1 //===-- NVPTXTargetMachine.cpp - Define TargetMachine for NVPTX -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Top-level implementation for the NVPTX target.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "NVPTXTargetMachine.h"
14 #include "NVPTX.h"
15 #include "NVPTXAllocaHoisting.h"
16 #include "NVPTXLowerAggrCopies.h"
17 #include "NVPTXTargetObjectFile.h"
18 #include "NVPTXTargetTransformInfo.h"
19 #include "TargetInfo/NVPTXTargetInfo.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/IR/LegacyPassManager.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/TargetRegistry.h"
29 #include "llvm/Target/TargetMachine.h"
30 #include "llvm/Target/TargetOptions.h"
31 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Transforms/Scalar/GVN.h"
34 #include "llvm/Transforms/Vectorize.h"
35 #include <cassert>
36 #include <string>
37
38 using namespace llvm;
39
40 // LSV is still relatively new; this switch lets us turn it off in case we
41 // encounter (or suspect) a bug.
42 static cl::opt<bool>
43 DisableLoadStoreVectorizer("disable-nvptx-load-store-vectorizer",
44 cl::desc("Disable load/store vectorizer"),
45 cl::init(false), cl::Hidden);
46
47 // TODO: Remove this flag when we are confident with no regressions.
48 static cl::opt<bool> DisableRequireStructuredCFG(
49 "disable-nvptx-require-structured-cfg",
50 cl::desc("Transitional flag to turn off NVPTX's requirement on preserving "
51 "structured CFG. The requirement should be disabled only when "
52 "unexpected regressions happen."),
53 cl::init(false), cl::Hidden);
54
55 static cl::opt<bool> UseShortPointersOpt(
56 "nvptx-short-ptr",
57 cl::desc(
58 "Use 32-bit pointers for accessing const/local/shared address spaces."),
59 cl::init(false), cl::Hidden);
60
61 namespace llvm {
62
63 void initializeNVVMIntrRangePass(PassRegistry&);
64 void initializeNVVMReflectPass(PassRegistry&);
65 void initializeGenericToNVVMPass(PassRegistry&);
66 void initializeNVPTXAllocaHoistingPass(PassRegistry &);
67 void initializeNVPTXAssignValidGlobalNamesPass(PassRegistry&);
68 void initializeNVPTXLowerAggrCopiesPass(PassRegistry &);
69 void initializeNVPTXLowerArgsPass(PassRegistry &);
70 void initializeNVPTXLowerAllocaPass(PassRegistry &);
71 void initializeNVPTXProxyRegErasurePass(PassRegistry &);
72
73 } // end namespace llvm
74
LLVMInitializeNVPTXTarget()75 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeNVPTXTarget() {
76 // Register the target.
77 RegisterTargetMachine<NVPTXTargetMachine32> X(getTheNVPTXTarget32());
78 RegisterTargetMachine<NVPTXTargetMachine64> Y(getTheNVPTXTarget64());
79
80 // FIXME: This pass is really intended to be invoked during IR optimization,
81 // but it's very NVPTX-specific.
82 PassRegistry &PR = *PassRegistry::getPassRegistry();
83 initializeNVVMReflectPass(PR);
84 initializeNVVMIntrRangePass(PR);
85 initializeGenericToNVVMPass(PR);
86 initializeNVPTXAllocaHoistingPass(PR);
87 initializeNVPTXAssignValidGlobalNamesPass(PR);
88 initializeNVPTXLowerArgsPass(PR);
89 initializeNVPTXLowerAllocaPass(PR);
90 initializeNVPTXLowerAggrCopiesPass(PR);
91 initializeNVPTXProxyRegErasurePass(PR);
92 }
93
computeDataLayout(bool is64Bit,bool UseShortPointers)94 static std::string computeDataLayout(bool is64Bit, bool UseShortPointers) {
95 std::string Ret = "e";
96
97 if (!is64Bit)
98 Ret += "-p:32:32";
99 else if (UseShortPointers)
100 Ret += "-p3:32:32-p4:32:32-p5:32:32";
101
102 Ret += "-i64:64-i128:128-v16:16-v32:32-n16:32:64";
103
104 return Ret;
105 }
106
NVPTXTargetMachine(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool is64bit)107 NVPTXTargetMachine::NVPTXTargetMachine(const Target &T, const Triple &TT,
108 StringRef CPU, StringRef FS,
109 const TargetOptions &Options,
110 Optional<Reloc::Model> RM,
111 Optional<CodeModel::Model> CM,
112 CodeGenOpt::Level OL, bool is64bit)
113 // The pic relocation model is used regardless of what the client has
114 // specified, as it is the only relocation model currently supported.
115 : LLVMTargetMachine(T, computeDataLayout(is64bit, UseShortPointersOpt), TT,
116 CPU, FS, Options, Reloc::PIC_,
117 getEffectiveCodeModel(CM, CodeModel::Small), OL),
118 is64bit(is64bit), UseShortPointers(UseShortPointersOpt),
119 TLOF(std::make_unique<NVPTXTargetObjectFile>()),
120 Subtarget(TT, CPU, FS, *this) {
121 if (TT.getOS() == Triple::NVCL)
122 drvInterface = NVPTX::NVCL;
123 else
124 drvInterface = NVPTX::CUDA;
125 if (!DisableRequireStructuredCFG)
126 setRequiresStructuredCFG(true);
127 initAsmInfo();
128 }
129
130 NVPTXTargetMachine::~NVPTXTargetMachine() = default;
131
anchor()132 void NVPTXTargetMachine32::anchor() {}
133
NVPTXTargetMachine32(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)134 NVPTXTargetMachine32::NVPTXTargetMachine32(const Target &T, const Triple &TT,
135 StringRef CPU, StringRef FS,
136 const TargetOptions &Options,
137 Optional<Reloc::Model> RM,
138 Optional<CodeModel::Model> CM,
139 CodeGenOpt::Level OL, bool JIT)
140 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
141
anchor()142 void NVPTXTargetMachine64::anchor() {}
143
NVPTXTargetMachine64(const Target & T,const Triple & TT,StringRef CPU,StringRef FS,const TargetOptions & Options,Optional<Reloc::Model> RM,Optional<CodeModel::Model> CM,CodeGenOpt::Level OL,bool JIT)144 NVPTXTargetMachine64::NVPTXTargetMachine64(const Target &T, const Triple &TT,
145 StringRef CPU, StringRef FS,
146 const TargetOptions &Options,
147 Optional<Reloc::Model> RM,
148 Optional<CodeModel::Model> CM,
149 CodeGenOpt::Level OL, bool JIT)
150 : NVPTXTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
151
152 namespace {
153
154 class NVPTXPassConfig : public TargetPassConfig {
155 public:
NVPTXPassConfig(NVPTXTargetMachine & TM,PassManagerBase & PM)156 NVPTXPassConfig(NVPTXTargetMachine &TM, PassManagerBase &PM)
157 : TargetPassConfig(TM, PM) {}
158
getNVPTXTargetMachine() const159 NVPTXTargetMachine &getNVPTXTargetMachine() const {
160 return getTM<NVPTXTargetMachine>();
161 }
162
163 void addIRPasses() override;
164 bool addInstSelector() override;
165 void addPreRegAlloc() override;
166 void addPostRegAlloc() override;
167 void addMachineSSAOptimization() override;
168
169 FunctionPass *createTargetRegisterAllocator(bool) override;
170 void addFastRegAlloc() override;
171 void addOptimizedRegAlloc() override;
172
addRegAssignmentFast()173 bool addRegAssignmentFast() override {
174 llvm_unreachable("should not be used");
175 }
176
addRegAssignmentOptimized()177 bool addRegAssignmentOptimized() override {
178 llvm_unreachable("should not be used");
179 }
180
181 private:
182 // If the opt level is aggressive, add GVN; otherwise, add EarlyCSE. This
183 // function is only called in opt mode.
184 void addEarlyCSEOrGVNPass();
185
186 // Add passes that propagate special memory spaces.
187 void addAddressSpaceInferencePasses();
188
189 // Add passes that perform straight-line scalar optimizations.
190 void addStraightLineScalarOptimizationPasses();
191 };
192
193 } // end anonymous namespace
194
createPassConfig(PassManagerBase & PM)195 TargetPassConfig *NVPTXTargetMachine::createPassConfig(PassManagerBase &PM) {
196 return new NVPTXPassConfig(*this, PM);
197 }
198
adjustPassManager(PassManagerBuilder & Builder)199 void NVPTXTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
200 Builder.addExtension(
201 PassManagerBuilder::EP_EarlyAsPossible,
202 [&](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
203 PM.add(createNVVMReflectPass(Subtarget.getSmVersion()));
204 PM.add(createNVVMIntrRangePass(Subtarget.getSmVersion()));
205 });
206 }
207
208 TargetTransformInfo
getTargetTransformInfo(const Function & F)209 NVPTXTargetMachine::getTargetTransformInfo(const Function &F) {
210 return TargetTransformInfo(NVPTXTTIImpl(this, F));
211 }
212
addEarlyCSEOrGVNPass()213 void NVPTXPassConfig::addEarlyCSEOrGVNPass() {
214 if (getOptLevel() == CodeGenOpt::Aggressive)
215 addPass(createGVNPass());
216 else
217 addPass(createEarlyCSEPass());
218 }
219
addAddressSpaceInferencePasses()220 void NVPTXPassConfig::addAddressSpaceInferencePasses() {
221 // NVPTXLowerArgs emits alloca for byval parameters which can often
222 // be eliminated by SROA.
223 addPass(createSROAPass());
224 addPass(createNVPTXLowerAllocaPass());
225 addPass(createInferAddressSpacesPass());
226 }
227
addStraightLineScalarOptimizationPasses()228 void NVPTXPassConfig::addStraightLineScalarOptimizationPasses() {
229 addPass(createSeparateConstOffsetFromGEPPass());
230 addPass(createSpeculativeExecutionPass());
231 // ReassociateGEPs exposes more opportunites for SLSR. See
232 // the example in reassociate-geps-and-slsr.ll.
233 addPass(createStraightLineStrengthReducePass());
234 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
235 // EarlyCSE can reuse. GVN generates significantly better code than EarlyCSE
236 // for some of our benchmarks.
237 addEarlyCSEOrGVNPass();
238 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
239 addPass(createNaryReassociatePass());
240 // NaryReassociate on GEPs creates redundant common expressions, so run
241 // EarlyCSE after it.
242 addPass(createEarlyCSEPass());
243 }
244
addIRPasses()245 void NVPTXPassConfig::addIRPasses() {
246 // The following passes are known to not play well with virtual regs hanging
247 // around after register allocation (which in our case, is *all* registers).
248 // We explicitly disable them here. We do, however, need some functionality
249 // of the PrologEpilogCodeInserter pass, so we emulate that behavior in the
250 // NVPTXPrologEpilog pass (see NVPTXPrologEpilogPass.cpp).
251 disablePass(&PrologEpilogCodeInserterID);
252 disablePass(&MachineCopyPropagationID);
253 disablePass(&TailDuplicateID);
254 disablePass(&StackMapLivenessID);
255 disablePass(&LiveDebugValuesID);
256 disablePass(&PostRAMachineSinkingID);
257 disablePass(&PostRASchedulerID);
258 disablePass(&FuncletLayoutID);
259 disablePass(&PatchableFunctionID);
260 disablePass(&ShrinkWrapID);
261
262 // NVVMReflectPass is added in addEarlyAsPossiblePasses, so hopefully running
263 // it here does nothing. But since we need it for correctness when lowering
264 // to NVPTX, run it here too, in case whoever built our pass pipeline didn't
265 // call addEarlyAsPossiblePasses.
266 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
267 addPass(createNVVMReflectPass(ST.getSmVersion()));
268
269 if (getOptLevel() != CodeGenOpt::None)
270 addPass(createNVPTXImageOptimizerPass());
271 addPass(createNVPTXAssignValidGlobalNamesPass());
272 addPass(createGenericToNVVMPass());
273
274 // NVPTXLowerArgs is required for correctness and should be run right
275 // before the address space inference passes.
276 addPass(createNVPTXLowerArgsPass(&getNVPTXTargetMachine()));
277 if (getOptLevel() != CodeGenOpt::None) {
278 addAddressSpaceInferencePasses();
279 if (!DisableLoadStoreVectorizer)
280 addPass(createLoadStoreVectorizerPass());
281 addStraightLineScalarOptimizationPasses();
282 }
283
284 // === LSR and other generic IR passes ===
285 TargetPassConfig::addIRPasses();
286 // EarlyCSE is not always strong enough to clean up what LSR produces. For
287 // example, GVN can combine
288 //
289 // %0 = add %a, %b
290 // %1 = add %b, %a
291 //
292 // and
293 //
294 // %0 = shl nsw %a, 2
295 // %1 = shl %a, 2
296 //
297 // but EarlyCSE can do neither of them.
298 if (getOptLevel() != CodeGenOpt::None)
299 addEarlyCSEOrGVNPass();
300 }
301
addInstSelector()302 bool NVPTXPassConfig::addInstSelector() {
303 const NVPTXSubtarget &ST = *getTM<NVPTXTargetMachine>().getSubtargetImpl();
304
305 addPass(createLowerAggrCopies());
306 addPass(createAllocaHoisting());
307 addPass(createNVPTXISelDag(getNVPTXTargetMachine(), getOptLevel()));
308
309 if (!ST.hasImageHandles())
310 addPass(createNVPTXReplaceImageHandlesPass());
311
312 return false;
313 }
314
addPreRegAlloc()315 void NVPTXPassConfig::addPreRegAlloc() {
316 // Remove Proxy Register pseudo instructions used to keep `callseq_end` alive.
317 addPass(createNVPTXProxyRegErasurePass());
318 }
319
addPostRegAlloc()320 void NVPTXPassConfig::addPostRegAlloc() {
321 addPass(createNVPTXPrologEpilogPass(), false);
322 if (getOptLevel() != CodeGenOpt::None) {
323 // NVPTXPrologEpilogPass calculates frame object offset and replace frame
324 // index with VRFrame register. NVPTXPeephole need to be run after that and
325 // will replace VRFrame with VRFrameLocal when possible.
326 addPass(createNVPTXPeephole());
327 }
328 }
329
createTargetRegisterAllocator(bool)330 FunctionPass *NVPTXPassConfig::createTargetRegisterAllocator(bool) {
331 return nullptr; // No reg alloc
332 }
333
addFastRegAlloc()334 void NVPTXPassConfig::addFastRegAlloc() {
335 addPass(&PHIEliminationID);
336 addPass(&TwoAddressInstructionPassID);
337 }
338
addOptimizedRegAlloc()339 void NVPTXPassConfig::addOptimizedRegAlloc() {
340 addPass(&ProcessImplicitDefsID);
341 addPass(&LiveVariablesID);
342 addPass(&MachineLoopInfoID);
343 addPass(&PHIEliminationID);
344
345 addPass(&TwoAddressInstructionPassID);
346 addPass(&RegisterCoalescerID);
347
348 // PreRA instruction scheduling.
349 if (addPass(&MachineSchedulerID))
350 printAndVerify("After Machine Scheduling");
351
352
353 addPass(&StackSlotColoringID);
354
355 // FIXME: Needs physical registers
356 //addPass(&MachineLICMID);
357
358 printAndVerify("After StackSlotColoring");
359 }
360
addMachineSSAOptimization()361 void NVPTXPassConfig::addMachineSSAOptimization() {
362 // Pre-ra tail duplication.
363 if (addPass(&EarlyTailDuplicateID))
364 printAndVerify("After Pre-RegAlloc TailDuplicate");
365
366 // Optimize PHIs before DCE: removing dead PHI cycles may make more
367 // instructions dead.
368 addPass(&OptimizePHIsID);
369
370 // This pass merges large allocas. StackSlotColoring is a different pass
371 // which merges spill slots.
372 addPass(&StackColoringID);
373
374 // If the target requests it, assign local variables to stack slots relative
375 // to one another and simplify frame index references where possible.
376 addPass(&LocalStackSlotAllocationID);
377
378 // With optimization, dead code should already be eliminated. However
379 // there is one known exception: lowered code for arguments that are only
380 // used by tail calls, where the tail calls reuse the incoming stack
381 // arguments directly (see t11 in test/CodeGen/X86/sibcall.ll).
382 addPass(&DeadMachineInstructionElimID);
383 printAndVerify("After codegen DCE pass");
384
385 // Allow targets to insert passes that improve instruction level parallelism,
386 // like if-conversion. Such passes will typically need dominator trees and
387 // loop info, just like LICM and CSE below.
388 if (addILPOpts())
389 printAndVerify("After ILP optimizations");
390
391 addPass(&EarlyMachineLICMID);
392 addPass(&MachineCSEID);
393
394 addPass(&MachineSinkingID);
395 printAndVerify("After Machine LICM, CSE and Sinking passes");
396
397 addPass(&PeepholeOptimizerID);
398 printAndVerify("After codegen peephole optimization pass");
399 }
400