1 //===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file includes code for rendering MCInst instances as Intel-style
10 // assembly.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86IntelInstPrinter.h"
15 #include "X86BaseInfo.h"
16 #include "X86InstComments.h"
17 #include "llvm/MC/MCExpr.h"
18 #include "llvm/MC/MCInst.h"
19 #include "llvm/MC/MCInstrDesc.h"
20 #include "llvm/MC/MCInstrInfo.h"
21 #include "llvm/MC/MCSubtargetInfo.h"
22 #include "llvm/Support/Casting.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include <cassert>
25 #include <cstdint>
26
27 using namespace llvm;
28
29 #define DEBUG_TYPE "asm-printer"
30
31 // Include the auto-generated portion of the assembly writer.
32 #define PRINT_ALIAS_INSTR
33 #include "X86GenAsmWriter1.inc"
34
printRegName(raw_ostream & OS,unsigned RegNo) const35 void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
36 OS << getRegisterName(RegNo);
37 }
38
printInst(const MCInst * MI,uint64_t Address,StringRef Annot,const MCSubtargetInfo & STI,raw_ostream & OS)39 void X86IntelInstPrinter::printInst(const MCInst *MI, uint64_t Address,
40 StringRef Annot, const MCSubtargetInfo &STI,
41 raw_ostream &OS) {
42 printInstFlags(MI, OS);
43
44 // In 16-bit mode, print data16 as data32.
45 if (MI->getOpcode() == X86::DATA16_PREFIX &&
46 STI.getFeatureBits()[X86::Mode16Bit]) {
47 OS << "\tdata32";
48 } else if (!printAliasInstr(MI, OS) &&
49 !printVecCompareInstr(MI, OS))
50 printInstruction(MI, Address, OS);
51
52 // Next always print the annotation.
53 printAnnotation(OS, Annot);
54
55 // If verbose assembly is enabled, we can print some informative comments.
56 if (CommentStream)
57 EmitAnyX86InstComments(MI, *CommentStream, MII);
58 }
59
printVecCompareInstr(const MCInst * MI,raw_ostream & OS)60 bool X86IntelInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) {
61 if (MI->getNumOperands() == 0 ||
62 !MI->getOperand(MI->getNumOperands() - 1).isImm())
63 return false;
64
65 int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();
66
67 const MCInstrDesc &Desc = MII.get(MI->getOpcode());
68
69 // Custom print the vector compare instructions to get the immediate
70 // translated into the mnemonic.
71 switch (MI->getOpcode()) {
72 case X86::CMPPDrmi: case X86::CMPPDrri:
73 case X86::CMPPSrmi: case X86::CMPPSrri:
74 case X86::CMPSDrm: case X86::CMPSDrr:
75 case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
76 case X86::CMPSSrm: case X86::CMPSSrr:
77 case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
78 if (Imm >= 0 && Imm <= 7) {
79 OS << '\t';
80 printCMPMnemonic(MI, /*IsVCMP*/false, OS);
81 printOperand(MI, 0, OS);
82 OS << ", ";
83 // Skip operand 1 as its tied to the dest.
84
85 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
86 if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
87 printdwordmem(MI, 2, OS);
88 else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
89 printqwordmem(MI, 2, OS);
90 else
91 printxmmwordmem(MI, 2, OS);
92 } else
93 printOperand(MI, 2, OS);
94
95 return true;
96 }
97 break;
98
99 case X86::VCMPPDrmi: case X86::VCMPPDrri:
100 case X86::VCMPPDYrmi: case X86::VCMPPDYrri:
101 case X86::VCMPPDZ128rmi: case X86::VCMPPDZ128rri:
102 case X86::VCMPPDZ256rmi: case X86::VCMPPDZ256rri:
103 case X86::VCMPPDZrmi: case X86::VCMPPDZrri:
104 case X86::VCMPPSrmi: case X86::VCMPPSrri:
105 case X86::VCMPPSYrmi: case X86::VCMPPSYrri:
106 case X86::VCMPPSZ128rmi: case X86::VCMPPSZ128rri:
107 case X86::VCMPPSZ256rmi: case X86::VCMPPSZ256rri:
108 case X86::VCMPPSZrmi: case X86::VCMPPSZrri:
109 case X86::VCMPSDrm: case X86::VCMPSDrr:
110 case X86::VCMPSDZrm: case X86::VCMPSDZrr:
111 case X86::VCMPSDrm_Int: case X86::VCMPSDrr_Int:
112 case X86::VCMPSDZrm_Int: case X86::VCMPSDZrr_Int:
113 case X86::VCMPSSrm: case X86::VCMPSSrr:
114 case X86::VCMPSSZrm: case X86::VCMPSSZrr:
115 case X86::VCMPSSrm_Int: case X86::VCMPSSrr_Int:
116 case X86::VCMPSSZrm_Int: case X86::VCMPSSZrr_Int:
117 case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
118 case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
119 case X86::VCMPPDZrmik: case X86::VCMPPDZrrik:
120 case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
121 case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
122 case X86::VCMPPSZrmik: case X86::VCMPPSZrrik:
123 case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
124 case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
125 case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
126 case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
127 case X86::VCMPPDZrmbi: case X86::VCMPPDZrmbik:
128 case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
129 case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
130 case X86::VCMPPSZrmbi: case X86::VCMPPSZrmbik:
131 case X86::VCMPPDZrrib: case X86::VCMPPDZrribk:
132 case X86::VCMPPSZrrib: case X86::VCMPPSZrribk:
133 case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
134 case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
135 if (Imm >= 0 && Imm <= 31) {
136 OS << '\t';
137 printCMPMnemonic(MI, /*IsVCMP*/true, OS);
138
139 unsigned CurOp = 0;
140 printOperand(MI, CurOp++, OS);
141
142 if (Desc.TSFlags & X86II::EVEX_K) {
143 // Print mask operand.
144 OS << " {";
145 printOperand(MI, CurOp++, OS);
146 OS << "}";
147 }
148 OS << ", ";
149 printOperand(MI, CurOp++, OS);
150 OS << ", ";
151
152 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
153 if (Desc.TSFlags & X86II::EVEX_B) {
154 // Broadcast form.
155 // Load size is based on W-bit.
156 if (Desc.TSFlags & X86II::VEX_W)
157 printqwordmem(MI, CurOp++, OS);
158 else
159 printdwordmem(MI, CurOp++, OS);
160
161 // Print the number of elements broadcasted.
162 unsigned NumElts;
163 if (Desc.TSFlags & X86II::EVEX_L2)
164 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
165 else if (Desc.TSFlags & X86II::VEX_L)
166 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
167 else
168 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
169 OS << "{1to" << NumElts << "}";
170 } else {
171 if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
172 printdwordmem(MI, CurOp++, OS);
173 else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
174 printqwordmem(MI, CurOp++, OS);
175 else if (Desc.TSFlags & X86II::EVEX_L2)
176 printzmmwordmem(MI, CurOp++, OS);
177 else if (Desc.TSFlags & X86II::VEX_L)
178 printymmwordmem(MI, CurOp++, OS);
179 else
180 printxmmwordmem(MI, CurOp++, OS);
181 }
182 } else {
183 printOperand(MI, CurOp++, OS);
184 if (Desc.TSFlags & X86II::EVEX_B)
185 OS << ", {sae}";
186 }
187
188 return true;
189 }
190 break;
191
192 case X86::VPCOMBmi: case X86::VPCOMBri:
193 case X86::VPCOMDmi: case X86::VPCOMDri:
194 case X86::VPCOMQmi: case X86::VPCOMQri:
195 case X86::VPCOMUBmi: case X86::VPCOMUBri:
196 case X86::VPCOMUDmi: case X86::VPCOMUDri:
197 case X86::VPCOMUQmi: case X86::VPCOMUQri:
198 case X86::VPCOMUWmi: case X86::VPCOMUWri:
199 case X86::VPCOMWmi: case X86::VPCOMWri:
200 if (Imm >= 0 && Imm <= 7) {
201 OS << '\t';
202 printVPCOMMnemonic(MI, OS);
203 printOperand(MI, 0, OS);
204 OS << ", ";
205 printOperand(MI, 1, OS);
206 OS << ", ";
207 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
208 printxmmwordmem(MI, 2, OS);
209 else
210 printOperand(MI, 2, OS);
211 return true;
212 }
213 break;
214
215 case X86::VPCMPBZ128rmi: case X86::VPCMPBZ128rri:
216 case X86::VPCMPBZ256rmi: case X86::VPCMPBZ256rri:
217 case X86::VPCMPBZrmi: case X86::VPCMPBZrri:
218 case X86::VPCMPDZ128rmi: case X86::VPCMPDZ128rri:
219 case X86::VPCMPDZ256rmi: case X86::VPCMPDZ256rri:
220 case X86::VPCMPDZrmi: case X86::VPCMPDZrri:
221 case X86::VPCMPQZ128rmi: case X86::VPCMPQZ128rri:
222 case X86::VPCMPQZ256rmi: case X86::VPCMPQZ256rri:
223 case X86::VPCMPQZrmi: case X86::VPCMPQZrri:
224 case X86::VPCMPUBZ128rmi: case X86::VPCMPUBZ128rri:
225 case X86::VPCMPUBZ256rmi: case X86::VPCMPUBZ256rri:
226 case X86::VPCMPUBZrmi: case X86::VPCMPUBZrri:
227 case X86::VPCMPUDZ128rmi: case X86::VPCMPUDZ128rri:
228 case X86::VPCMPUDZ256rmi: case X86::VPCMPUDZ256rri:
229 case X86::VPCMPUDZrmi: case X86::VPCMPUDZrri:
230 case X86::VPCMPUQZ128rmi: case X86::VPCMPUQZ128rri:
231 case X86::VPCMPUQZ256rmi: case X86::VPCMPUQZ256rri:
232 case X86::VPCMPUQZrmi: case X86::VPCMPUQZrri:
233 case X86::VPCMPUWZ128rmi: case X86::VPCMPUWZ128rri:
234 case X86::VPCMPUWZ256rmi: case X86::VPCMPUWZ256rri:
235 case X86::VPCMPUWZrmi: case X86::VPCMPUWZrri:
236 case X86::VPCMPWZ128rmi: case X86::VPCMPWZ128rri:
237 case X86::VPCMPWZ256rmi: case X86::VPCMPWZ256rri:
238 case X86::VPCMPWZrmi: case X86::VPCMPWZrri:
239 case X86::VPCMPBZ128rmik: case X86::VPCMPBZ128rrik:
240 case X86::VPCMPBZ256rmik: case X86::VPCMPBZ256rrik:
241 case X86::VPCMPBZrmik: case X86::VPCMPBZrrik:
242 case X86::VPCMPDZ128rmik: case X86::VPCMPDZ128rrik:
243 case X86::VPCMPDZ256rmik: case X86::VPCMPDZ256rrik:
244 case X86::VPCMPDZrmik: case X86::VPCMPDZrrik:
245 case X86::VPCMPQZ128rmik: case X86::VPCMPQZ128rrik:
246 case X86::VPCMPQZ256rmik: case X86::VPCMPQZ256rrik:
247 case X86::VPCMPQZrmik: case X86::VPCMPQZrrik:
248 case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
249 case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
250 case X86::VPCMPUBZrmik: case X86::VPCMPUBZrrik:
251 case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
252 case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
253 case X86::VPCMPUDZrmik: case X86::VPCMPUDZrrik:
254 case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
255 case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
256 case X86::VPCMPUQZrmik: case X86::VPCMPUQZrrik:
257 case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
258 case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
259 case X86::VPCMPUWZrmik: case X86::VPCMPUWZrrik:
260 case X86::VPCMPWZ128rmik: case X86::VPCMPWZ128rrik:
261 case X86::VPCMPWZ256rmik: case X86::VPCMPWZ256rrik:
262 case X86::VPCMPWZrmik: case X86::VPCMPWZrrik:
263 case X86::VPCMPDZ128rmib: case X86::VPCMPDZ128rmibk:
264 case X86::VPCMPDZ256rmib: case X86::VPCMPDZ256rmibk:
265 case X86::VPCMPDZrmib: case X86::VPCMPDZrmibk:
266 case X86::VPCMPQZ128rmib: case X86::VPCMPQZ128rmibk:
267 case X86::VPCMPQZ256rmib: case X86::VPCMPQZ256rmibk:
268 case X86::VPCMPQZrmib: case X86::VPCMPQZrmibk:
269 case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
270 case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
271 case X86::VPCMPUDZrmib: case X86::VPCMPUDZrmibk:
272 case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
273 case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
274 case X86::VPCMPUQZrmib: case X86::VPCMPUQZrmibk:
275 if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
276 OS << '\t';
277 printVPCMPMnemonic(MI, OS);
278
279 unsigned CurOp = 0;
280 printOperand(MI, CurOp++, OS);
281
282 if (Desc.TSFlags & X86II::EVEX_K) {
283 // Print mask operand.
284 OS << " {";
285 printOperand(MI, CurOp++, OS);
286 OS << "}";
287 }
288 OS << ", ";
289 printOperand(MI, CurOp++, OS);
290 OS << ", ";
291
292 if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
293 if (Desc.TSFlags & X86II::EVEX_B) {
294 // Broadcast form.
295 // Load size is based on W-bit as only D and Q are supported.
296 if (Desc.TSFlags & X86II::VEX_W)
297 printqwordmem(MI, CurOp++, OS);
298 else
299 printdwordmem(MI, CurOp++, OS);
300
301 // Print the number of elements broadcasted.
302 unsigned NumElts;
303 if (Desc.TSFlags & X86II::EVEX_L2)
304 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
305 else if (Desc.TSFlags & X86II::VEX_L)
306 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
307 else
308 NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
309 OS << "{1to" << NumElts << "}";
310 } else {
311 if (Desc.TSFlags & X86II::EVEX_L2)
312 printzmmwordmem(MI, CurOp++, OS);
313 else if (Desc.TSFlags & X86II::VEX_L)
314 printymmwordmem(MI, CurOp++, OS);
315 else
316 printxmmwordmem(MI, CurOp++, OS);
317 }
318 } else {
319 printOperand(MI, CurOp++, OS);
320 }
321
322 return true;
323 }
324 break;
325 }
326
327 return false;
328 }
329
printOperand(const MCInst * MI,unsigned OpNo,raw_ostream & O)330 void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
331 raw_ostream &O) {
332 const MCOperand &Op = MI->getOperand(OpNo);
333 if (Op.isReg()) {
334 printRegName(O, Op.getReg());
335 } else if (Op.isImm()) {
336 O << formatImm((int64_t)Op.getImm());
337 } else {
338 assert(Op.isExpr() && "unknown operand kind in printOperand");
339 O << "offset ";
340 Op.getExpr()->print(O, &MAI);
341 }
342 }
343
printMemReference(const MCInst * MI,unsigned Op,raw_ostream & O)344 void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
345 raw_ostream &O) {
346 const MCOperand &BaseReg = MI->getOperand(Op+X86::AddrBaseReg);
347 unsigned ScaleVal = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
348 const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
349 const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);
350
351 // If this has a segment register, print it.
352 printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O);
353
354 O << '[';
355
356 bool NeedPlus = false;
357 if (BaseReg.getReg()) {
358 printOperand(MI, Op+X86::AddrBaseReg, O);
359 NeedPlus = true;
360 }
361
362 if (IndexReg.getReg()) {
363 if (NeedPlus) O << " + ";
364 if (ScaleVal != 1)
365 O << ScaleVal << '*';
366 printOperand(MI, Op+X86::AddrIndexReg, O);
367 NeedPlus = true;
368 }
369
370 if (!DispSpec.isImm()) {
371 if (NeedPlus) O << " + ";
372 assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
373 DispSpec.getExpr()->print(O, &MAI);
374 } else {
375 int64_t DispVal = DispSpec.getImm();
376 if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
377 if (NeedPlus) {
378 if (DispVal > 0)
379 O << " + ";
380 else {
381 O << " - ";
382 DispVal = -DispVal;
383 }
384 }
385 O << formatImm(DispVal);
386 }
387 }
388
389 O << ']';
390 }
391
printSrcIdx(const MCInst * MI,unsigned Op,raw_ostream & O)392 void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
393 raw_ostream &O) {
394 // If this has a segment register, print it.
395 printOptionalSegReg(MI, Op + 1, O);
396 O << '[';
397 printOperand(MI, Op, O);
398 O << ']';
399 }
400
printDstIdx(const MCInst * MI,unsigned Op,raw_ostream & O)401 void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
402 raw_ostream &O) {
403 // DI accesses are always ES-based.
404 O << "es:[";
405 printOperand(MI, Op, O);
406 O << ']';
407 }
408
printMemOffset(const MCInst * MI,unsigned Op,raw_ostream & O)409 void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
410 raw_ostream &O) {
411 const MCOperand &DispSpec = MI->getOperand(Op);
412
413 // If this has a segment register, print it.
414 printOptionalSegReg(MI, Op + 1, O);
415
416 O << '[';
417
418 if (DispSpec.isImm()) {
419 O << formatImm(DispSpec.getImm());
420 } else {
421 assert(DispSpec.isExpr() && "non-immediate displacement?");
422 DispSpec.getExpr()->print(O, &MAI);
423 }
424
425 O << ']';
426 }
427
printU8Imm(const MCInst * MI,unsigned Op,raw_ostream & O)428 void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
429 raw_ostream &O) {
430 if (MI->getOperand(Op).isExpr())
431 return MI->getOperand(Op).getExpr()->print(O, &MAI);
432
433 O << formatImm(MI->getOperand(Op).getImm() & 0xff);
434 }
435
printSTiRegOperand(const MCInst * MI,unsigned OpNo,raw_ostream & OS)436 void X86IntelInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo,
437 raw_ostream &OS) {
438 const MCOperand &Op = MI->getOperand(OpNo);
439 unsigned Reg = Op.getReg();
440 // Override the default printing to print st(0) instead st.
441 if (Reg == X86::ST0)
442 OS << "st(0)";
443 else
444 printRegName(OS, Reg);
445 }
446