2()) {
1608         emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1609         updateValueMap(II, DestReg);
1610         return true;
1611       } else {
1612         unsigned TempReg[3];
1613         for (int i = 0; i < 3; i++) {
1614           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1615           if (TempReg[i] == 0)
1616             return false;
1617         }
1618         emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1619         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1620         emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1621         emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1622         updateValueMap(II, DestReg);
1623         return true;
1624       }
1625     } else if (VT == MVT::i32) {
1626       if (Subtarget->hasMips32r2()) {
1627         unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1628         emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1629         emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1630         updateValueMap(II, DestReg);
1631         return true;
1632       } else {
1633         unsigned TempReg[8];
1634         for (int i = 0; i < 8; i++) {
1635           TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1636           if (TempReg[i] == 0)
1637             return false;
1638         }
1639 
1640         emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1641         emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1642         emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1643         emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1644 
1645         emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1646         emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1647 
1648         emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1649         emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1650         emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1651         updateValueMap(II, DestReg);
1652         return true;
1653       }
1654     }
1655     return false;
1656   }
1657   case Intrinsic::memcpy:
1658   case Intrinsic::memmove: {
1659     const auto *MTI = cast<MemTransferInst>(II);
1660     // Don't handle volatile.
1661     if (MTI->isVolatile())
1662       return false;
1663     if (!MTI->getLength()->getType()->isIntegerTy(32))
1664       return false;
1665     const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1666     return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1667   }
1668   case Intrinsic::memset: {
1669     const MemSetInst *MSI = cast<MemSetInst>(II);
1670     // Don't handle volatile.
1671     if (MSI->isVolatile())
1672       return false;
1673     if (!MSI->getLength()->getType()->isIntegerTy(32))
1674       return false;
1675     return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1676   }
1677   }
1678   return false;
1679 }
1680 
selectRet(const Instruction * I)1681 bool MipsFastISel::selectRet(const Instruction *I) {
1682   const Function &F = *I->getParent()->getParent();
1683   const ReturnInst *Ret = cast<ReturnInst>(I);
1684 
1685   LLVM_DEBUG(dbgs() << "selectRet\n");
1686 
1687   if (!FuncInfo.CanLowerReturn)
1688     return false;
1689 
1690   // Build a list of return value registers.
1691   SmallVector<unsigned, 4> RetRegs;
1692 
1693   if (Ret->getNumOperands() > 0) {
1694     CallingConv::ID CC = F.getCallingConv();
1695 
1696     // Do not handle FastCC.
1697     if (CC == CallingConv::Fast)
1698       return false;
1699 
1700     SmallVector<ISD::OutputArg, 4> Outs;
1701     GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1702 
1703     // Analyze operands of the call, assigning locations to each operand.
1704     SmallVector<CCValAssign, 16> ValLocs;
1705     MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1706                        I->getContext());
1707     CCAssignFn *RetCC = RetCC_Mips;
1708     CCInfo.AnalyzeReturn(Outs, RetCC);
1709 
1710     // Only handle a single return value for now.
1711     if (ValLocs.size() != 1)
1712       return false;
1713 
1714     CCValAssign &VA = ValLocs[0];
1715     const Value *RV = Ret->getOperand(0);
1716 
1717     // Don't bother handling odd stuff for now.
1718     if ((VA.getLocInfo() != CCValAssign::Full) &&
1719         (VA.getLocInfo() != CCValAssign::BCvt))
1720       return false;
1721 
1722     // Only handle register returns for now.
1723     if (!VA.isRegLoc())
1724       return false;
1725 
1726     unsigned Reg = getRegForValue(RV);
1727     if (Reg == 0)
1728       return false;
1729 
1730     unsigned SrcReg = Reg + VA.getValNo();
1731     Register DestReg = VA.getLocReg();
1732     // Avoid a cross-class copy. This is very unlikely.
1733     if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1734       return false;
1735 
1736     EVT RVEVT = TLI.getValueType(DL, RV->getType());
1737     if (!RVEVT.isSimple())
1738       return false;
1739 
1740     if (RVEVT.isVector())
1741       return false;
1742 
1743     MVT RVVT = RVEVT.getSimpleVT();
1744     if (RVVT == MVT::f128)
1745       return false;
1746 
1747     // Do not handle FGR64 returns for now.
1748     if (RVVT == MVT::f64 && UnsupportedFPMode) {
1749       LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1750       return false;
1751     }
1752 
1753     MVT DestVT = VA.getValVT();
1754     // Special handling for extended integers.
1755     if (RVVT != DestVT) {
1756       if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1757         return false;
1758 
1759       if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1760         bool IsZExt = Outs[0].Flags.isZExt();
1761         SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1762         if (SrcReg == 0)
1763           return false;
1764       }
1765     }
1766 
1767     // Make the copy.
1768     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1769             TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1770 
1771     // Add register to return instruction.
1772     RetRegs.push_back(VA.getLocReg());
1773   }
1774   MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1775   for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1776     MIB.addReg(RetRegs[i], RegState::Implicit);
1777   return true;
1778 }
1779 
selectTrunc(const Instruction * I)1780 bool MipsFastISel::selectTrunc(const Instruction *I) {
1781   // The high bits for a type smaller than the register size are assumed to be
1782   // undefined.
1783   Value *Op = I->getOperand(0);
1784 
1785   EVT SrcVT, DestVT;
1786   SrcVT = TLI.getValueType(DL, Op->getType(), true);
1787   DestVT = TLI.getValueType(DL, I->getType(), true);
1788 
1789   if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1790     return false;
1791   if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1792     return false;
1793 
1794   unsigned SrcReg = getRegForValue(Op);
1795   if (!SrcReg)
1796     return false;
1797 
1798   // Because the high bits are undefined, a truncate doesn't generate
1799   // any code.
1800   updateValueMap(I, SrcReg);
1801   return true;
1802 }
1803 
selectIntExt(const Instruction * I)1804 bool MipsFastISel::selectIntExt(const Instruction *I) {
1805   Type *DestTy = I->getType();
1806   Value *Src = I->getOperand(0);
1807   Type *SrcTy = Src->getType();
1808 
1809   bool isZExt = isa<ZExtInst>(I);
1810   unsigned SrcReg = getRegForValue(Src);
1811   if (!SrcReg)
1812     return false;
1813 
1814   EVT SrcEVT, DestEVT;
1815   SrcEVT = TLI.getValueType(DL, SrcTy, true);
1816   DestEVT = TLI.getValueType(DL, DestTy, true);
1817   if (!SrcEVT.isSimple())
1818     return false;
1819   if (!DestEVT.isSimple())
1820     return false;
1821 
1822   MVT SrcVT = SrcEVT.getSimpleVT();
1823   MVT DestVT = DestEVT.getSimpleVT();
1824   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1825 
1826   if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1827     return false;
1828   updateValueMap(I, ResultReg);
1829   return true;
1830 }
1831 
emitIntSExt32r1(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1832 bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1833                                    unsigned DestReg) {
1834   unsigned ShiftAmt;
1835   switch (SrcVT.SimpleTy) {
1836   default:
1837     return false;
1838   case MVT::i8:
1839     ShiftAmt = 24;
1840     break;
1841   case MVT::i16:
1842     ShiftAmt = 16;
1843     break;
1844   }
1845   unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1846   emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1847   emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1848   return true;
1849 }
1850 
emitIntSExt32r2(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1851 bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1852                                    unsigned DestReg) {
1853   switch (SrcVT.SimpleTy) {
1854   default:
1855     return false;
1856   case MVT::i8:
1857     emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1858     break;
1859   case MVT::i16:
1860     emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1861     break;
1862   }
1863   return true;
1864 }
1865 
emitIntSExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1866 bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1867                                unsigned DestReg) {
1868   if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1869     return false;
1870   if (Subtarget->hasMips32r2())
1871     return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1872   return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1873 }
1874 
emitIntZExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg)1875 bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1876                                unsigned DestReg) {
1877   int64_t Imm;
1878 
1879   switch (SrcVT.SimpleTy) {
1880   default:
1881     return false;
1882   case MVT::i1:
1883     Imm = 1;
1884     break;
1885   case MVT::i8:
1886     Imm = 0xff;
1887     break;
1888   case MVT::i16:
1889     Imm = 0xffff;
1890     break;
1891   }
1892 
1893   emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1894   return true;
1895 }
1896 
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,unsigned DestReg,bool IsZExt)1897 bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1898                               unsigned DestReg, bool IsZExt) {
1899   // FastISel does not have plumbing to deal with extensions where the SrcVT or
1900   // DestVT are odd things, so test to make sure that they are both types we can
1901   // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1902   // bail out to SelectionDAG.
1903   if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1904       ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1905     return false;
1906   if (IsZExt)
1907     return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1908   return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1909 }
1910 
emitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)1911 unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1912                                   bool isZExt) {
1913   unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1914   bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1915   return Success ? DestReg : 0;
1916 }
1917 
selectDivRem(const Instruction * I,unsigned ISDOpcode)1918 bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1919   EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1920   if (!DestEVT.isSimple())
1921     return false;
1922 
1923   MVT DestVT = DestEVT.getSimpleVT();
1924   if (DestVT != MVT::i32)
1925     return false;
1926 
1927   unsigned DivOpc;
1928   switch (ISDOpcode) {
1929   default:
1930     return false;
1931   case ISD::SDIV:
1932   case ISD::SREM:
1933     DivOpc = Mips::SDIV;
1934     break;
1935   case ISD::UDIV:
1936   case ISD::UREM:
1937     DivOpc = Mips::UDIV;
1938     break;
1939   }
1940 
1941   unsigned Src0Reg = getRegForValue(I->getOperand(0));
1942   unsigned Src1Reg = getRegForValue(I->getOperand(1));
1943   if (!Src0Reg || !Src1Reg)
1944     return false;
1945 
1946   emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1947   emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1948 
1949   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1950   if (!ResultReg)
1951     return false;
1952 
1953   unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1954                        ? Mips::MFHI
1955                        : Mips::MFLO;
1956   emitInst(MFOpc, ResultReg);
1957 
1958   updateValueMap(I, ResultReg);
1959   return true;
1960 }
1961 
selectShift(const Instruction * I)1962 bool MipsFastISel::selectShift(const Instruction *I) {
1963   MVT RetVT;
1964 
1965   if (!isTypeSupported(I->getType(), RetVT))
1966     return false;
1967 
1968   unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1969   if (!ResultReg)
1970     return false;
1971 
1972   unsigned Opcode = I->getOpcode();
1973   const Value *Op0 = I->getOperand(0);
1974   unsigned Op0Reg = getRegForValue(Op0);
1975   if (!Op0Reg)
1976     return false;
1977 
1978   // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1979   if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1980     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1981     if (!TempReg)
1982       return false;
1983 
1984     MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1985     bool IsZExt = Opcode == Instruction::LShr;
1986     if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1987       return false;
1988 
1989     Op0Reg = TempReg;
1990   }
1991 
1992   if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1993     uint64_t ShiftVal = C->getZExtValue();
1994 
1995     switch (Opcode) {
1996     default:
1997       llvm_unreachable("Unexpected instruction.");
1998     case Instruction::Shl:
1999       Opcode = Mips::SLL;
2000       break;
2001     case Instruction::AShr:
2002       Opcode = Mips::SRA;
2003       break;
2004     case Instruction::LShr:
2005       Opcode = Mips::SRL;
2006       break;
2007     }
2008 
2009     emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2010     updateValueMap(I, ResultReg);
2011     return true;
2012   }
2013 
2014   unsigned Op1Reg = getRegForValue(I->getOperand(1));
2015   if (!Op1Reg)
2016     return false;
2017 
2018   switch (Opcode) {
2019   default:
2020     llvm_unreachable("Unexpected instruction.");
2021   case Instruction::Shl:
2022     Opcode = Mips::SLLV;
2023     break;
2024   case Instruction::AShr:
2025     Opcode = Mips::SRAV;
2026     break;
2027   case Instruction::LShr:
2028     Opcode = Mips::SRLV;
2029     break;
2030   }
2031 
2032   emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2033   updateValueMap(I, ResultReg);
2034   return true;
2035 }
2036 
fastSelectInstruction(const Instruction * I)2037 bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2038   switch (I->getOpcode()) {
2039   default:
2040     break;
2041   case Instruction::Load:
2042     return selectLoad(I);
2043   case Instruction::Store:
2044     return selectStore(I);
2045   case Instruction::SDiv:
2046     if (!selectBinaryOp(I, ISD::SDIV))
2047       return selectDivRem(I, ISD::SDIV);
2048     return true;
2049   case Instruction::UDiv:
2050     if (!selectBinaryOp(I, ISD::UDIV))
2051       return selectDivRem(I, ISD::UDIV);
2052     return true;
2053   case Instruction::SRem:
2054     if (!selectBinaryOp(I, ISD::SREM))
2055       return selectDivRem(I, ISD::SREM);
2056     return true;
2057   case Instruction::URem:
2058     if (!selectBinaryOp(I, ISD::UREM))
2059       return selectDivRem(I, ISD::UREM);
2060     return true;
2061   case Instruction::Shl:
2062   case Instruction::LShr:
2063   case Instruction::AShr:
2064     return selectShift(I);
2065   case Instruction::And:
2066   case Instruction::Or:
2067   case Instruction::Xor:
2068     return selectLogicalOp(I);
2069   case Instruction::Br:
2070     return selectBranch(I);
2071   case Instruction::Ret:
2072     return selectRet(I);
2073   case Instruction::Trunc:
2074     return selectTrunc(I);
2075   case Instruction::ZExt:
2076   case Instruction::SExt:
2077     return selectIntExt(I);
2078   case Instruction::FPTrunc:
2079     return selectFPTrunc(I);
2080   case Instruction::FPExt:
2081     return selectFPExt(I);
2082   case Instruction::FPToSI:
2083     return selectFPToInt(I, /*isSigned*/ true);
2084   case Instruction::FPToUI:
2085     return selectFPToInt(I, /*isSigned*/ false);
2086   case Instruction::ICmp:
2087   case Instruction::FCmp:
2088     return selectCmp(I);
2089   case Instruction::Select:
2090     return selectSelect(I);
2091   }
2092   return false;
2093 }
2094 
getRegEnsuringSimpleIntegerWidening(const Value * V,bool IsUnsigned)2095 unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2096                                                            bool IsUnsigned) {
2097   unsigned VReg = getRegForValue(V);
2098   if (VReg == 0)
2099     return 0;
2100   MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2101 
2102   if (VMVT == MVT::i1)
2103     return 0;
2104 
2105   if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2106     unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2107     if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2108       return 0;
2109     VReg = TempReg;
2110   }
2111   return VReg;
2112 }
2113 
simplifyAddress(Address & Addr)2114 void MipsFastISel::simplifyAddress(Address &Addr) {
2115   if (!isInt<16>(Addr.getOffset())) {
2116     unsigned TempReg =
2117         materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2118     unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2119     emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2120     Addr.setReg(DestReg);
2121     Addr.setOffset(0);
2122   }
2123 }
2124 
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,bool Op0IsKill,unsigned Op1,bool Op1IsKill)2125 unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2126                                        const TargetRegisterClass *RC,
2127                                        unsigned Op0, bool Op0IsKill,
2128                                        unsigned Op1, bool Op1IsKill) {
2129   // We treat the MUL instruction in a special way because it clobbers
2130   // the HI0 & LO0 registers. The TableGen definition of this instruction can
2131   // mark these registers only as implicitly defined. As a result, the
2132   // register allocator runs out of registers when this instruction is
2133   // followed by another instruction that defines the same registers too.
2134   // We can fix this by explicitly marking those registers as dead.
2135   if (MachineInstOpcode == Mips::MUL) {
2136     unsigned ResultReg = createResultReg(RC);
2137     const MCInstrDesc &II = TII.get(MachineInstOpcode);
2138     Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2139     Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2140     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2141       .addReg(Op0, getKillRegState(Op0IsKill))
2142       .addReg(Op1, getKillRegState(Op1IsKill))
2143       .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2144       .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2145     return ResultReg;
2146   }
2147 
2148   return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2149                                    Op1IsKill);
2150 }
2151 
2152 namespace llvm {
2153 
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)2154 FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2155                                const TargetLibraryInfo *libInfo) {
2156   return new MipsFastISel(funcInfo, libInfo);
2157 }
2158 
2159 } // end namespace llvm
2160