1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the X86MCCodeEmitter class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "MCTargetDesc/X86BaseInfo.h"
14 #include "MCTargetDesc/X86FixupKinds.h"
15 #include "MCTargetDesc/X86MCTargetDesc.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCFixup.h"
21 #include "llvm/MC/MCInst.h"
22 #include "llvm/MC/MCInstrDesc.h"
23 #include "llvm/MC/MCInstrInfo.h"
24 #include "llvm/MC/MCRegisterInfo.h"
25 #include "llvm/MC/MCSubtargetInfo.h"
26 #include "llvm/MC/MCSymbol.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <cstdint>
31 #include <cstdlib>
32
33 using namespace llvm;
34
35 #define DEBUG_TYPE "mccodeemitter"
36
37 namespace {
38
39 class X86MCCodeEmitter : public MCCodeEmitter {
40 const MCInstrInfo &MCII;
41 MCContext &Ctx;
42
43 public:
X86MCCodeEmitter(const MCInstrInfo & mcii,MCContext & ctx)44 X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
45 : MCII(mcii), Ctx(ctx) {}
46 X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
47 X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
48 ~X86MCCodeEmitter() override = default;
49
50 void emitPrefix(const MCInst &MI, raw_ostream &OS,
51 const MCSubtargetInfo &STI) const override;
52
53 void encodeInstruction(const MCInst &MI, raw_ostream &OS,
54 SmallVectorImpl<MCFixup> &Fixups,
55 const MCSubtargetInfo &STI) const override;
56
57 private:
getX86RegNum(const MCOperand & MO) const58 unsigned getX86RegNum(const MCOperand &MO) const {
59 return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
60 }
61
getX86RegEncoding(const MCInst & MI,unsigned OpNum) const62 unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
63 return Ctx.getRegisterInfo()->getEncodingValue(
64 MI.getOperand(OpNum).getReg());
65 }
66
67 /// \param MI a single low-level machine instruction.
68 /// \param OpNum the operand #.
69 /// \returns true if the OpNumth operand of MI require a bit to be set in
70 /// REX prefix.
isREXExtendedReg(const MCInst & MI,unsigned OpNum) const71 bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
72 return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
73 }
74
emitByte(uint8_t C,unsigned & CurByte,raw_ostream & OS) const75 void emitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
76 OS << (char)C;
77 ++CurByte;
78 }
79
emitConstant(uint64_t Val,unsigned Size,unsigned & CurByte,raw_ostream & OS) const80 void emitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
81 raw_ostream &OS) const {
82 // Output the constant in little endian byte order.
83 for (unsigned i = 0; i != Size; ++i) {
84 emitByte(Val & 255, CurByte, OS);
85 Val >>= 8;
86 }
87 }
88
89 void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
90 MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
91 SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
92
modRMByte(unsigned Mod,unsigned RegOpcode,unsigned RM)93 static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
94 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
95 return RM | (RegOpcode << 3) | (Mod << 6);
96 }
97
emitRegModRMByte(const MCOperand & ModRMReg,unsigned RegOpcodeFld,unsigned & CurByte,raw_ostream & OS) const98 void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
99 unsigned &CurByte, raw_ostream &OS) const {
100 emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CurByte, OS);
101 }
102
emitSIBByte(unsigned SS,unsigned Index,unsigned Base,unsigned & CurByte,raw_ostream & OS) const103 void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
104 unsigned &CurByte, raw_ostream &OS) const {
105 // SIB byte is in the same format as the modRMByte.
106 emitByte(modRMByte(SS, Index, Base), CurByte, OS);
107 }
108
109 void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
110 uint64_t TSFlags, bool Rex, unsigned &CurByte,
111 raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
112 const MCSubtargetInfo &STI) const;
113
114 void emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp, unsigned &CurByte,
115 bool &Rex, const MCInst &MI, const MCInstrDesc &Desc,
116 const MCSubtargetInfo &STI, raw_ostream &OS) const;
117
118 void emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
119 const MCInst &MI, const MCInstrDesc &Desc,
120 raw_ostream &OS) const;
121
122 void emitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
123 const MCInst &MI, raw_ostream &OS) const;
124
125 bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
126 const MCInst &MI, const MCInstrDesc &Desc,
127 const MCSubtargetInfo &STI, raw_ostream &OS) const;
128
129 uint8_t determineREXPrefix(const MCInst &MI, uint64_t TSFlags, int MemOperand,
130 const MCInstrDesc &Desc) const;
131 };
132
133 } // end anonymous namespace
134
135 /// \returns true if this signed displacement fits in a 8-bit sign-extended
136 /// field.
isDisp8(int Value)137 static bool isDisp8(int Value) { return Value == (int8_t)Value; }
138
139 /// \returns true if this signed displacement fits in a 8-bit compressed
140 /// dispacement field.
isCDisp8(uint64_t TSFlags,int Value,int & CValue)141 static bool isCDisp8(uint64_t TSFlags, int Value, int &CValue) {
142 assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
143 "Compressed 8-bit displacement is only valid for EVEX inst.");
144
145 unsigned CD8_Scale =
146 (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
147 if (CD8_Scale == 0) {
148 CValue = Value;
149 return isDisp8(Value);
150 }
151
152 unsigned Mask = CD8_Scale - 1;
153 assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
154 if (Value & Mask) // Unaligned offset
155 return false;
156 Value /= (int)CD8_Scale;
157 bool Ret = (Value == (int8_t)Value);
158
159 if (Ret)
160 CValue = Value;
161 return Ret;
162 }
163
164 /// \returns the appropriate fixup kind to use for an immediate in an
165 /// instruction with the specified TSFlags.
getImmFixupKind(uint64_t TSFlags)166 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
167 unsigned Size = X86II::getSizeOfImm(TSFlags);
168 bool isPCRel = X86II::isImmPCRel(TSFlags);
169
170 if (X86II::isImmSigned(TSFlags)) {
171 switch (Size) {
172 default:
173 llvm_unreachable("Unsupported signed fixup size!");
174 case 4:
175 return MCFixupKind(X86::reloc_signed_4byte);
176 }
177 }
178 return MCFixup::getKindForSize(Size, isPCRel);
179 }
180
181 /// \param Op operand # of the memory operand.
182 ///
183 /// \returns true if the specified instruction has a 16-bit memory operand.
is16BitMemOperand(const MCInst & MI,unsigned Op,const MCSubtargetInfo & STI)184 static bool is16BitMemOperand(const MCInst &MI, unsigned Op,
185 const MCSubtargetInfo &STI) {
186 const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
187 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
188 const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
189
190 if (STI.hasFeature(X86::Mode16Bit) && BaseReg.getReg() == 0 && Disp.isImm() &&
191 Disp.getImm() < 0x10000)
192 return true;
193 if ((BaseReg.getReg() != 0 &&
194 X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
195 (IndexReg.getReg() != 0 &&
196 X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
197 return true;
198 return false;
199 }
200
201 /// \param Op operand # of the memory operand.
202 ///
203 /// \returns true if the specified instruction has a 32-bit memory operand.
is32BitMemOperand(const MCInst & MI,unsigned Op)204 static bool is32BitMemOperand(const MCInst &MI, unsigned Op) {
205 const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
206 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
207
208 if ((BaseReg.getReg() != 0 &&
209 X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
210 (IndexReg.getReg() != 0 &&
211 X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
212 return true;
213 if (BaseReg.getReg() == X86::EIP) {
214 assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
215 return true;
216 }
217 if (IndexReg.getReg() == X86::EIZ)
218 return true;
219 return false;
220 }
221
222 /// \param Op operand # of the memory operand.
223 ///
224 /// \returns true if the specified instruction has a 64-bit memory operand.
225 #ifndef NDEBUG
is64BitMemOperand(const MCInst & MI,unsigned Op)226 static bool is64BitMemOperand(const MCInst &MI, unsigned Op) {
227 const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
228 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
229
230 if ((BaseReg.getReg() != 0 &&
231 X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
232 (IndexReg.getReg() != 0 &&
233 X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
234 return true;
235 return false;
236 }
237 #endif
238
239 enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
240
241 /// Check if this expression starts with _GLOBAL_OFFSET_TABLE_ and if it is
242 /// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
243 /// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
244 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
245 /// binary expression.
246 static GlobalOffsetTableExprKind
startsWithGlobalOffsetTable(const MCExpr * Expr)247 startsWithGlobalOffsetTable(const MCExpr *Expr) {
248 const MCExpr *RHS = nullptr;
249 if (Expr->getKind() == MCExpr::Binary) {
250 const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
251 Expr = BE->getLHS();
252 RHS = BE->getRHS();
253 }
254
255 if (Expr->getKind() != MCExpr::SymbolRef)
256 return GOT_None;
257
258 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
259 const MCSymbol &S = Ref->getSymbol();
260 if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
261 return GOT_None;
262 if (RHS && RHS->getKind() == MCExpr::SymbolRef)
263 return GOT_SymDiff;
264 return GOT_Normal;
265 }
266
hasSecRelSymbolRef(const MCExpr * Expr)267 static bool hasSecRelSymbolRef(const MCExpr *Expr) {
268 if (Expr->getKind() == MCExpr::SymbolRef) {
269 const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
270 return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
271 }
272 return false;
273 }
274
isPCRel32Branch(const MCInst & MI,const MCInstrInfo & MCII)275 static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
276 unsigned Opcode = MI.getOpcode();
277 const MCInstrDesc &Desc = MCII.get(Opcode);
278 if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) ||
279 getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
280 return false;
281
282 unsigned CurOp = X86II::getOperandBias(Desc);
283 const MCOperand &Op = MI.getOperand(CurOp);
284 if (!Op.isExpr())
285 return false;
286
287 const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
288 return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
289 }
290
emitImmediate(const MCOperand & DispOp,SMLoc Loc,unsigned Size,MCFixupKind FixupKind,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,int ImmOffset) const291 void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
292 unsigned Size, MCFixupKind FixupKind,
293 unsigned &CurByte, raw_ostream &OS,
294 SmallVectorImpl<MCFixup> &Fixups,
295 int ImmOffset) const {
296 const MCExpr *Expr = nullptr;
297 if (DispOp.isImm()) {
298 // If this is a simple integer displacement that doesn't require a
299 // relocation, emit it now.
300 if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
301 FixupKind != FK_PCRel_4) {
302 emitConstant(DispOp.getImm() + ImmOffset, Size, CurByte, OS);
303 return;
304 }
305 Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
306 } else {
307 Expr = DispOp.getExpr();
308 }
309
310 // If we have an immoffset, add it to the expression.
311 if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
312 FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
313 GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
314 if (Kind != GOT_None) {
315 assert(ImmOffset == 0);
316
317 if (Size == 8) {
318 FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
319 } else {
320 assert(Size == 4);
321 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
322 }
323
324 if (Kind == GOT_Normal)
325 ImmOffset = CurByte;
326 } else if (Expr->getKind() == MCExpr::SymbolRef) {
327 if (hasSecRelSymbolRef(Expr)) {
328 FixupKind = MCFixupKind(FK_SecRel_4);
329 }
330 } else if (Expr->getKind() == MCExpr::Binary) {
331 const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
332 if (hasSecRelSymbolRef(Bin->getLHS()) ||
333 hasSecRelSymbolRef(Bin->getRHS())) {
334 FixupKind = MCFixupKind(FK_SecRel_4);
335 }
336 }
337 }
338
339 // If the fixup is pc-relative, we need to bias the value to be relative to
340 // the start of the field, not the end of the field.
341 if (FixupKind == FK_PCRel_4 ||
342 FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
343 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
344 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
345 FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
346 FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
347 ImmOffset -= 4;
348 // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
349 // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
350 // this needs to be a GOTPC32 relocation.
351 if (startsWithGlobalOffsetTable(Expr) != GOT_None)
352 FixupKind = MCFixupKind(X86::reloc_global_offset_table);
353 }
354 if (FixupKind == FK_PCRel_2)
355 ImmOffset -= 2;
356 if (FixupKind == FK_PCRel_1)
357 ImmOffset -= 1;
358
359 if (ImmOffset)
360 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
361 Ctx);
362
363 // Emit a symbolic constant as a fixup and 4 zeros.
364 Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
365 emitConstant(0, Size, CurByte, OS);
366 }
367
emitMemModRMByte(const MCInst & MI,unsigned Op,unsigned RegOpcodeField,uint64_t TSFlags,bool Rex,unsigned & CurByte,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const368 void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
369 unsigned RegOpcodeField,
370 uint64_t TSFlags, bool Rex,
371 unsigned &CurByte, raw_ostream &OS,
372 SmallVectorImpl<MCFixup> &Fixups,
373 const MCSubtargetInfo &STI) const {
374 const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
375 const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
376 const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
377 const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
378 unsigned BaseReg = Base.getReg();
379 bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
380
381 // Handle %rip relative addressing.
382 if (BaseReg == X86::RIP ||
383 BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
384 assert(STI.hasFeature(X86::Mode64Bit) &&
385 "Rip-relative addressing requires 64-bit mode");
386 assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
387 emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);
388
389 unsigned Opcode = MI.getOpcode();
390 // movq loads are handled with a special relocation form which allows the
391 // linker to eliminate some loads for GOT references which end up in the
392 // same linkage unit.
393 unsigned FixupKind = [=]() {
394 switch (Opcode) {
395 default:
396 return X86::reloc_riprel_4byte;
397 case X86::MOV64rm:
398 assert(Rex);
399 return X86::reloc_riprel_4byte_movq_load;
400 case X86::CALL64m:
401 case X86::JMP64m:
402 case X86::TAILJMPm64:
403 case X86::TEST64mr:
404 case X86::ADC64rm:
405 case X86::ADD64rm:
406 case X86::AND64rm:
407 case X86::CMP64rm:
408 case X86::OR64rm:
409 case X86::SBB64rm:
410 case X86::SUB64rm:
411 case X86::XOR64rm:
412 return Rex ? X86::reloc_riprel_4byte_relax_rex
413 : X86::reloc_riprel_4byte_relax;
414 }
415 }();
416
417 // rip-relative addressing is actually relative to the *next* instruction.
418 // Since an immediate can follow the mod/rm byte for an instruction, this
419 // means that we need to bias the displacement field of the instruction with
420 // the size of the immediate field. If we have this case, add it into the
421 // expression to emit.
422 // Note: rip-relative addressing using immediate displacement values should
423 // not be adjusted, assuming it was the user's intent.
424 int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
425 ? X86II::getSizeOfImm(TSFlags)
426 : 0;
427
428 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
429 Fixups, -ImmSize);
430 return;
431 }
432
433 unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
434
435 // 16-bit addressing forms of the ModR/M byte have a different encoding for
436 // the R/M field and are far more limited in which registers can be used.
437 if (is16BitMemOperand(MI, Op, STI)) {
438 if (BaseReg) {
439 // For 32-bit addressing, the row and column values in Table 2-2 are
440 // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
441 // some special cases. And getX86RegNum reflects that numbering.
442 // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
443 // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
444 // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
445 // while values 0-3 indicate the allowed combinations (base+index) of
446 // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
447 //
448 // R16Table[] is a lookup from the normal RegNo, to the row values from
449 // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
450 static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
451 unsigned RMfield = R16Table[BaseRegNo];
452
453 assert(RMfield && "invalid 16-bit base register");
454
455 if (IndexReg.getReg()) {
456 unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
457
458 assert(IndexReg16 && "invalid 16-bit index register");
459 // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
460 assert(((IndexReg16 ^ RMfield) & 2) &&
461 "invalid 16-bit base/index register combination");
462 assert(Scale.getImm() == 1 &&
463 "invalid scale for 16-bit memory reference");
464
465 // Allow base/index to appear in either order (although GAS doesn't).
466 if (IndexReg16 & 2)
467 RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
468 else
469 RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
470 }
471
472 if (Disp.isImm() && isDisp8(Disp.getImm())) {
473 if (Disp.getImm() == 0 && RMfield != 6) {
474 // There is no displacement; just the register.
475 emitByte(modRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
476 return;
477 }
478 // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
479 emitByte(modRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
480 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
481 return;
482 }
483 // This is the [REG]+disp16 case.
484 emitByte(modRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
485 } else {
486 // There is no BaseReg; this is the plain [disp16] case.
487 emitByte(modRMByte(0, RegOpcodeField, 6), CurByte, OS);
488 }
489
490 // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
491 emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
492 return;
493 }
494
495 // Determine whether a SIB byte is needed.
496 // If no BaseReg, issue a RIP relative instruction only if the MCE can
497 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
498 // 2-7) and absolute references.
499
500 if ( // The SIB byte must be used if there is an index register.
501 IndexReg.getReg() == 0 &&
502 // The SIB byte must be used if the base is ESP/RSP/R12, all of which
503 // encode to an R/M value of 4, which indicates that a SIB byte is
504 // present.
505 BaseRegNo != N86::ESP &&
506 // If there is no base register and we're in 64-bit mode, we need a SIB
507 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
508 (!STI.hasFeature(X86::Mode64Bit) || BaseReg != 0)) {
509
510 if (BaseReg == 0) { // [disp32] in X86-32 mode
511 emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);
512 emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
513 return;
514 }
515
516 // If the base is not EBP/ESP and there is no displacement, use simple
517 // indirect register encoding, this handles addresses like [EAX]. The
518 // encoding for [EBP] with no displacement means [disp32] so we handle it
519 // by emitting a displacement of 0 below.
520 if (BaseRegNo != N86::EBP) {
521 if (Disp.isImm() && Disp.getImm() == 0) {
522 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
523 return;
524 }
525
526 // If the displacement is @tlscall, treat it as a zero.
527 if (Disp.isExpr()) {
528 auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
529 if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
530 // This is exclusively used by call *a@tlscall(base). The relocation
531 // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
532 Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
533 emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
534 return;
535 }
536 }
537 }
538
539 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
540 if (Disp.isImm()) {
541 if (!HasEVEX && isDisp8(Disp.getImm())) {
542 emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
543 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
544 return;
545 }
546 // Try EVEX compressed 8-bit displacement first; if failed, fall back to
547 // 32-bit displacement.
548 int CDisp8 = 0;
549 if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
550 emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
551 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
552 CDisp8 - Disp.getImm());
553 return;
554 }
555 }
556
557 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
558 emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
559 unsigned Opcode = MI.getOpcode();
560 unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
561 : X86::reloc_signed_4byte;
562 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
563 Fixups);
564 return;
565 }
566
567 // We need a SIB byte, so start by outputting the ModR/M byte first
568 assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
569 "Cannot use ESP as index reg!");
570
571 bool ForceDisp32 = false;
572 bool ForceDisp8 = false;
573 int CDisp8 = 0;
574 int ImmOffset = 0;
575 if (BaseReg == 0) {
576 // If there is no base register, we emit the special case SIB byte with
577 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
578 emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
579 ForceDisp32 = true;
580 } else if (!Disp.isImm()) {
581 // Emit the normal disp32 encoding.
582 emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
583 ForceDisp32 = true;
584 } else if (Disp.getImm() == 0 &&
585 // Base reg can't be anything that ends up with '5' as the base
586 // reg, it is the magic [*] nomenclature that indicates no base.
587 BaseRegNo != N86::EBP) {
588 // Emit no displacement ModR/M byte
589 emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
590 } else if (!HasEVEX && isDisp8(Disp.getImm())) {
591 // Emit the disp8 encoding.
592 emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
593 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
594 } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
595 // Emit the disp8 encoding.
596 emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
597 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
598 ImmOffset = CDisp8 - Disp.getImm();
599 } else {
600 // Emit the normal disp32 encoding.
601 emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
602 }
603
604 // Calculate what the SS field value should be...
605 static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
606 unsigned SS = SSTable[Scale.getImm()];
607
608 if (BaseReg == 0) {
609 // Handle the SIB byte for the case where there is no base, see Intel
610 // Manual 2A, table 2-7. The displacement has already been output.
611 unsigned IndexRegNo;
612 if (IndexReg.getReg())
613 IndexRegNo = getX86RegNum(IndexReg);
614 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
615 IndexRegNo = 4;
616 emitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
617 } else {
618 unsigned IndexRegNo;
619 if (IndexReg.getReg())
620 IndexRegNo = getX86RegNum(IndexReg);
621 else
622 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
623 emitSIBByte(SS, IndexRegNo, getX86RegNum(Base), CurByte, OS);
624 }
625
626 // Do we need to output a displacement?
627 if (ForceDisp8)
628 emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
629 ImmOffset);
630 else if (ForceDisp32 || Disp.getImm() != 0)
631 emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
632 CurByte, OS, Fixups);
633 }
634
emitPrefixImpl(uint64_t TSFlags,unsigned & CurOp,unsigned & CurByte,bool & Rex,const MCInst & MI,const MCInstrDesc & Desc,const MCSubtargetInfo & STI,raw_ostream & OS) const635 void X86MCCodeEmitter::emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp,
636 unsigned &CurByte, bool &Rex,
637 const MCInst &MI, const MCInstrDesc &Desc,
638 const MCSubtargetInfo &STI,
639 raw_ostream &OS) const {
640 // Determine where the memory operand starts, if present.
641 int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
642 if (MemoryOperand != -1)
643 MemoryOperand += CurOp;
644
645 // Emit segment override opcode prefix as needed.
646 if (MemoryOperand >= 0)
647 emitSegmentOverridePrefix(CurByte, MemoryOperand + X86::AddrSegmentReg, MI,
648 OS);
649
650 // Emit the repeat opcode prefix as needed.
651 unsigned Flags = MI.getFlags();
652 if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
653 emitByte(0xF3, CurByte, OS);
654 if (Flags & X86::IP_HAS_REPEAT_NE)
655 emitByte(0xF2, CurByte, OS);
656
657 // Emit the address size opcode prefix as needed.
658 bool need_address_override;
659 uint64_t AdSize = TSFlags & X86II::AdSizeMask;
660 if ((STI.hasFeature(X86::Mode16Bit) && AdSize == X86II::AdSize32) ||
661 (STI.hasFeature(X86::Mode32Bit) && AdSize == X86II::AdSize16) ||
662 (STI.hasFeature(X86::Mode64Bit) && AdSize == X86II::AdSize32)) {
663 need_address_override = true;
664 } else if (MemoryOperand < 0) {
665 need_address_override = false;
666 } else if (STI.hasFeature(X86::Mode64Bit)) {
667 assert(!is16BitMemOperand(MI, MemoryOperand, STI));
668 need_address_override = is32BitMemOperand(MI, MemoryOperand);
669 } else if (STI.hasFeature(X86::Mode32Bit)) {
670 assert(!is64BitMemOperand(MI, MemoryOperand));
671 need_address_override = is16BitMemOperand(MI, MemoryOperand, STI);
672 } else {
673 assert(STI.hasFeature(X86::Mode16Bit));
674 assert(!is64BitMemOperand(MI, MemoryOperand));
675 need_address_override = !is16BitMemOperand(MI, MemoryOperand, STI);
676 }
677
678 if (need_address_override)
679 emitByte(0x67, CurByte, OS);
680
681 // Encoding type for this instruction.
682 uint64_t Encoding = TSFlags & X86II::EncodingMask;
683 if (Encoding == 0)
684 Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
685 else
686 emitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
687
688 uint64_t Form = TSFlags & X86II::FormMask;
689 switch (Form) {
690 default:
691 break;
692 case X86II::RawFrmDstSrc: {
693 unsigned siReg = MI.getOperand(1).getReg();
694 assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
695 (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
696 (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
697 "SI and DI register sizes do not match");
698 // Emit segment override opcode prefix as needed (not for %ds).
699 if (MI.getOperand(2).getReg() != X86::DS)
700 emitSegmentOverridePrefix(CurByte, 2, MI, OS);
701 // Emit AdSize prefix as needed.
702 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
703 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
704 emitByte(0x67, CurByte, OS);
705 CurOp += 3; // Consume operands.
706 break;
707 }
708 case X86II::RawFrmSrc: {
709 unsigned siReg = MI.getOperand(0).getReg();
710 // Emit segment override opcode prefix as needed (not for %ds).
711 if (MI.getOperand(1).getReg() != X86::DS)
712 emitSegmentOverridePrefix(CurByte, 1, MI, OS);
713 // Emit AdSize prefix as needed.
714 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
715 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
716 emitByte(0x67, CurByte, OS);
717 CurOp += 2; // Consume operands.
718 break;
719 }
720 case X86II::RawFrmDst: {
721 unsigned siReg = MI.getOperand(0).getReg();
722 // Emit AdSize prefix as needed.
723 if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::EDI) ||
724 (STI.hasFeature(X86::Mode32Bit) && siReg == X86::DI))
725 emitByte(0x67, CurByte, OS);
726 ++CurOp; // Consume operand.
727 break;
728 }
729 case X86II::RawFrmMemOffs: {
730 // Emit segment override opcode prefix as needed.
731 emitSegmentOverridePrefix(CurByte, 1, MI, OS);
732 break;
733 }
734 }
735 }
736
737 /// emitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
738 /// called VEX.
emitVEXOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,raw_ostream & OS) const739 void X86MCCodeEmitter::emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
740 int MemOperand, const MCInst &MI,
741 const MCInstrDesc &Desc,
742 raw_ostream &OS) const {
743 assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
744
745 uint64_t Encoding = TSFlags & X86II::EncodingMask;
746 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
747 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
748 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
749
750 // VEX_R: opcode externsion equivalent to REX.R in
751 // 1's complement (inverted) form
752 //
753 // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
754 // 0: Same as REX_R=1 (64 bit mode only)
755 //
756 uint8_t VEX_R = 0x1;
757 uint8_t EVEX_R2 = 0x1;
758
759 // VEX_X: equivalent to REX.X, only used when a
760 // register is used for index in SIB Byte.
761 //
762 // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
763 // 0: Same as REX.X=1 (64-bit mode only)
764 uint8_t VEX_X = 0x1;
765
766 // VEX_B:
767 //
768 // 1: Same as REX_B=0 (ignored in 32-bit mode)
769 // 0: Same as REX_B=1 (64 bit mode only)
770 //
771 uint8_t VEX_B = 0x1;
772
773 // VEX_W: opcode specific (use like REX.W, or used for
774 // opcode extension, or ignored, depending on the opcode byte)
775 uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
776
777 // VEX_5M (VEX m-mmmmm field):
778 //
779 // 0b00000: Reserved for future use
780 // 0b00001: implied 0F leading opcode
781 // 0b00010: implied 0F 38 leading opcode bytes
782 // 0b00011: implied 0F 3A leading opcode bytes
783 // 0b00100-0b11111: Reserved for future use
784 // 0b01000: XOP map select - 08h instructions with imm byte
785 // 0b01001: XOP map select - 09h instructions with no imm byte
786 // 0b01010: XOP map select - 0Ah instructions with imm dword
787 uint8_t VEX_5M;
788 switch (TSFlags & X86II::OpMapMask) {
789 default:
790 llvm_unreachable("Invalid prefix!");
791 case X86II::TB:
792 VEX_5M = 0x1;
793 break; // 0F
794 case X86II::T8:
795 VEX_5M = 0x2;
796 break; // 0F 38
797 case X86II::TA:
798 VEX_5M = 0x3;
799 break; // 0F 3A
800 case X86II::XOP8:
801 VEX_5M = 0x8;
802 break;
803 case X86II::XOP9:
804 VEX_5M = 0x9;
805 break;
806 case X86II::XOPA:
807 VEX_5M = 0xA;
808 break;
809 }
810
811 // VEX_4V (VEX vvvv field): a register specifier
812 // (in 1's complement form) or 1111 if unused.
813 uint8_t VEX_4V = 0xf;
814 uint8_t EVEX_V2 = 0x1;
815
816 // EVEX_L2/VEX_L (Vector Length):
817 //
818 // L2 L
819 // 0 0: scalar or 128-bit vector
820 // 0 1: 256-bit vector
821 // 1 0: 512-bit vector
822 //
823 uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
824 uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
825
826 // VEX_PP: opcode extension providing equivalent
827 // functionality of a SIMD prefix
828 //
829 // 0b00: None
830 // 0b01: 66
831 // 0b10: F3
832 // 0b11: F2
833 //
834 uint8_t VEX_PP = 0;
835 switch (TSFlags & X86II::OpPrefixMask) {
836 case X86II::PD:
837 VEX_PP = 0x1;
838 break; // 66
839 case X86II::XS:
840 VEX_PP = 0x2;
841 break; // F3
842 case X86II::XD:
843 VEX_PP = 0x3;
844 break; // F2
845 }
846
847 // EVEX_U
848 uint8_t EVEX_U = 1; // Always '1' so far
849
850 // EVEX_z
851 uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
852
853 // EVEX_b
854 uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
855
856 // EVEX_rc
857 uint8_t EVEX_rc = 0;
858
859 // EVEX_aaa
860 uint8_t EVEX_aaa = 0;
861
862 bool EncodeRC = false;
863
864 // Classify VEX_B, VEX_4V, VEX_R, VEX_X
865 unsigned NumOps = Desc.getNumOperands();
866 unsigned CurOp = X86II::getOperandBias(Desc);
867
868 switch (TSFlags & X86II::FormMask) {
869 default:
870 llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
871 case X86II::RawFrm:
872 break;
873 case X86II::MRMDestMem: {
874 // MRMDestMem instructions forms:
875 // MemAddr, src1(ModR/M)
876 // MemAddr, src1(VEX_4V), src2(ModR/M)
877 // MemAddr, src1(ModR/M), imm8
878 //
879 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
880 VEX_B = ~(BaseRegEnc >> 3) & 1;
881 unsigned IndexRegEnc =
882 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
883 VEX_X = ~(IndexRegEnc >> 3) & 1;
884 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
885 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
886
887 CurOp += X86::AddrNumOperands;
888
889 if (HasEVEX_K)
890 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
891
892 if (HasVEX_4V) {
893 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
894 VEX_4V = ~VRegEnc & 0xf;
895 EVEX_V2 = ~(VRegEnc >> 4) & 1;
896 }
897
898 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
899 VEX_R = ~(RegEnc >> 3) & 1;
900 EVEX_R2 = ~(RegEnc >> 4) & 1;
901 break;
902 }
903 case X86II::MRMSrcMem: {
904 // MRMSrcMem instructions forms:
905 // src1(ModR/M), MemAddr
906 // src1(ModR/M), src2(VEX_4V), MemAddr
907 // src1(ModR/M), MemAddr, imm8
908 // src1(ModR/M), MemAddr, src2(Imm[7:4])
909 //
910 // FMA4:
911 // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
912 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
913 VEX_R = ~(RegEnc >> 3) & 1;
914 EVEX_R2 = ~(RegEnc >> 4) & 1;
915
916 if (HasEVEX_K)
917 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
918
919 if (HasVEX_4V) {
920 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
921 VEX_4V = ~VRegEnc & 0xf;
922 EVEX_V2 = ~(VRegEnc >> 4) & 1;
923 }
924
925 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
926 VEX_B = ~(BaseRegEnc >> 3) & 1;
927 unsigned IndexRegEnc =
928 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
929 VEX_X = ~(IndexRegEnc >> 3) & 1;
930 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
931 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
932
933 break;
934 }
935 case X86II::MRMSrcMem4VOp3: {
936 // Instruction format for 4VOp3:
937 // src1(ModR/M), MemAddr, src3(VEX_4V)
938 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
939 VEX_R = ~(RegEnc >> 3) & 1;
940
941 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
942 VEX_B = ~(BaseRegEnc >> 3) & 1;
943 unsigned IndexRegEnc =
944 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
945 VEX_X = ~(IndexRegEnc >> 3) & 1;
946
947 VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
948 break;
949 }
950 case X86II::MRMSrcMemOp4: {
951 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
952 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
953 VEX_R = ~(RegEnc >> 3) & 1;
954
955 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
956 VEX_4V = ~VRegEnc & 0xf;
957
958 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
959 VEX_B = ~(BaseRegEnc >> 3) & 1;
960 unsigned IndexRegEnc =
961 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
962 VEX_X = ~(IndexRegEnc >> 3) & 1;
963 break;
964 }
965 case X86II::MRM0m:
966 case X86II::MRM1m:
967 case X86II::MRM2m:
968 case X86II::MRM3m:
969 case X86II::MRM4m:
970 case X86II::MRM5m:
971 case X86II::MRM6m:
972 case X86II::MRM7m: {
973 // MRM[0-9]m instructions forms:
974 // MemAddr
975 // src1(VEX_4V), MemAddr
976 if (HasVEX_4V) {
977 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
978 VEX_4V = ~VRegEnc & 0xf;
979 EVEX_V2 = ~(VRegEnc >> 4) & 1;
980 }
981
982 if (HasEVEX_K)
983 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
984
985 unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
986 VEX_B = ~(BaseRegEnc >> 3) & 1;
987 unsigned IndexRegEnc =
988 getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
989 VEX_X = ~(IndexRegEnc >> 3) & 1;
990 if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
991 EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
992
993 break;
994 }
995 case X86II::MRMSrcReg: {
996 // MRMSrcReg instructions forms:
997 // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
998 // dst(ModR/M), src1(ModR/M)
999 // dst(ModR/M), src1(ModR/M), imm8
1000 //
1001 // FMA4:
1002 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1003 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1004 VEX_R = ~(RegEnc >> 3) & 1;
1005 EVEX_R2 = ~(RegEnc >> 4) & 1;
1006
1007 if (HasEVEX_K)
1008 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1009
1010 if (HasVEX_4V) {
1011 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1012 VEX_4V = ~VRegEnc & 0xf;
1013 EVEX_V2 = ~(VRegEnc >> 4) & 1;
1014 }
1015
1016 RegEnc = getX86RegEncoding(MI, CurOp++);
1017 VEX_B = ~(RegEnc >> 3) & 1;
1018 VEX_X = ~(RegEnc >> 4) & 1;
1019
1020 if (EVEX_b) {
1021 if (HasEVEX_RC) {
1022 unsigned RcOperand = NumOps - 1;
1023 assert(RcOperand >= CurOp);
1024 EVEX_rc = MI.getOperand(RcOperand).getImm();
1025 assert(EVEX_rc <= 3 && "Invalid rounding control!");
1026 }
1027 EncodeRC = true;
1028 }
1029 break;
1030 }
1031 case X86II::MRMSrcReg4VOp3: {
1032 // Instruction format for 4VOp3:
1033 // src1(ModR/M), src2(ModR/M), src3(VEX_4V)
1034 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1035 VEX_R = ~(RegEnc >> 3) & 1;
1036
1037 RegEnc = getX86RegEncoding(MI, CurOp++);
1038 VEX_B = ~(RegEnc >> 3) & 1;
1039
1040 VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
1041 break;
1042 }
1043 case X86II::MRMSrcRegOp4: {
1044 // dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1045 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1046 VEX_R = ~(RegEnc >> 3) & 1;
1047
1048 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1049 VEX_4V = ~VRegEnc & 0xf;
1050
1051 // Skip second register source (encoded in Imm[7:4])
1052 ++CurOp;
1053
1054 RegEnc = getX86RegEncoding(MI, CurOp++);
1055 VEX_B = ~(RegEnc >> 3) & 1;
1056 VEX_X = ~(RegEnc >> 4) & 1;
1057 break;
1058 }
1059 case X86II::MRMDestReg: {
1060 // MRMDestReg instructions forms:
1061 // dst(ModR/M), src(ModR/M)
1062 // dst(ModR/M), src(ModR/M), imm8
1063 // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1064 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1065 VEX_B = ~(RegEnc >> 3) & 1;
1066 VEX_X = ~(RegEnc >> 4) & 1;
1067
1068 if (HasEVEX_K)
1069 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1070
1071 if (HasVEX_4V) {
1072 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1073 VEX_4V = ~VRegEnc & 0xf;
1074 EVEX_V2 = ~(VRegEnc >> 4) & 1;
1075 }
1076
1077 RegEnc = getX86RegEncoding(MI, CurOp++);
1078 VEX_R = ~(RegEnc >> 3) & 1;
1079 EVEX_R2 = ~(RegEnc >> 4) & 1;
1080 if (EVEX_b)
1081 EncodeRC = true;
1082 break;
1083 }
1084 case X86II::MRM0r:
1085 case X86II::MRM1r:
1086 case X86II::MRM2r:
1087 case X86II::MRM3r:
1088 case X86II::MRM4r:
1089 case X86II::MRM5r:
1090 case X86II::MRM6r:
1091 case X86II::MRM7r: {
1092 // MRM0r-MRM7r instructions forms:
1093 // dst(VEX_4V), src(ModR/M), imm8
1094 if (HasVEX_4V) {
1095 unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1096 VEX_4V = ~VRegEnc & 0xf;
1097 EVEX_V2 = ~(VRegEnc >> 4) & 1;
1098 }
1099 if (HasEVEX_K)
1100 EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1101
1102 unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1103 VEX_B = ~(RegEnc >> 3) & 1;
1104 VEX_X = ~(RegEnc >> 4) & 1;
1105 break;
1106 }
1107 }
1108
1109 if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
1110 // VEX opcode prefix can have 2 or 3 bytes
1111 //
1112 // 3 bytes:
1113 // +-----+ +--------------+ +-------------------+
1114 // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
1115 // +-----+ +--------------+ +-------------------+
1116 // 2 bytes:
1117 // +-----+ +-------------------+
1118 // | C5h | | R | vvvv | L | pp |
1119 // +-----+ +-------------------+
1120 //
1121 // XOP uses a similar prefix:
1122 // +-----+ +--------------+ +-------------------+
1123 // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
1124 // +-----+ +--------------+ +-------------------+
1125 uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
1126
1127 // Can we use the 2 byte VEX prefix?
1128 if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
1129 VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
1130 emitByte(0xC5, CurByte, OS);
1131 emitByte(LastByte | (VEX_R << 7), CurByte, OS);
1132 return;
1133 }
1134
1135 // 3 byte VEX prefix
1136 emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
1137 emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
1138 emitByte(LastByte | (VEX_W << 7), CurByte, OS);
1139 } else {
1140 assert(Encoding == X86II::EVEX && "unknown encoding!");
1141 // EVEX opcode prefix can have 4 bytes
1142 //
1143 // +-----+ +--------------+ +-------------------+ +------------------------+
1144 // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1145 // +-----+ +--------------+ +-------------------+ +------------------------+
1146 assert((VEX_5M & 0x3) == VEX_5M &&
1147 "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
1148
1149 emitByte(0x62, CurByte, OS);
1150 emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
1151 VEX_5M,
1152 CurByte, OS);
1153 emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, CurByte,
1154 OS);
1155 if (EncodeRC)
1156 emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
1157 EVEX_aaa,
1158 CurByte, OS);
1159 else
1160 emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
1161 (EVEX_V2 << 3) | EVEX_aaa,
1162 CurByte, OS);
1163 }
1164 }
1165
1166 /// Determine if the MCInst has to be encoded with a X86-64 REX prefix which
1167 /// specifies 1) 64-bit instructions, 2) non-default operand size, and 3) use
1168 /// of X86-64 extended registers.
determineREXPrefix(const MCInst & MI,uint64_t TSFlags,int MemOperand,const MCInstrDesc & Desc) const1169 uint8_t X86MCCodeEmitter::determineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1170 int MemOperand,
1171 const MCInstrDesc &Desc) const {
1172 uint8_t REX = 0;
1173 bool UsesHighByteReg = false;
1174
1175 if (TSFlags & X86II::REX_W)
1176 REX |= 1 << 3; // set REX.W
1177
1178 if (MI.getNumOperands() == 0)
1179 return REX;
1180
1181 unsigned NumOps = MI.getNumOperands();
1182 unsigned CurOp = X86II::getOperandBias(Desc);
1183
1184 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1185 for (unsigned i = CurOp; i != NumOps; ++i) {
1186 const MCOperand &MO = MI.getOperand(i);
1187 if (!MO.isReg())
1188 continue;
1189 unsigned Reg = MO.getReg();
1190 if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1191 UsesHighByteReg = true;
1192 if (X86II::isX86_64NonExtLowByteReg(Reg))
1193 // FIXME: The caller of determineREXPrefix slaps this prefix onto anything
1194 // that returns non-zero.
1195 REX |= 0x40; // REX fixed encoding prefix
1196 }
1197
1198 switch (TSFlags & X86II::FormMask) {
1199 case X86II::AddRegFrm:
1200 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1201 break;
1202 case X86II::MRMSrcReg:
1203 case X86II::MRMSrcRegCC:
1204 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1205 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1206 break;
1207 case X86II::MRMSrcMem:
1208 case X86II::MRMSrcMemCC:
1209 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1210 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B
1211 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1212 CurOp += X86::AddrNumOperands;
1213 break;
1214 case X86II::MRMDestReg:
1215 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1216 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1217 break;
1218 case X86II::MRMDestMem:
1219 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B
1220 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1221 CurOp += X86::AddrNumOperands;
1222 REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1223 break;
1224 case X86II::MRMXmCC:
1225 case X86II::MRMXm:
1226 case X86II::MRM0m:
1227 case X86II::MRM1m:
1228 case X86II::MRM2m:
1229 case X86II::MRM3m:
1230 case X86II::MRM4m:
1231 case X86II::MRM5m:
1232 case X86II::MRM6m:
1233 case X86II::MRM7m:
1234 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0; // REX.B
1235 REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1236 break;
1237 case X86II::MRMXrCC:
1238 case X86II::MRMXr:
1239 case X86II::MRM0r:
1240 case X86II::MRM1r:
1241 case X86II::MRM2r:
1242 case X86II::MRM3r:
1243 case X86II::MRM4r:
1244 case X86II::MRM5r:
1245 case X86II::MRM6r:
1246 case X86II::MRM7r:
1247 REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1248 break;
1249 }
1250 if (REX && UsesHighByteReg)
1251 report_fatal_error(
1252 "Cannot encode high byte register in REX-prefixed instruction");
1253
1254 return REX;
1255 }
1256
1257 /// Emit segment override opcode prefix as needed.
emitSegmentOverridePrefix(unsigned & CurByte,unsigned SegOperand,const MCInst & MI,raw_ostream & OS) const1258 void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned &CurByte,
1259 unsigned SegOperand,
1260 const MCInst &MI,
1261 raw_ostream &OS) const {
1262 // Check for explicit segment override on memory operand.
1263 switch (MI.getOperand(SegOperand).getReg()) {
1264 default:
1265 llvm_unreachable("Unknown segment register!");
1266 case 0:
1267 break;
1268 case X86::CS:
1269 emitByte(0x2E, CurByte, OS);
1270 break;
1271 case X86::SS:
1272 emitByte(0x36, CurByte, OS);
1273 break;
1274 case X86::DS:
1275 emitByte(0x3E, CurByte, OS);
1276 break;
1277 case X86::ES:
1278 emitByte(0x26, CurByte, OS);
1279 break;
1280 case X86::FS:
1281 emitByte(0x64, CurByte, OS);
1282 break;
1283 case X86::GS:
1284 emitByte(0x65, CurByte, OS);
1285 break;
1286 }
1287 }
1288
1289 /// Emit all instruction prefixes prior to the opcode.
1290 ///
1291 /// \param MemOperand the operand # of the start of a memory operand if present.
1292 /// If not present, it is -1.
1293 ///
1294 /// \returns true if a REX prefix was used.
emitOpcodePrefix(uint64_t TSFlags,unsigned & CurByte,int MemOperand,const MCInst & MI,const MCInstrDesc & Desc,const MCSubtargetInfo & STI,raw_ostream & OS) const1295 bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1296 int MemOperand, const MCInst &MI,
1297 const MCInstrDesc &Desc,
1298 const MCSubtargetInfo &STI,
1299 raw_ostream &OS) const {
1300 bool Ret = false;
1301 // Emit the operand size opcode prefix as needed.
1302 if ((TSFlags & X86II::OpSizeMask) ==
1303 (STI.hasFeature(X86::Mode16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1304 emitByte(0x66, CurByte, OS);
1305
1306 // Emit the LOCK opcode prefix.
1307 if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1308 emitByte(0xF0, CurByte, OS);
1309
1310 // Emit the NOTRACK opcode prefix.
1311 if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1312 emitByte(0x3E, CurByte, OS);
1313
1314 switch (TSFlags & X86II::OpPrefixMask) {
1315 case X86II::PD: // 66
1316 emitByte(0x66, CurByte, OS);
1317 break;
1318 case X86II::XS: // F3
1319 emitByte(0xF3, CurByte, OS);
1320 break;
1321 case X86II::XD: // F2
1322 emitByte(0xF2, CurByte, OS);
1323 break;
1324 }
1325
1326 // Handle REX prefix.
1327 // FIXME: Can this come before F2 etc to simplify emission?
1328 if (STI.hasFeature(X86::Mode64Bit)) {
1329 if (uint8_t REX = determineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
1330 emitByte(0x40 | REX, CurByte, OS);
1331 Ret = true;
1332 }
1333 } else {
1334 assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
1335 }
1336
1337 // 0x0F escape code must be emitted just before the opcode.
1338 switch (TSFlags & X86II::OpMapMask) {
1339 case X86II::TB: // Two-byte opcode map
1340 case X86II::T8: // 0F 38
1341 case X86II::TA: // 0F 3A
1342 case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1343 emitByte(0x0F, CurByte, OS);
1344 break;
1345 }
1346
1347 switch (TSFlags & X86II::OpMapMask) {
1348 case X86II::T8: // 0F 38
1349 emitByte(0x38, CurByte, OS);
1350 break;
1351 case X86II::TA: // 0F 3A
1352 emitByte(0x3A, CurByte, OS);
1353 break;
1354 }
1355 return Ret;
1356 }
1357
emitPrefix(const MCInst & MI,raw_ostream & OS,const MCSubtargetInfo & STI) const1358 void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
1359 const MCSubtargetInfo &STI) const {
1360 unsigned Opcode = MI.getOpcode();
1361 const MCInstrDesc &Desc = MCII.get(Opcode);
1362 uint64_t TSFlags = Desc.TSFlags;
1363
1364 // Pseudo instructions don't get encoded.
1365 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1366 return;
1367
1368 unsigned CurOp = X86II::getOperandBias(Desc);
1369
1370 // Keep track of the current byte being emitted.
1371 unsigned CurByte = 0;
1372
1373 bool Rex = false;
1374 emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);
1375 }
1376
encodeInstruction(const MCInst & MI,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const1377 void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
1378 SmallVectorImpl<MCFixup> &Fixups,
1379 const MCSubtargetInfo &STI) const {
1380 unsigned Opcode = MI.getOpcode();
1381 const MCInstrDesc &Desc = MCII.get(Opcode);
1382 uint64_t TSFlags = Desc.TSFlags;
1383
1384 // Pseudo instructions don't get encoded.
1385 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1386 return;
1387
1388 unsigned NumOps = Desc.getNumOperands();
1389 unsigned CurOp = X86II::getOperandBias(Desc);
1390
1391 // Keep track of the current byte being emitted.
1392 unsigned CurByte = 0;
1393
1394 bool Rex = false;
1395 emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);
1396
1397 // It uses the VEX.VVVV field?
1398 bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1399 bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1400
1401 // It uses the EVEX.aaa field?
1402 bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1403 bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1404
1405 // Used if a register is encoded in 7:4 of immediate.
1406 unsigned I8RegNum = 0;
1407
1408 uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1409
1410 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1411 BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1412
1413 unsigned OpcodeOffset = 0;
1414
1415 uint64_t Form = TSFlags & X86II::FormMask;
1416 switch (Form) {
1417 default:
1418 errs() << "FORM: " << Form << "\n";
1419 llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1420 case X86II::Pseudo:
1421 llvm_unreachable("Pseudo instruction shouldn't be emitted");
1422 case X86II::RawFrmDstSrc:
1423 case X86II::RawFrmSrc:
1424 case X86II::RawFrmDst:
1425 emitByte(BaseOpcode, CurByte, OS);
1426 break;
1427 case X86II::AddCCFrm: {
1428 // This will be added to the opcode in the fallthrough.
1429 OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1430 assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1431 --NumOps; // Drop the operand from the end.
1432 LLVM_FALLTHROUGH;
1433 case X86II::RawFrm:
1434 emitByte(BaseOpcode + OpcodeOffset, CurByte, OS);
1435
1436 if (!STI.hasFeature(X86::Mode64Bit) || !isPCRel32Branch(MI, MCII))
1437 break;
1438
1439 const MCOperand &Op = MI.getOperand(CurOp++);
1440 emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1441 MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS,
1442 Fixups);
1443 break;
1444 }
1445 case X86II::RawFrmMemOffs:
1446 emitByte(BaseOpcode, CurByte, OS);
1447 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1448 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1449 CurByte, OS, Fixups);
1450 ++CurOp; // skip segment operand
1451 break;
1452 case X86II::RawFrmImm8:
1453 emitByte(BaseOpcode, CurByte, OS);
1454 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1455 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1456 CurByte, OS, Fixups);
1457 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1458 OS, Fixups);
1459 break;
1460 case X86II::RawFrmImm16:
1461 emitByte(BaseOpcode, CurByte, OS);
1462 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1463 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1464 CurByte, OS, Fixups);
1465 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1466 OS, Fixups);
1467 break;
1468
1469 case X86II::AddRegFrm:
1470 emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1471 break;
1472
1473 case X86II::MRMDestReg: {
1474 emitByte(BaseOpcode, CurByte, OS);
1475 unsigned SrcRegNum = CurOp + 1;
1476
1477 if (HasEVEX_K) // Skip writemask
1478 ++SrcRegNum;
1479
1480 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1481 ++SrcRegNum;
1482
1483 emitRegModRMByte(MI.getOperand(CurOp),
1484 getX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1485 CurOp = SrcRegNum + 1;
1486 break;
1487 }
1488 case X86II::MRMDestMem: {
1489 emitByte(BaseOpcode, CurByte, OS);
1490 unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1491
1492 if (HasEVEX_K) // Skip writemask
1493 ++SrcRegNum;
1494
1495 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1496 ++SrcRegNum;
1497
1498 emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1499 Rex, CurByte, OS, Fixups, STI);
1500 CurOp = SrcRegNum + 1;
1501 break;
1502 }
1503 case X86II::MRMSrcReg: {
1504 emitByte(BaseOpcode, CurByte, OS);
1505 unsigned SrcRegNum = CurOp + 1;
1506
1507 if (HasEVEX_K) // Skip writemask
1508 ++SrcRegNum;
1509
1510 if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1511 ++SrcRegNum;
1512
1513 emitRegModRMByte(MI.getOperand(SrcRegNum),
1514 getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1515 CurOp = SrcRegNum + 1;
1516 if (HasVEX_I8Reg)
1517 I8RegNum = getX86RegEncoding(MI, CurOp++);
1518 // do not count the rounding control operand
1519 if (HasEVEX_RC)
1520 --NumOps;
1521 break;
1522 }
1523 case X86II::MRMSrcReg4VOp3: {
1524 emitByte(BaseOpcode, CurByte, OS);
1525 unsigned SrcRegNum = CurOp + 1;
1526
1527 emitRegModRMByte(MI.getOperand(SrcRegNum),
1528 getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1529 CurOp = SrcRegNum + 1;
1530 ++CurOp; // Encoded in VEX.VVVV
1531 break;
1532 }
1533 case X86II::MRMSrcRegOp4: {
1534 emitByte(BaseOpcode, CurByte, OS);
1535 unsigned SrcRegNum = CurOp + 1;
1536
1537 // Skip 1st src (which is encoded in VEX_VVVV)
1538 ++SrcRegNum;
1539
1540 // Capture 2nd src (which is encoded in Imm[7:4])
1541 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1542 I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1543
1544 emitRegModRMByte(MI.getOperand(SrcRegNum),
1545 getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1546 CurOp = SrcRegNum + 1;
1547 break;
1548 }
1549 case X86II::MRMSrcRegCC: {
1550 unsigned FirstOp = CurOp++;
1551 unsigned SecondOp = CurOp++;
1552
1553 unsigned CC = MI.getOperand(CurOp++).getImm();
1554 emitByte(BaseOpcode + CC, CurByte, OS);
1555
1556 emitRegModRMByte(MI.getOperand(SecondOp),
1557 getX86RegNum(MI.getOperand(FirstOp)), CurByte, OS);
1558 break;
1559 }
1560 case X86II::MRMSrcMem: {
1561 unsigned FirstMemOp = CurOp + 1;
1562
1563 if (HasEVEX_K) // Skip writemask
1564 ++FirstMemOp;
1565
1566 if (HasVEX_4V)
1567 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1568
1569 emitByte(BaseOpcode, CurByte, OS);
1570
1571 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1572 TSFlags, Rex, CurByte, OS, Fixups, STI);
1573 CurOp = FirstMemOp + X86::AddrNumOperands;
1574 if (HasVEX_I8Reg)
1575 I8RegNum = getX86RegEncoding(MI, CurOp++);
1576 break;
1577 }
1578 case X86II::MRMSrcMem4VOp3: {
1579 unsigned FirstMemOp = CurOp + 1;
1580
1581 emitByte(BaseOpcode, CurByte, OS);
1582
1583 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1584 TSFlags, Rex, CurByte, OS, Fixups, STI);
1585 CurOp = FirstMemOp + X86::AddrNumOperands;
1586 ++CurOp; // Encoded in VEX.VVVV.
1587 break;
1588 }
1589 case X86II::MRMSrcMemOp4: {
1590 unsigned FirstMemOp = CurOp + 1;
1591
1592 ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1593
1594 // Capture second register source (encoded in Imm[7:4])
1595 assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1596 I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1597
1598 emitByte(BaseOpcode, CurByte, OS);
1599
1600 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1601 TSFlags, Rex, CurByte, OS, Fixups, STI);
1602 CurOp = FirstMemOp + X86::AddrNumOperands;
1603 break;
1604 }
1605 case X86II::MRMSrcMemCC: {
1606 unsigned RegOp = CurOp++;
1607 unsigned FirstMemOp = CurOp;
1608 CurOp = FirstMemOp + X86::AddrNumOperands;
1609
1610 unsigned CC = MI.getOperand(CurOp++).getImm();
1611 emitByte(BaseOpcode + CC, CurByte, OS);
1612
1613 emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1614 TSFlags, Rex, CurByte, OS, Fixups, STI);
1615 break;
1616 }
1617
1618 case X86II::MRMXrCC: {
1619 unsigned RegOp = CurOp++;
1620
1621 unsigned CC = MI.getOperand(CurOp++).getImm();
1622 emitByte(BaseOpcode + CC, CurByte, OS);
1623 emitRegModRMByte(MI.getOperand(RegOp), 0, CurByte, OS);
1624 break;
1625 }
1626
1627 case X86II::MRMXr:
1628 case X86II::MRM0r:
1629 case X86II::MRM1r:
1630 case X86II::MRM2r:
1631 case X86II::MRM3r:
1632 case X86II::MRM4r:
1633 case X86II::MRM5r:
1634 case X86II::MRM6r:
1635 case X86II::MRM7r:
1636 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1637 ++CurOp;
1638 if (HasEVEX_K) // Skip writemask
1639 ++CurOp;
1640 emitByte(BaseOpcode, CurByte, OS);
1641 emitRegModRMByte(MI.getOperand(CurOp++),
1642 (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CurByte,
1643 OS);
1644 break;
1645
1646 case X86II::MRMXmCC: {
1647 unsigned FirstMemOp = CurOp;
1648 CurOp = FirstMemOp + X86::AddrNumOperands;
1649
1650 unsigned CC = MI.getOperand(CurOp++).getImm();
1651 emitByte(BaseOpcode + CC, CurByte, OS);
1652
1653 emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Rex, CurByte, OS, Fixups, STI);
1654 break;
1655 }
1656
1657 case X86II::MRMXm:
1658 case X86II::MRM0m:
1659 case X86II::MRM1m:
1660 case X86II::MRM2m:
1661 case X86II::MRM3m:
1662 case X86II::MRM4m:
1663 case X86II::MRM5m:
1664 case X86II::MRM6m:
1665 case X86II::MRM7m:
1666 if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1667 ++CurOp;
1668 if (HasEVEX_K) // Skip writemask
1669 ++CurOp;
1670 emitByte(BaseOpcode, CurByte, OS);
1671 emitMemModRMByte(MI, CurOp,
1672 (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1673 Rex, CurByte, OS, Fixups, STI);
1674 CurOp += X86::AddrNumOperands;
1675 break;
1676
1677 case X86II::MRM_C0:
1678 case X86II::MRM_C1:
1679 case X86II::MRM_C2:
1680 case X86II::MRM_C3:
1681 case X86II::MRM_C4:
1682 case X86II::MRM_C5:
1683 case X86II::MRM_C6:
1684 case X86II::MRM_C7:
1685 case X86II::MRM_C8:
1686 case X86II::MRM_C9:
1687 case X86II::MRM_CA:
1688 case X86II::MRM_CB:
1689 case X86II::MRM_CC:
1690 case X86II::MRM_CD:
1691 case X86II::MRM_CE:
1692 case X86II::MRM_CF:
1693 case X86II::MRM_D0:
1694 case X86II::MRM_D1:
1695 case X86II::MRM_D2:
1696 case X86II::MRM_D3:
1697 case X86II::MRM_D4:
1698 case X86II::MRM_D5:
1699 case X86II::MRM_D6:
1700 case X86II::MRM_D7:
1701 case X86II::MRM_D8:
1702 case X86II::MRM_D9:
1703 case X86II::MRM_DA:
1704 case X86II::MRM_DB:
1705 case X86II::MRM_DC:
1706 case X86II::MRM_DD:
1707 case X86II::MRM_DE:
1708 case X86II::MRM_DF:
1709 case X86II::MRM_E0:
1710 case X86II::MRM_E1:
1711 case X86II::MRM_E2:
1712 case X86II::MRM_E3:
1713 case X86II::MRM_E4:
1714 case X86II::MRM_E5:
1715 case X86II::MRM_E6:
1716 case X86II::MRM_E7:
1717 case X86II::MRM_E8:
1718 case X86II::MRM_E9:
1719 case X86II::MRM_EA:
1720 case X86II::MRM_EB:
1721 case X86II::MRM_EC:
1722 case X86II::MRM_ED:
1723 case X86II::MRM_EE:
1724 case X86II::MRM_EF:
1725 case X86II::MRM_F0:
1726 case X86II::MRM_F1:
1727 case X86II::MRM_F2:
1728 case X86II::MRM_F3:
1729 case X86II::MRM_F4:
1730 case X86II::MRM_F5:
1731 case X86II::MRM_F6:
1732 case X86II::MRM_F7:
1733 case X86II::MRM_F8:
1734 case X86II::MRM_F9:
1735 case X86II::MRM_FA:
1736 case X86II::MRM_FB:
1737 case X86II::MRM_FC:
1738 case X86II::MRM_FD:
1739 case X86II::MRM_FE:
1740 case X86II::MRM_FF:
1741 emitByte(BaseOpcode, CurByte, OS);
1742 emitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1743 break;
1744 }
1745
1746 if (HasVEX_I8Reg) {
1747 // The last source register of a 4 operand instruction in AVX is encoded
1748 // in bits[7:4] of a immediate byte.
1749 assert(I8RegNum < 16 && "Register encoding out of range");
1750 I8RegNum <<= 4;
1751 if (CurOp != NumOps) {
1752 unsigned Val = MI.getOperand(CurOp++).getImm();
1753 assert(Val < 16 && "Immediate operand value out of range");
1754 I8RegNum |= Val;
1755 }
1756 emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1757 CurByte, OS, Fixups);
1758 } else {
1759 // If there is a remaining operand, it must be a trailing immediate. Emit it
1760 // according to the right size for the instruction. Some instructions
1761 // (SSE4a extrq and insertq) have two trailing immediates.
1762 while (CurOp != NumOps && NumOps - CurOp <= 2) {
1763 emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1764 X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1765 CurByte, OS, Fixups);
1766 }
1767 }
1768
1769 if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1770 emitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1771
1772 #ifndef NDEBUG
1773 // FIXME: Verify.
1774 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1775 errs() << "Cannot encode all operands of: ";
1776 MI.dump();
1777 errs() << '\n';
1778 abort();
1779 }
1780 #endif
1781 }
1782
createX86MCCodeEmitter(const MCInstrInfo & MCII,const MCRegisterInfo & MRI,MCContext & Ctx)1783 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1784 const MCRegisterInfo &MRI,
1785 MCContext &Ctx) {
1786 return new X86MCCodeEmitter(MCII, Ctx);
1787 }
1788