1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
34
35 using namespace llvm;
36
X86FrameLowering(const X86Subtarget & STI,MaybeAlign StackAlignOverride)37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38 MaybeAlign StackAlignOverride)
39 : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
40 STI.is64Bit() ? -8 : -4),
41 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42 // Cache a bunch of frame-related predicates for this subtarget.
43 SlotSize = TRI->getSlotSize();
44 Is64Bit = STI.is64Bit();
45 IsLP64 = STI.isTarget64BitLP64();
46 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48 StackPtr = TRI->getStackRegister();
49 }
50
hasReservedCallFrame(const MachineFunction & MF) const51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52 return !MF.getFrameInfo().hasVarSizedObjects() &&
53 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
54 }
55
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified. Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62 return hasReservedCallFrame(MF) ||
63 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64 TRI->hasBasePointer(MF);
65 }
66
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
needsFrameIndexResolution(const MachineFunction & MF) const75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76 return MF.getFrameInfo().hasStackObjects() ||
77 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
78 }
79
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register. This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84 const MachineFrameInfo &MFI = MF.getFrameInfo();
85 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86 TRI->needsStackRealignment(MF) ||
87 MFI.hasVarSizedObjects() ||
88 MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90 MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91 MFI.hasStackMap() || MFI.hasPatchPoint() ||
92 MFI.hasCopyImplyingStackAdjustment());
93 }
94
getSUBriOpcode(bool IsLP64,int64_t Imm)95 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
96 if (IsLP64) {
97 if (isInt<8>(Imm))
98 return X86::SUB64ri8;
99 return X86::SUB64ri32;
100 } else {
101 if (isInt<8>(Imm))
102 return X86::SUB32ri8;
103 return X86::SUB32ri;
104 }
105 }
106
getADDriOpcode(bool IsLP64,int64_t Imm)107 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
108 if (IsLP64) {
109 if (isInt<8>(Imm))
110 return X86::ADD64ri8;
111 return X86::ADD64ri32;
112 } else {
113 if (isInt<8>(Imm))
114 return X86::ADD32ri8;
115 return X86::ADD32ri;
116 }
117 }
118
getSUBrrOpcode(bool IsLP64)119 static unsigned getSUBrrOpcode(bool IsLP64) {
120 return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
121 }
122
getADDrrOpcode(bool IsLP64)123 static unsigned getADDrrOpcode(bool IsLP64) {
124 return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
125 }
126
getANDriOpcode(bool IsLP64,int64_t Imm)127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128 if (IsLP64) {
129 if (isInt<8>(Imm))
130 return X86::AND64ri8;
131 return X86::AND64ri32;
132 }
133 if (isInt<8>(Imm))
134 return X86::AND32ri8;
135 return X86::AND32ri;
136 }
137
getLEArOpcode(bool IsLP64)138 static unsigned getLEArOpcode(bool IsLP64) {
139 return IsLP64 ? X86::LEA64r : X86::LEA32r;
140 }
141
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const X86RegisterInfo * TRI,bool Is64Bit)145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146 MachineBasicBlock::iterator &MBBI,
147 const X86RegisterInfo *TRI,
148 bool Is64Bit) {
149 const MachineFunction *MF = MBB.getParent();
150 if (MF->callsEHReturn())
151 return 0;
152
153 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
154
155 if (MBBI == MBB.end())
156 return 0;
157
158 switch (MBBI->getOpcode()) {
159 default: return 0;
160 case TargetOpcode::PATCHABLE_RET:
161 case X86::RET:
162 case X86::RETL:
163 case X86::RETQ:
164 case X86::RETIL:
165 case X86::RETIQ:
166 case X86::TCRETURNdi:
167 case X86::TCRETURNri:
168 case X86::TCRETURNmi:
169 case X86::TCRETURNdi64:
170 case X86::TCRETURNri64:
171 case X86::TCRETURNmi64:
172 case X86::EH_RETURN:
173 case X86::EH_RETURN64: {
174 SmallSet<uint16_t, 8> Uses;
175 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176 MachineOperand &MO = MBBI->getOperand(i);
177 if (!MO.isReg() || MO.isDef())
178 continue;
179 Register Reg = MO.getReg();
180 if (!Reg)
181 continue;
182 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183 Uses.insert(*AI);
184 }
185
186 for (auto CS : AvailableRegs)
187 if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188 CS != X86::ESP)
189 return CS;
190 }
191 }
192
193 return 0;
194 }
195
isEAXLiveIn(MachineBasicBlock & MBB)196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197 for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198 unsigned Reg = RegMask.PhysReg;
199
200 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201 Reg == X86::AH || Reg == X86::AL)
202 return true;
203 }
204
205 return false;
206 }
207
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214 for (const MachineInstr &MI : MBB.terminators()) {
215 bool BreakNext = false;
216 for (const MachineOperand &MO : MI.operands()) {
217 if (!MO.isReg())
218 continue;
219 Register Reg = MO.getReg();
220 if (Reg != X86::EFLAGS)
221 continue;
222
223 // This terminator needs an eflags that is not defined
224 // by a previous another terminator:
225 // EFLAGS is live-in of the region composed by the terminators.
226 if (!MO.isDef())
227 return true;
228 // This terminator defines the eflags, i.e., we don't need to preserve it.
229 // However, we still need to check this specific terminator does not
230 // read a live-in value.
231 BreakNext = true;
232 }
233 // We found a definition of the eflags, no need to preserve them.
234 if (BreakNext)
235 return false;
236 }
237
238 // None of the terminators use or define the eflags.
239 // Check if they are live-out, that would imply we need to preserve them.
240 for (const MachineBasicBlock *Succ : MBB.successors())
241 if (Succ->isLiveIn(X86::EFLAGS))
242 return true;
243
244 return false;
245 }
246
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & DL,int64_t NumBytes,bool InEpilogue) const249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250 MachineBasicBlock::iterator &MBBI,
251 const DebugLoc &DL,
252 int64_t NumBytes, bool InEpilogue) const {
253 bool isSub = NumBytes < 0;
254 uint64_t Offset = isSub ? -NumBytes : NumBytes;
255 MachineInstr::MIFlag Flag =
256 isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
257
258 uint64_t Chunk = (1LL << 31) - 1;
259
260 if (Offset > Chunk) {
261 // Rather than emit a long series of instructions for large offsets,
262 // load the offset into a register and do one sub/add
263 unsigned Reg = 0;
264 unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265
266 if (isSub && !isEAXLiveIn(MBB))
267 Reg = Rax;
268 else
269 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
270
271 unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272 unsigned AddSubRROpc =
273 isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274 if (Reg) {
275 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276 .addImm(Offset)
277 .setMIFlag(Flag);
278 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279 .addReg(StackPtr)
280 .addReg(Reg);
281 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282 return;
283 } else if (Offset > 8 * Chunk) {
284 // If we would need more than 8 add or sub instructions (a >16GB stack
285 // frame), it's worth spilling RAX to materialize this immediate.
286 // pushq %rax
287 // movabsq +-$Offset+-SlotSize, %rax
288 // addq %rsp, %rax
289 // xchg %rax, (%rsp)
290 // movq (%rsp), %rsp
291 assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293 .addReg(Rax, RegState::Kill)
294 .setMIFlag(Flag);
295 // Subtract is not commutative, so negate the offset and always use add.
296 // Subtract 8 less and add 8 more to account for the PUSH we just did.
297 if (isSub)
298 Offset = -(Offset - SlotSize);
299 else
300 Offset = Offset + SlotSize;
301 BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302 .addImm(Offset)
303 .setMIFlag(Flag);
304 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305 .addReg(Rax)
306 .addReg(StackPtr);
307 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308 // Exchange the new SP in RAX with the top of the stack.
309 addRegOffset(
310 BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311 StackPtr, false, 0);
312 // Load new SP from the top of the stack into RSP.
313 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314 StackPtr, false, 0);
315 return;
316 }
317 }
318
319 while (Offset) {
320 uint64_t ThisVal = std::min(Offset, Chunk);
321 if (ThisVal == SlotSize) {
322 // Use push / pop for slot sized adjustments as a size optimization. We
323 // need to find a dead register when using pop.
324 unsigned Reg = isSub
325 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327 if (Reg) {
328 unsigned Opc = isSub
329 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330 : (Is64Bit ? X86::POP64r : X86::POP32r);
331 BuildMI(MBB, MBBI, DL, TII.get(Opc))
332 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333 .setMIFlag(Flag);
334 Offset -= ThisVal;
335 continue;
336 }
337 }
338
339 BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340 .setMIFlag(Flag);
341
342 Offset -= ThisVal;
343 }
344 }
345
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348 const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349 assert(Offset != 0 && "zero offset stack adjustment requested");
350
351 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352 // is tricky.
353 bool UseLEA;
354 if (!InEpilogue) {
355 // Check if inserting the prologue at the beginning
356 // of MBB would require to use LEA operations.
357 // We need to use LEA operations if EFLAGS is live in, because
358 // it means an instruction will read it before it gets defined.
359 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360 } else {
361 // If we can use LEA for SP but we shouldn't, check that none
362 // of the terminators uses the eflags. Otherwise we will insert
363 // a ADD that will redefine the eflags and break the condition.
364 // Alternatively, we could move the ADD, but this may not be possible
365 // and is an optimization anyway.
366 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367 if (UseLEA && !STI.useLeaForSP())
368 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369 // If that assert breaks, that means we do not do the right thing
370 // in canUseAsEpilogue.
371 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372 "We shouldn't have allowed this insertion point");
373 }
374
375 MachineInstrBuilder MI;
376 if (UseLEA) {
377 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378 TII.get(getLEArOpcode(Uses64BitFramePtr)),
379 StackPtr),
380 StackPtr, false, Offset);
381 } else {
382 bool IsSub = Offset < 0;
383 uint64_t AbsOffset = IsSub ? -Offset : Offset;
384 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387 .addReg(StackPtr)
388 .addImm(AbsOffset);
389 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
390 }
391 return MI;
392 }
393
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395 MachineBasicBlock::iterator &MBBI,
396 bool doMergeWithPrevious) const {
397 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398 (!doMergeWithPrevious && MBBI == MBB.end()))
399 return 0;
400
401 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
402
403 PI = skipDebugInstructionsBackward(PI, MBB.begin());
404 // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405 // instruction, and that there are no DBG_VALUE or other instructions between
406 // ADD/SUB/LEA and its corresponding CFI instruction.
407 /* TODO: Add support for the case where there are multiple CFI instructions
408 below the ADD/SUB/LEA, e.g.:
409 ...
410 add
411 cfi_def_cfa_offset
412 cfi_offset
413 ...
414 */
415 if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416 PI = std::prev(PI);
417
418 unsigned Opc = PI->getOpcode();
419 int Offset = 0;
420
421 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423 PI->getOperand(0).getReg() == StackPtr){
424 assert(PI->getOperand(1).getReg() == StackPtr);
425 Offset = PI->getOperand(2).getImm();
426 } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427 PI->getOperand(0).getReg() == StackPtr &&
428 PI->getOperand(1).getReg() == StackPtr &&
429 PI->getOperand(2).getImm() == 1 &&
430 PI->getOperand(3).getReg() == X86::NoRegister &&
431 PI->getOperand(5).getReg() == X86::NoRegister) {
432 // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433 Offset = PI->getOperand(4).getImm();
434 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436 PI->getOperand(0).getReg() == StackPtr) {
437 assert(PI->getOperand(1).getReg() == StackPtr);
438 Offset = -PI->getOperand(2).getImm();
439 } else
440 return 0;
441
442 PI = MBB.erase(PI);
443 if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444 if (!doMergeWithPrevious)
445 MBBI = skipDebugInstructionsForward(PI, MBB.end());
446
447 return Offset;
448 }
449
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst) const450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451 MachineBasicBlock::iterator MBBI,
452 const DebugLoc &DL,
453 const MCCFIInstruction &CFIInst) const {
454 MachineFunction &MF = *MBB.getParent();
455 unsigned CFIIndex = MF.addFrameInst(CFIInst);
456 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457 .addCFIIndex(CFIIndex);
458 }
459
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL) const460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462 const DebugLoc &DL) const {
463 MachineFunction &MF = *MBB.getParent();
464 MachineFrameInfo &MFI = MF.getFrameInfo();
465 MachineModuleInfo &MMI = MF.getMMI();
466 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
467
468 // Add callee saved registers to move list.
469 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470 if (CSI.empty()) return;
471
472 // Calculate offsets.
473 for (std::vector<CalleeSavedInfo>::const_iterator
474 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475 int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476 unsigned Reg = I->getReg();
477
478 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479 BuildCFI(MBB, MBBI, DL,
480 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
481 }
482 }
483
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485 MachineBasicBlock &MBB,
486 MachineBasicBlock::iterator MBBI,
487 const DebugLoc &DL, bool InProlog) const {
488 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489 if (STI.isTargetWindowsCoreCLR()) {
490 if (InProlog) {
491 emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492 } else {
493 emitStackProbeInline(MF, MBB, MBBI, DL, false);
494 }
495 } else {
496 emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
497 }
498 }
499
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501 MachineBasicBlock &PrologMBB) const {
502 const StringRef ChkStkStubSymbol = "__chkstk_stub";
503 MachineInstr *ChkStkStub = nullptr;
504
505 for (MachineInstr &MI : PrologMBB) {
506 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508 ChkStkStub = &MI;
509 break;
510 }
511 }
512
513 if (ChkStkStub != nullptr) {
514 assert(!ChkStkStub->isBundled() &&
515 "Not expecting bundled instructions here");
516 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517 assert(std::prev(MBBI) == ChkStkStub &&
518 "MBBI expected after __chkstk_stub.");
519 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521 ChkStkStub->eraseFromParent();
522 }
523 }
524
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526 MachineBasicBlock &MBB,
527 MachineBasicBlock::iterator MBBI,
528 const DebugLoc &DL,
529 bool InProlog) const {
530 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531 assert(STI.is64Bit() && "different expansion needed for 32 bit");
532 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533 const TargetInstrInfo &TII = *STI.getInstrInfo();
534 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
535
536 // RAX contains the number of bytes of desired stack adjustment.
537 // The handling here assumes this value has already been updated so as to
538 // maintain stack alignment.
539 //
540 // We need to exit with RSP modified by this amount and execute suitable
541 // page touches to notify the OS that we're growing the stack responsibly.
542 // All stack probing must be done without modifying RSP.
543 //
544 // MBB:
545 // SizeReg = RAX;
546 // ZeroReg = 0
547 // CopyReg = RSP
548 // Flags, TestReg = CopyReg - SizeReg
549 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550 // LimitReg = gs magic thread env access
551 // if FinalReg >= LimitReg goto ContinueMBB
552 // RoundBB:
553 // RoundReg = page address of FinalReg
554 // LoopMBB:
555 // LoopReg = PHI(LimitReg,ProbeReg)
556 // ProbeReg = LoopReg - PageSize
557 // [ProbeReg] = 0
558 // if (ProbeReg > RoundReg) goto LoopMBB
559 // ContinueMBB:
560 // RSP = RSP - RAX
561 // [rest of original MBB]
562
563 // Set up the new basic blocks
564 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567
568 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569 MF.insert(MBBIter, RoundMBB);
570 MF.insert(MBBIter, LoopMBB);
571 MF.insert(MBBIter, ContinueMBB);
572
573 // Split MBB and move the tail portion down to ContinueMBB.
574 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
577
578 // Some useful constants
579 const int64_t ThreadEnvironmentStackLimit = 0x10;
580 const int64_t PageSize = 0x1000;
581 const int64_t PageMask = ~(PageSize - 1);
582
583 // Registers we need. For the normal case we use virtual
584 // registers. For the prolog expansion we use RAX, RCX and RDX.
585 MachineRegisterInfo &MRI = MF.getRegInfo();
586 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587 const Register SizeReg = InProlog ? X86::RAX
588 : MRI.createVirtualRegister(RegClass),
589 ZeroReg = InProlog ? X86::RCX
590 : MRI.createVirtualRegister(RegClass),
591 CopyReg = InProlog ? X86::RDX
592 : MRI.createVirtualRegister(RegClass),
593 TestReg = InProlog ? X86::RDX
594 : MRI.createVirtualRegister(RegClass),
595 FinalReg = InProlog ? X86::RDX
596 : MRI.createVirtualRegister(RegClass),
597 RoundedReg = InProlog ? X86::RDX
598 : MRI.createVirtualRegister(RegClass),
599 LimitReg = InProlog ? X86::RCX
600 : MRI.createVirtualRegister(RegClass),
601 JoinReg = InProlog ? X86::RCX
602 : MRI.createVirtualRegister(RegClass),
603 ProbeReg = InProlog ? X86::RCX
604 : MRI.createVirtualRegister(RegClass);
605
606 // SP-relative offsets where we can save RCX and RDX.
607 int64_t RCXShadowSlot = 0;
608 int64_t RDXShadowSlot = 0;
609
610 // If inlining in the prolog, save RCX and RDX.
611 if (InProlog) {
612 // Compute the offsets. We need to account for things already
613 // pushed onto the stack at this point: return address, frame
614 // pointer (if used), and callee saves.
615 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617 const bool HasFP = hasFP(MF);
618
619 // Check if we need to spill RCX and/or RDX.
620 // Here we assume that no earlier prologue instruction changes RCX and/or
621 // RDX, so checking the block live-ins is enough.
622 const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623 const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624 int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625 // Assign the initial slot to both registers, then change RDX's slot if both
626 // need to be spilled.
627 if (IsRCXLiveIn)
628 RCXShadowSlot = InitSlot;
629 if (IsRDXLiveIn)
630 RDXShadowSlot = InitSlot;
631 if (IsRDXLiveIn && IsRCXLiveIn)
632 RDXShadowSlot += 8;
633 // Emit the saves if needed.
634 if (IsRCXLiveIn)
635 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636 RCXShadowSlot)
637 .addReg(X86::RCX);
638 if (IsRDXLiveIn)
639 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640 RDXShadowSlot)
641 .addReg(X86::RDX);
642 } else {
643 // Not in the prolog. Copy RAX to a virtual reg.
644 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
645 }
646
647 // Add code to MBB to check for overflow and set the new target stack pointer
648 // to zero if so.
649 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650 .addReg(ZeroReg, RegState::Undef)
651 .addReg(ZeroReg, RegState::Undef);
652 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654 .addReg(CopyReg)
655 .addReg(SizeReg);
656 BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657 .addReg(TestReg)
658 .addReg(ZeroReg)
659 .addImm(X86::COND_B);
660
661 // FinalReg now holds final stack pointer value, or zero if
662 // allocation would overflow. Compare against the current stack
663 // limit from the thread environment block. Note this limit is the
664 // lowest touched page on the stack, not the point at which the OS
665 // will cause an overflow exception, so this is just an optimization
666 // to avoid unnecessarily touching pages that are below the current
667 // SP but already committed to the stack by the OS.
668 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669 .addReg(0)
670 .addImm(1)
671 .addReg(0)
672 .addImm(ThreadEnvironmentStackLimit)
673 .addReg(X86::GS);
674 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675 // Jump if the desired stack pointer is at or above the stack limit.
676 BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
677
678 // Add code to roundMBB to round the final stack pointer to a page boundary.
679 RoundMBB->addLiveIn(FinalReg);
680 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681 .addReg(FinalReg)
682 .addImm(PageMask);
683 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684
685 // LimitReg now holds the current stack limit, RoundedReg page-rounded
686 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687 // and probe until we reach RoundedReg.
688 if (!InProlog) {
689 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690 .addReg(LimitReg)
691 .addMBB(RoundMBB)
692 .addReg(ProbeReg)
693 .addMBB(LoopMBB);
694 }
695
696 LoopMBB->addLiveIn(JoinReg);
697 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698 false, -PageSize);
699
700 // Probe by storing a byte onto the stack.
701 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702 .addReg(ProbeReg)
703 .addImm(1)
704 .addReg(0)
705 .addImm(0)
706 .addReg(0)
707 .addImm(0);
708
709 LoopMBB->addLiveIn(RoundedReg);
710 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711 .addReg(RoundedReg)
712 .addReg(ProbeReg);
713 BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
714
715 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716
717 // If in prolog, restore RDX and RCX.
718 if (InProlog) {
719 if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721 TII.get(X86::MOV64rm), X86::RCX),
722 X86::RSP, false, RCXShadowSlot);
723 if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725 TII.get(X86::MOV64rm), X86::RDX),
726 X86::RSP, false, RDXShadowSlot);
727 }
728
729 // Now that the probing is done, add code to continueMBB to update
730 // the stack pointer for real.
731 ContinueMBB->addLiveIn(SizeReg);
732 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733 .addReg(X86::RSP)
734 .addReg(SizeReg);
735
736 // Add the control flow edges we need.
737 MBB.addSuccessor(ContinueMBB);
738 MBB.addSuccessor(RoundMBB);
739 RoundMBB->addSuccessor(LoopMBB);
740 LoopMBB->addSuccessor(ContinueMBB);
741 LoopMBB->addSuccessor(LoopMBB);
742
743 // Mark all the instructions added to the prolog as frame setup.
744 if (InProlog) {
745 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747 }
748 for (MachineInstr &MI : *RoundMBB) {
749 MI.setFlag(MachineInstr::FrameSetup);
750 }
751 for (MachineInstr &MI : *LoopMBB) {
752 MI.setFlag(MachineInstr::FrameSetup);
753 }
754 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755 CMBBI != ContinueMBBI; ++CMBBI) {
756 CMBBI->setFlag(MachineInstr::FrameSetup);
757 }
758 }
759 }
760
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762 MachineBasicBlock &MBB,
763 MachineBasicBlock::iterator MBBI,
764 const DebugLoc &DL,
765 bool InProlog) const {
766 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767
768 // FIXME: Add retpoline support and remove this.
769 if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770 report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771 "code model and retpoline not yet implemented.");
772
773 unsigned CallOp;
774 if (Is64Bit)
775 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776 else
777 CallOp = X86::CALLpcrel32;
778
779 StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780
781 MachineInstrBuilder CI;
782 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783
784 // All current stack probes take AX and SP as input, clobber flags, and
785 // preserve all registers. x86_64 probes leave RSP unmodified.
786 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787 // For the large code model, we have to call through a register. Use R11,
788 // as it is scratch in all supported calling conventions.
789 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792 } else {
793 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794 .addExternalSymbol(MF.createExternalSymbolName(Symbol));
795 }
796
797 unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798 unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799 CI.addReg(AX, RegState::Implicit)
800 .addReg(SP, RegState::Implicit)
801 .addReg(AX, RegState::Define | RegState::Implicit)
802 .addReg(SP, RegState::Define | RegState::Implicit)
803 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804
805 if (STI.isTargetWin64() || !STI.isOSWindows()) {
806 // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808 // themselves. They also does not clobber %rax so we can reuse it when
809 // adjusting %rsp.
810 // All other platforms do not specify a particular ABI for the stack probe
811 // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812 BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813 .addReg(SP)
814 .addReg(AX);
815 }
816
817 if (InProlog) {
818 // Apply the frame setup flag to all inserted instrs.
819 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
821 }
822 }
823
emitStackProbeInlineStub(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const824 void X86FrameLowering::emitStackProbeInlineStub(
825 MachineFunction &MF, MachineBasicBlock &MBB,
826 MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827
828 assert(InProlog && "ChkStkStub called outside prolog!");
829
830 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831 .addExternalSymbol("__chkstk_stub");
832 }
833
calculateSetFPREG(uint64_t SPAdjust)834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836 // and might require smaller successive adjustments.
837 const uint64_t Win64MaxSEHOffset = 128;
838 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840 return SEHFrameOffset & -16;
841 }
842
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out. Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848 const MachineFrameInfo &MFI = MF.getFrameInfo();
849 uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850 unsigned StackAlign = getStackAlignment();
851 if (MF.getFunction().hasFnAttribute("stackrealign")) {
852 if (MFI.hasCalls())
853 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854 else if (MaxAlign < SlotSize)
855 MaxAlign = SlotSize;
856 }
857 return MaxAlign;
858 }
859
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861 MachineBasicBlock::iterator MBBI,
862 const DebugLoc &DL, unsigned Reg,
863 uint64_t MaxAlign) const {
864 uint64_t Val = -MaxAlign;
865 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867 .addReg(Reg)
868 .addImm(Val)
869 .setMIFlag(MachineInstr::FrameSetup);
870
871 // The EFLAGS implicit def is dead.
872 MI->getOperand(3).setIsDead();
873 }
874
has128ByteRedZone(const MachineFunction & MF) const875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876 // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877 // clobbered by any interrupt handler.
878 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879 "MF used frame lowering for wrong subtarget");
880 const Function &Fn = MF.getFunction();
881 const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882 return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
883 }
884
885
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
890
891 /*
892 Here's a gist of what gets emitted:
893
894 ; Establish frame pointer, if needed
895 [if needs FP]
896 push %rbp
897 .cfi_def_cfa_offset 16
898 .cfi_offset %rbp, -16
899 .seh_pushreg %rpb
900 mov %rsp, %rbp
901 .cfi_def_cfa_register %rbp
902
903 ; Spill general-purpose registers
904 [for all callee-saved GPRs]
905 pushq %<reg>
906 [if not needs FP]
907 .cfi_def_cfa_offset (offset from RETADDR)
908 .seh_pushreg %<reg>
909
910 ; If the required stack alignment > default stack alignment
911 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
912 ; of unknown size in the stack frame.
913 [if stack needs re-alignment]
914 and $MASK, %rsp
915
916 ; Allocate space for locals
917 [if target is Windows and allocated space > 4096 bytes]
918 ; Windows needs special care for allocations larger
919 ; than one page.
920 mov $NNN, %rax
921 call ___chkstk_ms/___chkstk
922 sub %rax, %rsp
923 [else]
924 sub $NNN, %rsp
925
926 [if needs FP]
927 .seh_stackalloc (size of XMM spill slots)
928 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929 [else]
930 .seh_stackalloc NNN
931
932 ; Spill XMMs
933 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934 ; they may get spilled on any platform, if the current function
935 ; calls @llvm.eh.unwind.init
936 [if needs FP]
937 [for all callee-saved XMM registers]
938 movaps %<xmm reg>, -MMM(%rbp)
939 [for all callee-saved XMM registers]
940 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
942 [else]
943 [for all callee-saved XMM registers]
944 movaps %<xmm reg>, KKK(%rsp)
945 [for all callee-saved XMM registers]
946 .seh_savexmm %<xmm reg>, KKK
947
948 .seh_endprologue
949
950 [if needs base pointer]
951 mov %rsp, %rbx
952 [if needs to restore base pointer]
953 mov %rsp, -MMM(%rbp)
954
955 ; Emit CFI info
956 [if needs FP]
957 [for all callee-saved registers]
958 .cfi_offset %<reg>, (offset from %rbp)
959 [else]
960 .cfi_def_cfa_offset (offset from RETADDR)
961 [for all callee-saved registers]
962 .cfi_offset %<reg>, (offset from %rsp)
963
964 Notes:
965 - .seh directives are emitted only for Windows 64 ABI
966 - .cv_fpo directives are emitted on win32 when emitting CodeView
967 - .cfi directives are emitted for all other ABIs
968 - for 32-bit code, substitute %e?? registers for %r??
969 */
970
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const971 void X86FrameLowering::emitPrologue(MachineFunction &MF,
972 MachineBasicBlock &MBB) const {
973 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
974 "MF used frame lowering for wrong subtarget");
975 MachineBasicBlock::iterator MBBI = MBB.begin();
976 MachineFrameInfo &MFI = MF.getFrameInfo();
977 const Function &Fn = MF.getFunction();
978 MachineModuleInfo &MMI = MF.getMMI();
979 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
980 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
981 uint64_t StackSize = MFI.getStackSize(); // Number of bytes to allocate.
982 bool IsFunclet = MBB.isEHFuncletEntry();
983 EHPersonality Personality = EHPersonality::Unknown;
984 if (Fn.hasPersonalityFn())
985 Personality = classifyEHPersonality(Fn.getPersonalityFn());
986 bool FnHasClrFunclet =
987 MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
988 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
989 bool HasFP = hasFP(MF);
990 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
991 bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
992 // FIXME: Emit FPO data for EH funclets.
993 bool NeedsWinFPO =
994 !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
995 bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
996 bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
997 Register FramePtr = TRI->getFrameRegister(MF);
998 const Register MachineFramePtr =
999 STI.isTarget64BitILP32()
1000 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1001 Register BasePtr = TRI->getBaseRegister();
1002 bool HasWinCFI = false;
1003
1004 // Debug location must be unknown since the first debug location is used
1005 // to determine the end of the prologue.
1006 DebugLoc DL;
1007
1008 // Add RETADDR move area to callee saved frame size.
1009 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1010 if (TailCallReturnAddrDelta && IsWin64Prologue)
1011 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1012
1013 if (TailCallReturnAddrDelta < 0)
1014 X86FI->setCalleeSavedFrameSize(
1015 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1016
1017 bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1018 unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1019
1020 // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1021 // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1022 // stack alignment.
1023 if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1024 Fn.arg_size() == 2) {
1025 StackSize += 8;
1026 MFI.setStackSize(StackSize);
1027 emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1028 }
1029
1030 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1031 // function, and use up to 128 bytes of stack space, don't have a frame
1032 // pointer, calls, or dynamic alloca then we do not need to adjust the
1033 // stack pointer (we fit in the Red Zone). We also check that we don't
1034 // push and pop from the stack.
1035 if (has128ByteRedZone(MF) &&
1036 !TRI->needsStackRealignment(MF) &&
1037 !MFI.hasVarSizedObjects() && // No dynamic alloca.
1038 !MFI.adjustsStack() && // No calls.
1039 !UseStackProbe && // No stack probes.
1040 !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1041 !MF.shouldSplitStack()) { // Regular stack
1042 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1043 if (HasFP) MinSize += SlotSize;
1044 X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1045 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1046 MFI.setStackSize(StackSize);
1047 }
1048
1049 // Insert stack pointer adjustment for later moving of return addr. Only
1050 // applies to tail call optimized functions where the callee argument stack
1051 // size is bigger than the callers.
1052 if (TailCallReturnAddrDelta < 0) {
1053 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1054 /*InEpilogue=*/false)
1055 .setMIFlag(MachineInstr::FrameSetup);
1056 }
1057
1058 // Mapping for machine moves:
1059 //
1060 // DST: VirtualFP AND
1061 // SRC: VirtualFP => DW_CFA_def_cfa_offset
1062 // ELSE => DW_CFA_def_cfa
1063 //
1064 // SRC: VirtualFP AND
1065 // DST: Register => DW_CFA_def_cfa_register
1066 //
1067 // ELSE
1068 // OFFSET < 0 => DW_CFA_offset_extended_sf
1069 // REG < 64 => DW_CFA_offset + Reg
1070 // ELSE => DW_CFA_offset_extended
1071
1072 uint64_t NumBytes = 0;
1073 int stackGrowth = -SlotSize;
1074
1075 // Find the funclet establisher parameter
1076 Register Establisher = X86::NoRegister;
1077 if (IsClrFunclet)
1078 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1079 else if (IsFunclet)
1080 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1081
1082 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1083 // Immediately spill establisher into the home slot.
1084 // The runtime cares about this.
1085 // MOV64mr %rdx, 16(%rsp)
1086 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1087 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1088 .addReg(Establisher)
1089 .setMIFlag(MachineInstr::FrameSetup);
1090 MBB.addLiveIn(Establisher);
1091 }
1092
1093 if (HasFP) {
1094 assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1095
1096 // Calculate required stack adjustment.
1097 uint64_t FrameSize = StackSize - SlotSize;
1098 // If required, include space for extra hidden slot for stashing base pointer.
1099 if (X86FI->getRestoreBasePointer())
1100 FrameSize += SlotSize;
1101
1102 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1103
1104 // Callee-saved registers are pushed on stack before the stack is realigned.
1105 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1106 NumBytes = alignTo(NumBytes, MaxAlign);
1107
1108 // Save EBP/RBP into the appropriate stack slot.
1109 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1110 .addReg(MachineFramePtr, RegState::Kill)
1111 .setMIFlag(MachineInstr::FrameSetup);
1112
1113 if (NeedsDwarfCFI) {
1114 // Mark the place where EBP/RBP was saved.
1115 // Define the current CFA rule to use the provided offset.
1116 assert(StackSize);
1117 BuildCFI(MBB, MBBI, DL,
1118 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1119
1120 // Change the rule for the FramePtr to be an "offset" rule.
1121 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1122 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1123 nullptr, DwarfFramePtr, 2 * stackGrowth));
1124 }
1125
1126 if (NeedsWinCFI) {
1127 HasWinCFI = true;
1128 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1129 .addImm(FramePtr)
1130 .setMIFlag(MachineInstr::FrameSetup);
1131 }
1132
1133 if (!IsWin64Prologue && !IsFunclet) {
1134 // Update EBP with the new base value.
1135 BuildMI(MBB, MBBI, DL,
1136 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1137 FramePtr)
1138 .addReg(StackPtr)
1139 .setMIFlag(MachineInstr::FrameSetup);
1140
1141 if (NeedsDwarfCFI) {
1142 // Mark effective beginning of when frame pointer becomes valid.
1143 // Define the current CFA to use the EBP/RBP register.
1144 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1145 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1146 nullptr, DwarfFramePtr));
1147 }
1148
1149 if (NeedsWinFPO) {
1150 // .cv_fpo_setframe $FramePtr
1151 HasWinCFI = true;
1152 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1153 .addImm(FramePtr)
1154 .addImm(0)
1155 .setMIFlag(MachineInstr::FrameSetup);
1156 }
1157 }
1158 } else {
1159 assert(!IsFunclet && "funclets without FPs not yet implemented");
1160 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1161 }
1162
1163 // Update the offset adjustment, which is mainly used by codeview to translate
1164 // from ESP to VFRAME relative local variable offsets.
1165 if (!IsFunclet) {
1166 if (HasFP && TRI->needsStackRealignment(MF))
1167 MFI.setOffsetAdjustment(-NumBytes);
1168 else
1169 MFI.setOffsetAdjustment(-StackSize);
1170 }
1171
1172 // For EH funclets, only allocate enough space for outgoing calls. Save the
1173 // NumBytes value that we would've used for the parent frame.
1174 unsigned ParentFrameNumBytes = NumBytes;
1175 if (IsFunclet)
1176 NumBytes = getWinEHFuncletFrameSize(MF);
1177
1178 // Skip the callee-saved push instructions.
1179 bool PushedRegs = false;
1180 int StackOffset = 2 * stackGrowth;
1181
1182 while (MBBI != MBB.end() &&
1183 MBBI->getFlag(MachineInstr::FrameSetup) &&
1184 (MBBI->getOpcode() == X86::PUSH32r ||
1185 MBBI->getOpcode() == X86::PUSH64r)) {
1186 PushedRegs = true;
1187 Register Reg = MBBI->getOperand(0).getReg();
1188 ++MBBI;
1189
1190 if (!HasFP && NeedsDwarfCFI) {
1191 // Mark callee-saved push instruction.
1192 // Define the current CFA rule to use the provided offset.
1193 assert(StackSize);
1194 BuildCFI(MBB, MBBI, DL,
1195 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1196 StackOffset += stackGrowth;
1197 }
1198
1199 if (NeedsWinCFI) {
1200 HasWinCFI = true;
1201 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1202 .addImm(Reg)
1203 .setMIFlag(MachineInstr::FrameSetup);
1204 }
1205 }
1206
1207 // Realign stack after we pushed callee-saved registers (so that we'll be
1208 // able to calculate their offsets from the frame pointer).
1209 // Don't do this for Win64, it needs to realign the stack after the prologue.
1210 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1211 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1212 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1213
1214 if (NeedsWinCFI) {
1215 HasWinCFI = true;
1216 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1217 .addImm(MaxAlign)
1218 .setMIFlag(MachineInstr::FrameSetup);
1219 }
1220 }
1221
1222 // If there is an SUB32ri of ESP immediately before this instruction, merge
1223 // the two. This can be the case when tail call elimination is enabled and
1224 // the callee has more arguments then the caller.
1225 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1226
1227 // Adjust stack pointer: ESP -= numbytes.
1228
1229 // Windows and cygwin/mingw require a prologue helper routine when allocating
1230 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1231 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1232 // stack and adjust the stack pointer in one go. The 64-bit version of
1233 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1234 // responsible for adjusting the stack pointer. Touching the stack at 4K
1235 // increments is necessary to ensure that the guard pages used by the OS
1236 // virtual memory manager are allocated in correct sequence.
1237 uint64_t AlignedNumBytes = NumBytes;
1238 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1239 AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1240 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1241 assert(!X86FI->getUsesRedZone() &&
1242 "The Red Zone is not accounted for in stack probes");
1243
1244 // Check whether EAX is livein for this block.
1245 bool isEAXAlive = isEAXLiveIn(MBB);
1246
1247 if (isEAXAlive) {
1248 if (Is64Bit) {
1249 // Save RAX
1250 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1251 .addReg(X86::RAX, RegState::Kill)
1252 .setMIFlag(MachineInstr::FrameSetup);
1253 } else {
1254 // Save EAX
1255 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1256 .addReg(X86::EAX, RegState::Kill)
1257 .setMIFlag(MachineInstr::FrameSetup);
1258 }
1259 }
1260
1261 if (Is64Bit) {
1262 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1263 // Function prologue is responsible for adjusting the stack pointer.
1264 int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1265 if (isUInt<32>(Alloc)) {
1266 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1267 .addImm(Alloc)
1268 .setMIFlag(MachineInstr::FrameSetup);
1269 } else if (isInt<32>(Alloc)) {
1270 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1271 .addImm(Alloc)
1272 .setMIFlag(MachineInstr::FrameSetup);
1273 } else {
1274 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1275 .addImm(Alloc)
1276 .setMIFlag(MachineInstr::FrameSetup);
1277 }
1278 } else {
1279 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1280 // We'll also use 4 already allocated bytes for EAX.
1281 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1282 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1283 .setMIFlag(MachineInstr::FrameSetup);
1284 }
1285
1286 // Call __chkstk, __chkstk_ms, or __alloca.
1287 emitStackProbe(MF, MBB, MBBI, DL, true);
1288
1289 if (isEAXAlive) {
1290 // Restore RAX/EAX
1291 MachineInstr *MI;
1292 if (Is64Bit)
1293 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1294 StackPtr, false, NumBytes - 8);
1295 else
1296 MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1297 StackPtr, false, NumBytes - 4);
1298 MI->setFlag(MachineInstr::FrameSetup);
1299 MBB.insert(MBBI, MI);
1300 }
1301 } else if (NumBytes) {
1302 emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1303 }
1304
1305 if (NeedsWinCFI && NumBytes) {
1306 HasWinCFI = true;
1307 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1308 .addImm(NumBytes)
1309 .setMIFlag(MachineInstr::FrameSetup);
1310 }
1311
1312 int SEHFrameOffset = 0;
1313 unsigned SPOrEstablisher;
1314 if (IsFunclet) {
1315 if (IsClrFunclet) {
1316 // The establisher parameter passed to a CLR funclet is actually a pointer
1317 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1318 // to find the root function establisher frame by loading the PSPSym from
1319 // the intermediate frame.
1320 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1321 MachinePointerInfo NoInfo;
1322 MBB.addLiveIn(Establisher);
1323 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1324 Establisher, false, PSPSlotOffset)
1325 .addMemOperand(MF.getMachineMemOperand(
1326 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1327 ;
1328 // Save the root establisher back into the current funclet's (mostly
1329 // empty) frame, in case a sub-funclet or the GC needs it.
1330 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1331 false, PSPSlotOffset)
1332 .addReg(Establisher)
1333 .addMemOperand(
1334 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1335 MachineMemOperand::MOVolatile,
1336 SlotSize, SlotSize));
1337 }
1338 SPOrEstablisher = Establisher;
1339 } else {
1340 SPOrEstablisher = StackPtr;
1341 }
1342
1343 if (IsWin64Prologue && HasFP) {
1344 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1345 // this calculation on the incoming establisher, which holds the value of
1346 // RSP from the parent frame at the end of the prologue.
1347 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1348 if (SEHFrameOffset)
1349 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1350 SPOrEstablisher, false, SEHFrameOffset);
1351 else
1352 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1353 .addReg(SPOrEstablisher);
1354
1355 // If this is not a funclet, emit the CFI describing our frame pointer.
1356 if (NeedsWinCFI && !IsFunclet) {
1357 assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1358 HasWinCFI = true;
1359 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1360 .addImm(FramePtr)
1361 .addImm(SEHFrameOffset)
1362 .setMIFlag(MachineInstr::FrameSetup);
1363 if (isAsynchronousEHPersonality(Personality))
1364 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1365 }
1366 } else if (IsFunclet && STI.is32Bit()) {
1367 // Reset EBP / ESI to something good for funclets.
1368 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1369 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1370 // into the registration node so that the runtime will restore it for us.
1371 if (!MBB.isCleanupFuncletEntry()) {
1372 assert(Personality == EHPersonality::MSVC_CXX);
1373 unsigned FrameReg;
1374 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1375 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1376 // ESP is the first field, so no extra displacement is needed.
1377 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1378 false, EHRegOffset)
1379 .addReg(X86::ESP);
1380 }
1381 }
1382
1383 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1384 const MachineInstr &FrameInstr = *MBBI;
1385 ++MBBI;
1386
1387 if (NeedsWinCFI) {
1388 int FI;
1389 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1390 if (X86::FR64RegClass.contains(Reg)) {
1391 int Offset;
1392 unsigned IgnoredFrameReg;
1393 if (IsWin64Prologue && IsFunclet)
1394 Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1395 else
1396 Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1397 SEHFrameOffset;
1398
1399 HasWinCFI = true;
1400 assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1401 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1402 .addImm(Reg)
1403 .addImm(Offset)
1404 .setMIFlag(MachineInstr::FrameSetup);
1405 }
1406 }
1407 }
1408 }
1409
1410 if (NeedsWinCFI && HasWinCFI)
1411 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1412 .setMIFlag(MachineInstr::FrameSetup);
1413
1414 if (FnHasClrFunclet && !IsFunclet) {
1415 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1416 // immediately after the prolog) into the PSPSlot so that funclets
1417 // and the GC can recover it.
1418 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1419 auto PSPInfo = MachinePointerInfo::getFixedStack(
1420 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1421 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1422 PSPSlotOffset)
1423 .addReg(StackPtr)
1424 .addMemOperand(MF.getMachineMemOperand(
1425 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1426 SlotSize, SlotSize));
1427 }
1428
1429 // Realign stack after we spilled callee-saved registers (so that we'll be
1430 // able to calculate their offsets from the frame pointer).
1431 // Win64 requires aligning the stack after the prologue.
1432 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1433 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1434 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1435 }
1436
1437 // We already dealt with stack realignment and funclets above.
1438 if (IsFunclet && STI.is32Bit())
1439 return;
1440
1441 // If we need a base pointer, set it up here. It's whatever the value
1442 // of the stack pointer is at this point. Any variable size objects
1443 // will be allocated after this, so we can still use the base pointer
1444 // to reference locals.
1445 if (TRI->hasBasePointer(MF)) {
1446 // Update the base pointer with the current stack pointer.
1447 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1448 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1449 .addReg(SPOrEstablisher)
1450 .setMIFlag(MachineInstr::FrameSetup);
1451 if (X86FI->getRestoreBasePointer()) {
1452 // Stash value of base pointer. Saving RSP instead of EBP shortens
1453 // dependence chain. Used by SjLj EH.
1454 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1455 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1456 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1457 .addReg(SPOrEstablisher)
1458 .setMIFlag(MachineInstr::FrameSetup);
1459 }
1460
1461 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1462 // Stash the value of the frame pointer relative to the base pointer for
1463 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1464 // it recovers the frame pointer from the base pointer rather than the
1465 // other way around.
1466 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1467 unsigned UsedReg;
1468 int Offset =
1469 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1470 assert(UsedReg == BasePtr);
1471 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1472 .addReg(FramePtr)
1473 .setMIFlag(MachineInstr::FrameSetup);
1474 }
1475 }
1476
1477 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1478 // Mark end of stack pointer adjustment.
1479 if (!HasFP && NumBytes) {
1480 // Define the current CFA rule to use the provided offset.
1481 assert(StackSize);
1482 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1483 nullptr, -StackSize + stackGrowth));
1484 }
1485
1486 // Emit DWARF info specifying the offsets of the callee-saved registers.
1487 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1488 }
1489
1490 // X86 Interrupt handling function cannot assume anything about the direction
1491 // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1492 // in each prologue of interrupt handler function.
1493 //
1494 // FIXME: Create "cld" instruction only in these cases:
1495 // 1. The interrupt handling function uses any of the "rep" instructions.
1496 // 2. Interrupt handling function calls another function.
1497 //
1498 if (Fn.getCallingConv() == CallingConv::X86_INTR)
1499 BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1500 .setMIFlag(MachineInstr::FrameSetup);
1501
1502 // At this point we know if the function has WinCFI or not.
1503 MF.setHasWinCFI(HasWinCFI);
1504 }
1505
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1506 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1507 const MachineFunction &MF) const {
1508 // We can't use LEA instructions for adjusting the stack pointer if we don't
1509 // have a frame pointer in the Win64 ABI. Only ADD instructions may be used
1510 // to deallocate the stack.
1511 // This means that we can use LEA for SP in two situations:
1512 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1513 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1514 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1515 }
1516
isFuncletReturnInstr(MachineInstr & MI)1517 static bool isFuncletReturnInstr(MachineInstr &MI) {
1518 switch (MI.getOpcode()) {
1519 case X86::CATCHRET:
1520 case X86::CLEANUPRET:
1521 return true;
1522 default:
1523 return false;
1524 }
1525 llvm_unreachable("impossible");
1526 }
1527
1528 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1529 // stack. It holds a pointer to the bottom of the root function frame. The
1530 // establisher frame pointer passed to a nested funclet may point to the
1531 // (mostly empty) frame of its parent funclet, but it will need to find
1532 // the frame of the root function to access locals. To facilitate this,
1533 // every funclet copies the pointer to the bottom of the root function
1534 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1535 // same offset for the PSPSym in the root function frame that's used in the
1536 // funclets' frames allows each funclet to dynamically accept any ancestor
1537 // frame as its establisher argument (the runtime doesn't guarantee the
1538 // immediate parent for some reason lost to history), and also allows the GC,
1539 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1540 // frame with only a single offset reported for the entire method.
1541 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1542 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1543 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1544 unsigned SPReg;
1545 int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1546 /*IgnoreSPUpdates*/ true);
1547 assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1548 return static_cast<unsigned>(Offset);
1549 }
1550
1551 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1552 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1553 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1554 // This is the size of the pushed CSRs.
1555 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1556 // This is the size of callee saved XMMs.
1557 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1558 unsigned XMMSize = WinEHXMMSlotInfo.size() *
1559 TRI->getSpillSize(X86::VR128RegClass);
1560 // This is the amount of stack a funclet needs to allocate.
1561 unsigned UsedSize;
1562 EHPersonality Personality =
1563 classifyEHPersonality(MF.getFunction().getPersonalityFn());
1564 if (Personality == EHPersonality::CoreCLR) {
1565 // CLR funclets need to hold enough space to include the PSPSym, at the
1566 // same offset from the stack pointer (immediately after the prolog) as it
1567 // resides at in the main function.
1568 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1569 } else {
1570 // Other funclets just need enough stack for outgoing call arguments.
1571 UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1572 }
1573 // RBP is not included in the callee saved register block. After pushing RBP,
1574 // everything is 16 byte aligned. Everything we allocate before an outgoing
1575 // call must also be 16 byte aligned.
1576 unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1577 // Subtract out the size of the callee saved registers. This is how much stack
1578 // each funclet will allocate.
1579 return FrameSizeMinusRBP + XMMSize - CSSize;
1580 }
1581
isTailCallOpcode(unsigned Opc)1582 static bool isTailCallOpcode(unsigned Opc) {
1583 return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1584 Opc == X86::TCRETURNmi ||
1585 Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1586 Opc == X86::TCRETURNmi64;
1587 }
1588
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1589 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1590 MachineBasicBlock &MBB) const {
1591 const MachineFrameInfo &MFI = MF.getFrameInfo();
1592 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1593 MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1594 MachineBasicBlock::iterator MBBI = Terminator;
1595 DebugLoc DL;
1596 if (MBBI != MBB.end())
1597 DL = MBBI->getDebugLoc();
1598 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1599 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1600 Register FramePtr = TRI->getFrameRegister(MF);
1601 unsigned MachineFramePtr =
1602 Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1603
1604 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1605 bool NeedsWin64CFI =
1606 IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1607 bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1608
1609 // Get the number of bytes to allocate from the FrameInfo.
1610 uint64_t StackSize = MFI.getStackSize();
1611 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1612 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1613 bool HasFP = hasFP(MF);
1614 uint64_t NumBytes = 0;
1615
1616 bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1617 !MF.getTarget().getTargetTriple().isOSWindows()) &&
1618 MF.needsFrameMoves();
1619
1620 if (IsFunclet) {
1621 assert(HasFP && "EH funclets without FP not yet implemented");
1622 NumBytes = getWinEHFuncletFrameSize(MF);
1623 } else if (HasFP) {
1624 // Calculate required stack adjustment.
1625 uint64_t FrameSize = StackSize - SlotSize;
1626 NumBytes = FrameSize - CSSize;
1627
1628 // Callee-saved registers were pushed on stack before the stack was
1629 // realigned.
1630 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1631 NumBytes = alignTo(FrameSize, MaxAlign);
1632 } else {
1633 NumBytes = StackSize - CSSize;
1634 }
1635 uint64_t SEHStackAllocAmt = NumBytes;
1636
1637 if (HasFP) {
1638 // Pop EBP.
1639 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1640 MachineFramePtr)
1641 .setMIFlag(MachineInstr::FrameDestroy);
1642 if (NeedsDwarfCFI) {
1643 unsigned DwarfStackPtr =
1644 TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1645 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1646 nullptr, DwarfStackPtr, -SlotSize));
1647 --MBBI;
1648 }
1649 }
1650
1651 MachineBasicBlock::iterator FirstCSPop = MBBI;
1652 // Skip the callee-saved pop instructions.
1653 while (MBBI != MBB.begin()) {
1654 MachineBasicBlock::iterator PI = std::prev(MBBI);
1655 unsigned Opc = PI->getOpcode();
1656
1657 if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1658 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1659 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1660 break;
1661 FirstCSPop = PI;
1662 }
1663
1664 --MBBI;
1665 }
1666 MBBI = FirstCSPop;
1667
1668 if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1669 emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1670
1671 if (MBBI != MBB.end())
1672 DL = MBBI->getDebugLoc();
1673
1674 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1675 // instruction, merge the two instructions.
1676 if (NumBytes || MFI.hasVarSizedObjects())
1677 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1678
1679 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1680 // slot before popping them off! Same applies for the case, when stack was
1681 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1682 // will not do realignment or dynamic stack allocation.
1683 if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1684 !IsFunclet) {
1685 if (TRI->needsStackRealignment(MF))
1686 MBBI = FirstCSPop;
1687 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1688 uint64_t LEAAmount =
1689 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1690
1691 // There are only two legal forms of epilogue:
1692 // - add SEHAllocationSize, %rsp
1693 // - lea SEHAllocationSize(%FramePtr), %rsp
1694 //
1695 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1696 // However, we may use this sequence if we have a frame pointer because the
1697 // effects of the prologue can safely be undone.
1698 if (LEAAmount != 0) {
1699 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1700 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1701 FramePtr, false, LEAAmount);
1702 --MBBI;
1703 } else {
1704 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1705 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1706 .addReg(FramePtr);
1707 --MBBI;
1708 }
1709 } else if (NumBytes) {
1710 // Adjust stack pointer back: ESP += numbytes.
1711 emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1712 if (!hasFP(MF) && NeedsDwarfCFI) {
1713 // Define the current CFA rule to use the provided offset.
1714 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1715 nullptr, -CSSize - SlotSize));
1716 }
1717 --MBBI;
1718 }
1719
1720 // Windows unwinder will not invoke function's exception handler if IP is
1721 // either in prologue or in epilogue. This behavior causes a problem when a
1722 // call immediately precedes an epilogue, because the return address points
1723 // into the epilogue. To cope with that, we insert an epilogue marker here,
1724 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1725 // final emitted code.
1726 if (NeedsWin64CFI && MF.hasWinCFI())
1727 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1728
1729 if (!hasFP(MF) && NeedsDwarfCFI) {
1730 MBBI = FirstCSPop;
1731 int64_t Offset = -CSSize - SlotSize;
1732 // Mark callee-saved pop instruction.
1733 // Define the current CFA rule to use the provided offset.
1734 while (MBBI != MBB.end()) {
1735 MachineBasicBlock::iterator PI = MBBI;
1736 unsigned Opc = PI->getOpcode();
1737 ++MBBI;
1738 if (Opc == X86::POP32r || Opc == X86::POP64r) {
1739 Offset += SlotSize;
1740 BuildCFI(MBB, MBBI, DL,
1741 MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1742 }
1743 }
1744 }
1745
1746 if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1747 // Add the return addr area delta back since we are not tail calling.
1748 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1749 assert(Offset >= 0 && "TCDelta should never be positive");
1750 if (Offset) {
1751 // Check for possible merge with preceding ADD instruction.
1752 Offset += mergeSPUpdates(MBB, Terminator, true);
1753 emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1754 }
1755 }
1756 }
1757
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1758 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1759 unsigned &FrameReg) const {
1760 const MachineFrameInfo &MFI = MF.getFrameInfo();
1761
1762 bool IsFixed = MFI.isFixedObjectIndex(FI);
1763 // We can't calculate offset from frame pointer if the stack is realigned,
1764 // so enforce usage of stack/base pointer. The base pointer is used when we
1765 // have dynamic allocas in addition to dynamic realignment.
1766 if (TRI->hasBasePointer(MF))
1767 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1768 else if (TRI->needsStackRealignment(MF))
1769 FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1770 else
1771 FrameReg = TRI->getFrameRegister(MF);
1772
1773 // Offset will hold the offset from the stack pointer at function entry to the
1774 // object.
1775 // We need to factor in additional offsets applied during the prologue to the
1776 // frame, base, and stack pointer depending on which is used.
1777 int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1778 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1779 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1780 uint64_t StackSize = MFI.getStackSize();
1781 bool HasFP = hasFP(MF);
1782 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1783 int64_t FPDelta = 0;
1784
1785 // In an x86 interrupt, remove the offset we added to account for the return
1786 // address from any stack object allocated in the caller's frame. Interrupts
1787 // do not have a standard return address. Fixed objects in the current frame,
1788 // such as SSE register spills, should not get this treatment.
1789 if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1790 Offset >= 0) {
1791 Offset += getOffsetOfLocalArea();
1792 }
1793
1794 if (IsWin64Prologue) {
1795 assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1796
1797 // Calculate required stack adjustment.
1798 uint64_t FrameSize = StackSize - SlotSize;
1799 // If required, include space for extra hidden slot for stashing base pointer.
1800 if (X86FI->getRestoreBasePointer())
1801 FrameSize += SlotSize;
1802 uint64_t NumBytes = FrameSize - CSSize;
1803
1804 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1805 if (FI && FI == X86FI->getFAIndex())
1806 return -SEHFrameOffset;
1807
1808 // FPDelta is the offset from the "traditional" FP location of the old base
1809 // pointer followed by return address and the location required by the
1810 // restricted Win64 prologue.
1811 // Add FPDelta to all offsets below that go through the frame pointer.
1812 FPDelta = FrameSize - SEHFrameOffset;
1813 assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1814 "FPDelta isn't aligned per the Win64 ABI!");
1815 }
1816
1817
1818 if (TRI->hasBasePointer(MF)) {
1819 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1820 if (FI < 0) {
1821 // Skip the saved EBP.
1822 return Offset + SlotSize + FPDelta;
1823 } else {
1824 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1825 return Offset + StackSize;
1826 }
1827 } else if (TRI->needsStackRealignment(MF)) {
1828 if (FI < 0) {
1829 // Skip the saved EBP.
1830 return Offset + SlotSize + FPDelta;
1831 } else {
1832 assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1833 return Offset + StackSize;
1834 }
1835 // FIXME: Support tail calls
1836 } else {
1837 if (!HasFP)
1838 return Offset + StackSize;
1839
1840 // Skip the saved EBP.
1841 Offset += SlotSize;
1842
1843 // Skip the RETADDR move area
1844 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1845 if (TailCallReturnAddrDelta < 0)
1846 Offset -= TailCallReturnAddrDelta;
1847 }
1848
1849 return Offset + FPDelta;
1850 }
1851
getWin64EHFrameIndexRef(const MachineFunction & MF,int FI,unsigned & FrameReg) const1852 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
1853 int FI, unsigned &FrameReg) const {
1854 const MachineFrameInfo &MFI = MF.getFrameInfo();
1855 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1856 const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1857 const auto it = WinEHXMMSlotInfo.find(FI);
1858
1859 if (it == WinEHXMMSlotInfo.end())
1860 return getFrameIndexReference(MF, FI, FrameReg);
1861
1862 FrameReg = TRI->getStackRegister();
1863 return alignDown(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
1864 }
1865
getFrameIndexReferenceSP(const MachineFunction & MF,int FI,unsigned & FrameReg,int Adjustment) const1866 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1867 int FI, unsigned &FrameReg,
1868 int Adjustment) const {
1869 const MachineFrameInfo &MFI = MF.getFrameInfo();
1870 FrameReg = TRI->getStackRegister();
1871 return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1872 }
1873
1874 int
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,unsigned & FrameReg,bool IgnoreSPUpdates) const1875 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1876 int FI, unsigned &FrameReg,
1877 bool IgnoreSPUpdates) const {
1878
1879 const MachineFrameInfo &MFI = MF.getFrameInfo();
1880 // Does not include any dynamic realign.
1881 const uint64_t StackSize = MFI.getStackSize();
1882 // LLVM arranges the stack as follows:
1883 // ...
1884 // ARG2
1885 // ARG1
1886 // RETADDR
1887 // PUSH RBP <-- RBP points here
1888 // PUSH CSRs
1889 // ~~~~~~~ <-- possible stack realignment (non-win64)
1890 // ...
1891 // STACK OBJECTS
1892 // ... <-- RSP after prologue points here
1893 // ~~~~~~~ <-- possible stack realignment (win64)
1894 //
1895 // if (hasVarSizedObjects()):
1896 // ... <-- "base pointer" (ESI/RBX) points here
1897 // DYNAMIC ALLOCAS
1898 // ... <-- RSP points here
1899 //
1900 // Case 1: In the simple case of no stack realignment and no dynamic
1901 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1902 // with fixed offsets from RSP.
1903 //
1904 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1905 // stack objects are addressed with RBP and regular stack objects with RSP.
1906 //
1907 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1908 // to address stack arguments for outgoing calls and nothing else. The "base
1909 // pointer" points to local variables, and RBP points to fixed objects.
1910 //
1911 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1912 // answer we give is relative to the SP after the prologue, and not the
1913 // SP in the middle of the function.
1914
1915 if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1916 !STI.isTargetWin64())
1917 return getFrameIndexReference(MF, FI, FrameReg);
1918
1919 // If !hasReservedCallFrame the function might have SP adjustement in the
1920 // body. So, even though the offset is statically known, it depends on where
1921 // we are in the function.
1922 if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1923 return getFrameIndexReference(MF, FI, FrameReg);
1924
1925 // We don't handle tail calls, and shouldn't be seeing them either.
1926 assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1927 "we don't handle this case!");
1928
1929 // This is how the math works out:
1930 //
1931 // %rsp grows (i.e. gets lower) left to right. Each box below is
1932 // one word (eight bytes). Obj0 is the stack slot we're trying to
1933 // get to.
1934 //
1935 // ----------------------------------
1936 // | BP | Obj0 | Obj1 | ... | ObjN |
1937 // ----------------------------------
1938 // ^ ^ ^ ^
1939 // A B C E
1940 //
1941 // A is the incoming stack pointer.
1942 // (B - A) is the local area offset (-8 for x86-64) [1]
1943 // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1944 //
1945 // |(E - B)| is the StackSize (absolute value, positive). For a
1946 // stack that grown down, this works out to be (B - E). [3]
1947 //
1948 // E is also the value of %rsp after stack has been set up, and we
1949 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1950 // (C - E) == (C - A) - (B - A) + (B - E)
1951 // { Using [1], [2] and [3] above }
1952 // == getObjectOffset - LocalAreaOffset + StackSize
1953
1954 return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1955 }
1956
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1957 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1958 MachineFunction &MF, const TargetRegisterInfo *TRI,
1959 std::vector<CalleeSavedInfo> &CSI) const {
1960 MachineFrameInfo &MFI = MF.getFrameInfo();
1961 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1962
1963 unsigned CalleeSavedFrameSize = 0;
1964 unsigned XMMCalleeSavedFrameSize = 0;
1965 auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1966 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1967
1968 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1969
1970 if (TailCallReturnAddrDelta < 0) {
1971 // create RETURNADDR area
1972 // arg
1973 // arg
1974 // RETADDR
1975 // { ...
1976 // RETADDR area
1977 // ...
1978 // }
1979 // [EBP]
1980 MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1981 TailCallReturnAddrDelta - SlotSize, true);
1982 }
1983
1984 // Spill the BasePtr if it's used.
1985 if (this->TRI->hasBasePointer(MF)) {
1986 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1987 if (MF.hasEHFunclets()) {
1988 int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1989 X86FI->setHasSEHFramePtrSave(true);
1990 X86FI->setSEHFramePtrSaveIndex(FI);
1991 }
1992 }
1993
1994 if (hasFP(MF)) {
1995 // emitPrologue always spills frame register the first thing.
1996 SpillSlotOffset -= SlotSize;
1997 MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1998
1999 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2000 // the frame register, we can delete it from CSI list and not have to worry
2001 // about avoiding it later.
2002 Register FPReg = TRI->getFrameRegister(MF);
2003 for (unsigned i = 0; i < CSI.size(); ++i) {
2004 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2005 CSI.erase(CSI.begin() + i);
2006 break;
2007 }
2008 }
2009 }
2010
2011 // Assign slots for GPRs. It increases frame size.
2012 for (unsigned i = CSI.size(); i != 0; --i) {
2013 unsigned Reg = CSI[i - 1].getReg();
2014
2015 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2016 continue;
2017
2018 SpillSlotOffset -= SlotSize;
2019 CalleeSavedFrameSize += SlotSize;
2020
2021 int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2022 CSI[i - 1].setFrameIdx(SlotIndex);
2023 }
2024
2025 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2026 MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2027
2028 // Assign slots for XMMs.
2029 for (unsigned i = CSI.size(); i != 0; --i) {
2030 unsigned Reg = CSI[i - 1].getReg();
2031 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2032 continue;
2033
2034 // If this is k-register make sure we lookup via the largest legal type.
2035 MVT VT = MVT::Other;
2036 if (X86::VK16RegClass.contains(Reg))
2037 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2038
2039 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2040 unsigned Size = TRI->getSpillSize(*RC);
2041 unsigned Align = TRI->getSpillAlignment(*RC);
2042 // ensure alignment
2043 assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2044 SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
2045
2046 // spill into slot
2047 SpillSlotOffset -= Size;
2048 int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2049 CSI[i - 1].setFrameIdx(SlotIndex);
2050 MFI.ensureMaxAlignment(Align);
2051
2052 // Save the start offset and size of XMM in stack frame for funclets.
2053 if (X86::VR128RegClass.contains(Reg)) {
2054 WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2055 XMMCalleeSavedFrameSize += Size;
2056 }
2057 }
2058
2059 return true;
2060 }
2061
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2062 bool X86FrameLowering::spillCalleeSavedRegisters(
2063 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2064 const std::vector<CalleeSavedInfo> &CSI,
2065 const TargetRegisterInfo *TRI) const {
2066 DebugLoc DL = MBB.findDebugLoc(MI);
2067
2068 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2069 // for us, and there are no XMM CSRs on Win32.
2070 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2071 return true;
2072
2073 // Push GPRs. It increases frame size.
2074 const MachineFunction &MF = *MBB.getParent();
2075 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2076 for (unsigned i = CSI.size(); i != 0; --i) {
2077 unsigned Reg = CSI[i - 1].getReg();
2078
2079 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2080 continue;
2081
2082 const MachineRegisterInfo &MRI = MF.getRegInfo();
2083 bool isLiveIn = MRI.isLiveIn(Reg);
2084 if (!isLiveIn)
2085 MBB.addLiveIn(Reg);
2086
2087 // Decide whether we can add a kill flag to the use.
2088 bool CanKill = !isLiveIn;
2089 // Check if any subregister is live-in
2090 if (CanKill) {
2091 for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2092 if (MRI.isLiveIn(*AReg)) {
2093 CanKill = false;
2094 break;
2095 }
2096 }
2097 }
2098
2099 // Do not set a kill flag on values that are also marked as live-in. This
2100 // happens with the @llvm-returnaddress intrinsic and with arguments
2101 // passed in callee saved registers.
2102 // Omitting the kill flags is conservatively correct even if the live-in
2103 // is not used after all.
2104 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2105 .setMIFlag(MachineInstr::FrameSetup);
2106 }
2107
2108 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2109 // It can be done by spilling XMMs to stack frame.
2110 for (unsigned i = CSI.size(); i != 0; --i) {
2111 unsigned Reg = CSI[i-1].getReg();
2112 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2113 continue;
2114
2115 // If this is k-register make sure we lookup via the largest legal type.
2116 MVT VT = MVT::Other;
2117 if (X86::VK16RegClass.contains(Reg))
2118 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2119
2120 // Add the callee-saved register as live-in. It's killed at the spill.
2121 MBB.addLiveIn(Reg);
2122 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2123
2124 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2125 TRI);
2126 --MI;
2127 MI->setFlag(MachineInstr::FrameSetup);
2128 ++MI;
2129 }
2130
2131 return true;
2132 }
2133
emitCatchRetReturnValue(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineInstr * CatchRet) const2134 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2135 MachineBasicBlock::iterator MBBI,
2136 MachineInstr *CatchRet) const {
2137 // SEH shouldn't use catchret.
2138 assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2139 MBB.getParent()->getFunction().getPersonalityFn())) &&
2140 "SEH should not use CATCHRET");
2141 DebugLoc DL = CatchRet->getDebugLoc();
2142 MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2143
2144 // Fill EAX/RAX with the address of the target block.
2145 if (STI.is64Bit()) {
2146 // LEA64r CatchRetTarget(%rip), %rax
2147 BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2148 .addReg(X86::RIP)
2149 .addImm(0)
2150 .addReg(0)
2151 .addMBB(CatchRetTarget)
2152 .addReg(0);
2153 } else {
2154 // MOV32ri $CatchRetTarget, %eax
2155 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2156 .addMBB(CatchRetTarget);
2157 }
2158
2159 // Record that we've taken the address of CatchRetTarget and no longer just
2160 // reference it in a terminator.
2161 CatchRetTarget->setHasAddressTaken();
2162 }
2163
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2164 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2165 MachineBasicBlock::iterator MI,
2166 std::vector<CalleeSavedInfo> &CSI,
2167 const TargetRegisterInfo *TRI) const {
2168 if (CSI.empty())
2169 return false;
2170
2171 if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2172 // Don't restore CSRs in 32-bit EH funclets. Matches
2173 // spillCalleeSavedRegisters.
2174 if (STI.is32Bit())
2175 return true;
2176 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2177 // funclets. emitEpilogue transforms these to normal jumps.
2178 if (MI->getOpcode() == X86::CATCHRET) {
2179 const Function &F = MBB.getParent()->getFunction();
2180 bool IsSEH = isAsynchronousEHPersonality(
2181 classifyEHPersonality(F.getPersonalityFn()));
2182 if (IsSEH)
2183 return true;
2184 }
2185 }
2186
2187 DebugLoc DL = MBB.findDebugLoc(MI);
2188
2189 // Reload XMMs from stack frame.
2190 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2191 unsigned Reg = CSI[i].getReg();
2192 if (X86::GR64RegClass.contains(Reg) ||
2193 X86::GR32RegClass.contains(Reg))
2194 continue;
2195
2196 // If this is k-register make sure we lookup via the largest legal type.
2197 MVT VT = MVT::Other;
2198 if (X86::VK16RegClass.contains(Reg))
2199 VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2200
2201 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2202 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2203 }
2204
2205 // POP GPRs.
2206 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2207 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2208 unsigned Reg = CSI[i].getReg();
2209 if (!X86::GR64RegClass.contains(Reg) &&
2210 !X86::GR32RegClass.contains(Reg))
2211 continue;
2212
2213 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2214 .setMIFlag(MachineInstr::FrameDestroy);
2215 }
2216 return true;
2217 }
2218
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2219 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2220 BitVector &SavedRegs,
2221 RegScavenger *RS) const {
2222 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2223
2224 // Spill the BasePtr if it's used.
2225 if (TRI->hasBasePointer(MF)){
2226 Register BasePtr = TRI->getBaseRegister();
2227 if (STI.isTarget64BitILP32())
2228 BasePtr = getX86SubSuperRegister(BasePtr, 64);
2229 SavedRegs.set(BasePtr);
2230 }
2231 }
2232
2233 static bool
HasNestArgument(const MachineFunction * MF)2234 HasNestArgument(const MachineFunction *MF) {
2235 const Function &F = MF->getFunction();
2236 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2237 I != E; I++) {
2238 if (I->hasNestAttr() && !I->use_empty())
2239 return true;
2240 }
2241 return false;
2242 }
2243
2244 /// GetScratchRegister - Get a temp register for performing work in the
2245 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2246 /// and the properties of the function either one or two registers will be
2247 /// needed. Set primary to true for the first register, false for the second.
2248 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2249 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2250 CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2251
2252 // Erlang stuff.
2253 if (CallingConvention == CallingConv::HiPE) {
2254 if (Is64Bit)
2255 return Primary ? X86::R14 : X86::R13;
2256 else
2257 return Primary ? X86::EBX : X86::EDI;
2258 }
2259
2260 if (Is64Bit) {
2261 if (IsLP64)
2262 return Primary ? X86::R11 : X86::R12;
2263 else
2264 return Primary ? X86::R11D : X86::R12D;
2265 }
2266
2267 bool IsNested = HasNestArgument(&MF);
2268
2269 if (CallingConvention == CallingConv::X86_FastCall ||
2270 CallingConvention == CallingConv::Fast ||
2271 CallingConvention == CallingConv::Tail) {
2272 if (IsNested)
2273 report_fatal_error("Segmented stacks does not support fastcall with "
2274 "nested function.");
2275 return Primary ? X86::EAX : X86::ECX;
2276 }
2277 if (IsNested)
2278 return Primary ? X86::EDX : X86::EAX;
2279 return Primary ? X86::ECX : X86::EAX;
2280 }
2281
2282 // The stack limit in the TCB is set to this many bytes above the actual stack
2283 // limit.
2284 static const uint64_t kSplitStackAvailable = 256;
2285
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2286 void X86FrameLowering::adjustForSegmentedStacks(
2287 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2288 MachineFrameInfo &MFI = MF.getFrameInfo();
2289 uint64_t StackSize;
2290 unsigned TlsReg, TlsOffset;
2291 DebugLoc DL;
2292
2293 // To support shrink-wrapping we would need to insert the new blocks
2294 // at the right place and update the branches to PrologueMBB.
2295 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2296
2297 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2298 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2299 "Scratch register is live-in");
2300
2301 if (MF.getFunction().isVarArg())
2302 report_fatal_error("Segmented stacks do not support vararg functions.");
2303 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2304 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2305 !STI.isTargetDragonFly())
2306 report_fatal_error("Segmented stacks not supported on this platform.");
2307
2308 // Eventually StackSize will be calculated by a link-time pass; which will
2309 // also decide whether checking code needs to be injected into this particular
2310 // prologue.
2311 StackSize = MFI.getStackSize();
2312
2313 // Do not generate a prologue for leaf functions with a stack of size zero.
2314 // For non-leaf functions we have to allow for the possibility that the
2315 // callis to a non-split function, as in PR37807. This function could also
2316 // take the address of a non-split function. When the linker tries to adjust
2317 // its non-existent prologue, it would fail with an error. Mark the object
2318 // file so that such failures are not errors. See this Go language bug-report
2319 // https://go-review.googlesource.com/c/go/+/148819/
2320 if (StackSize == 0 && !MFI.hasTailCall()) {
2321 MF.getMMI().setHasNosplitStack(true);
2322 return;
2323 }
2324
2325 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2326 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2327 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2328 bool IsNested = false;
2329
2330 // We need to know if the function has a nest argument only in 64 bit mode.
2331 if (Is64Bit)
2332 IsNested = HasNestArgument(&MF);
2333
2334 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2335 // allocMBB needs to be last (terminating) instruction.
2336
2337 for (const auto &LI : PrologueMBB.liveins()) {
2338 allocMBB->addLiveIn(LI);
2339 checkMBB->addLiveIn(LI);
2340 }
2341
2342 if (IsNested)
2343 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2344
2345 MF.push_front(allocMBB);
2346 MF.push_front(checkMBB);
2347
2348 // When the frame size is less than 256 we just compare the stack
2349 // boundary directly to the value of the stack pointer, per gcc.
2350 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2351
2352 // Read the limit off the current stacklet off the stack_guard location.
2353 if (Is64Bit) {
2354 if (STI.isTargetLinux()) {
2355 TlsReg = X86::FS;
2356 TlsOffset = IsLP64 ? 0x70 : 0x40;
2357 } else if (STI.isTargetDarwin()) {
2358 TlsReg = X86::GS;
2359 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2360 } else if (STI.isTargetWin64()) {
2361 TlsReg = X86::GS;
2362 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2363 } else if (STI.isTargetFreeBSD()) {
2364 TlsReg = X86::FS;
2365 TlsOffset = 0x18;
2366 } else if (STI.isTargetDragonFly()) {
2367 TlsReg = X86::FS;
2368 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2369 } else {
2370 report_fatal_error("Segmented stacks not supported on this platform.");
2371 }
2372
2373 if (CompareStackPointer)
2374 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2375 else
2376 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2377 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2378
2379 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2380 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2381 } else {
2382 if (STI.isTargetLinux()) {
2383 TlsReg = X86::GS;
2384 TlsOffset = 0x30;
2385 } else if (STI.isTargetDarwin()) {
2386 TlsReg = X86::GS;
2387 TlsOffset = 0x48 + 90*4;
2388 } else if (STI.isTargetWin32()) {
2389 TlsReg = X86::FS;
2390 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2391 } else if (STI.isTargetDragonFly()) {
2392 TlsReg = X86::FS;
2393 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2394 } else if (STI.isTargetFreeBSD()) {
2395 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2396 } else {
2397 report_fatal_error("Segmented stacks not supported on this platform.");
2398 }
2399
2400 if (CompareStackPointer)
2401 ScratchReg = X86::ESP;
2402 else
2403 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2404 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2405
2406 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2407 STI.isTargetDragonFly()) {
2408 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2409 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2410 } else if (STI.isTargetDarwin()) {
2411
2412 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2413 unsigned ScratchReg2;
2414 bool SaveScratch2;
2415 if (CompareStackPointer) {
2416 // The primary scratch register is available for holding the TLS offset.
2417 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2418 SaveScratch2 = false;
2419 } else {
2420 // Need to use a second register to hold the TLS offset
2421 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2422
2423 // Unfortunately, with fastcc the second scratch register may hold an
2424 // argument.
2425 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2426 }
2427
2428 // If Scratch2 is live-in then it needs to be saved.
2429 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2430 "Scratch register is live-in and not saved");
2431
2432 if (SaveScratch2)
2433 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2434 .addReg(ScratchReg2, RegState::Kill);
2435
2436 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2437 .addImm(TlsOffset);
2438 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2439 .addReg(ScratchReg)
2440 .addReg(ScratchReg2).addImm(1).addReg(0)
2441 .addImm(0)
2442 .addReg(TlsReg);
2443
2444 if (SaveScratch2)
2445 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2446 }
2447 }
2448
2449 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2450 // It jumps to normal execution of the function body.
2451 BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2452
2453 // On 32 bit we first push the arguments size and then the frame size. On 64
2454 // bit, we pass the stack frame size in r10 and the argument size in r11.
2455 if (Is64Bit) {
2456 // Functions with nested arguments use R10, so it needs to be saved across
2457 // the call to _morestack
2458
2459 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2460 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2461 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2462 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2463 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2464
2465 if (IsNested)
2466 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2467
2468 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2469 .addImm(StackSize);
2470 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2471 .addImm(X86FI->getArgumentStackSize());
2472 } else {
2473 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2474 .addImm(X86FI->getArgumentStackSize());
2475 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2476 .addImm(StackSize);
2477 }
2478
2479 // __morestack is in libgcc
2480 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2481 // Under the large code model, we cannot assume that __morestack lives
2482 // within 2^31 bytes of the call site, so we cannot use pc-relative
2483 // addressing. We cannot perform the call via a temporary register,
2484 // as the rax register may be used to store the static chain, and all
2485 // other suitable registers may be either callee-save or used for
2486 // parameter passing. We cannot use the stack at this point either
2487 // because __morestack manipulates the stack directly.
2488 //
2489 // To avoid these issues, perform an indirect call via a read-only memory
2490 // location containing the address.
2491 //
2492 // This solution is not perfect, as it assumes that the .rodata section
2493 // is laid out within 2^31 bytes of each function body, but this seems
2494 // to be sufficient for JIT.
2495 // FIXME: Add retpoline support and remove the error here..
2496 if (STI.useRetpolineIndirectCalls())
2497 report_fatal_error("Emitting morestack calls on 64-bit with the large "
2498 "code model and retpoline not yet implemented.");
2499 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2500 .addReg(X86::RIP)
2501 .addImm(0)
2502 .addReg(0)
2503 .addExternalSymbol("__morestack_addr")
2504 .addReg(0);
2505 MF.getMMI().setUsesMorestackAddr(true);
2506 } else {
2507 if (Is64Bit)
2508 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2509 .addExternalSymbol("__morestack");
2510 else
2511 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2512 .addExternalSymbol("__morestack");
2513 }
2514
2515 if (IsNested)
2516 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2517 else
2518 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2519
2520 allocMBB->addSuccessor(&PrologueMBB);
2521
2522 checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2523 checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2524
2525 #ifdef EXPENSIVE_CHECKS
2526 MF.verify();
2527 #endif
2528 }
2529
2530 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2531 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2532 /// to fields it needs, through a named metadata node "hipe.literals" containing
2533 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)2534 static unsigned getHiPELiteral(
2535 NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2536 for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2537 MDNode *Node = HiPELiteralsMD->getOperand(i);
2538 if (Node->getNumOperands() != 2) continue;
2539 MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2540 ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2541 if (!NodeName || !NodeVal) continue;
2542 ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2543 if (ValConst && NodeName->getString() == LiteralName) {
2544 return ValConst->getZExtValue();
2545 }
2546 }
2547
2548 report_fatal_error("HiPE literal " + LiteralName
2549 + " required but not provided");
2550 }
2551
2552 // Return true if there are no non-ehpad successors to MBB and there are no
2553 // non-meta instructions between MBBI and MBB.end().
blockEndIsUnreachable(const MachineBasicBlock & MBB,MachineBasicBlock::const_iterator MBBI)2554 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2555 MachineBasicBlock::const_iterator MBBI) {
2556 return std::all_of(
2557 MBB.succ_begin(), MBB.succ_end(),
2558 [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2559 std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2560 return MI.isMetaInstruction();
2561 });
2562 }
2563
2564 /// Erlang programs may need a special prologue to handle the stack size they
2565 /// might need at runtime. That is because Erlang/OTP does not implement a C
2566 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2567 /// (for more information see Eric Stenman's Ph.D. thesis:
2568 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2569 ///
2570 /// CheckStack:
2571 /// temp0 = sp - MaxStack
2572 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2573 /// OldStart:
2574 /// ...
2575 /// IncStack:
2576 /// call inc_stack # doubles the stack space
2577 /// temp0 = sp - MaxStack
2578 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2579 void X86FrameLowering::adjustForHiPEPrologue(
2580 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2581 MachineFrameInfo &MFI = MF.getFrameInfo();
2582 DebugLoc DL;
2583
2584 // To support shrink-wrapping we would need to insert the new blocks
2585 // at the right place and update the branches to PrologueMBB.
2586 assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2587
2588 // HiPE-specific values
2589 NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2590 ->getNamedMetadata("hipe.literals");
2591 if (!HiPELiteralsMD)
2592 report_fatal_error(
2593 "Can't generate HiPE prologue without runtime parameters");
2594 const unsigned HipeLeafWords
2595 = getHiPELiteral(HiPELiteralsMD,
2596 Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2597 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2598 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2599 unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2600 MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2601 unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2602
2603 assert(STI.isTargetLinux() &&
2604 "HiPE prologue is only supported on Linux operating systems.");
2605
2606 // Compute the largest caller's frame that is needed to fit the callees'
2607 // frames. This 'MaxStack' is computed from:
2608 //
2609 // a) the fixed frame size, which is the space needed for all spilled temps,
2610 // b) outgoing on-stack parameter areas, and
2611 // c) the minimum stack space this function needs to make available for the
2612 // functions it calls (a tunable ABI property).
2613 if (MFI.hasCalls()) {
2614 unsigned MoreStackForCalls = 0;
2615
2616 for (auto &MBB : MF) {
2617 for (auto &MI : MBB) {
2618 if (!MI.isCall())
2619 continue;
2620
2621 // Get callee operand.
2622 const MachineOperand &MO = MI.getOperand(0);
2623
2624 // Only take account of global function calls (no closures etc.).
2625 if (!MO.isGlobal())
2626 continue;
2627
2628 const Function *F = dyn_cast<Function>(MO.getGlobal());
2629 if (!F)
2630 continue;
2631
2632 // Do not update 'MaxStack' for primitive and built-in functions
2633 // (encoded with names either starting with "erlang."/"bif_" or not
2634 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2635 // "_", such as the BIF "suspend_0") as they are executed on another
2636 // stack.
2637 if (F->getName().find("erlang.") != StringRef::npos ||
2638 F->getName().find("bif_") != StringRef::npos ||
2639 F->getName().find_first_of("._") == StringRef::npos)
2640 continue;
2641
2642 unsigned CalleeStkArity =
2643 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2644 if (HipeLeafWords - 1 > CalleeStkArity)
2645 MoreStackForCalls = std::max(MoreStackForCalls,
2646 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2647 }
2648 }
2649 MaxStack += MoreStackForCalls;
2650 }
2651
2652 // If the stack frame needed is larger than the guaranteed then runtime checks
2653 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2654 if (MaxStack > Guaranteed) {
2655 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2656 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2657
2658 for (const auto &LI : PrologueMBB.liveins()) {
2659 stackCheckMBB->addLiveIn(LI);
2660 incStackMBB->addLiveIn(LI);
2661 }
2662
2663 MF.push_front(incStackMBB);
2664 MF.push_front(stackCheckMBB);
2665
2666 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2667 unsigned LEAop, CMPop, CALLop;
2668 SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2669 if (Is64Bit) {
2670 SPReg = X86::RSP;
2671 PReg = X86::RBP;
2672 LEAop = X86::LEA64r;
2673 CMPop = X86::CMP64rm;
2674 CALLop = X86::CALL64pcrel32;
2675 } else {
2676 SPReg = X86::ESP;
2677 PReg = X86::EBP;
2678 LEAop = X86::LEA32r;
2679 CMPop = X86::CMP32rm;
2680 CALLop = X86::CALLpcrel32;
2681 }
2682
2683 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2684 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2685 "HiPE prologue scratch register is live-in");
2686
2687 // Create new MBB for StackCheck:
2688 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2689 SPReg, false, -MaxStack);
2690 // SPLimitOffset is in a fixed heap location (pointed by BP).
2691 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2692 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2693 BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2694
2695 // Create new MBB for IncStack:
2696 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2697 addExternalSymbol("inc_stack_0");
2698 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2699 SPReg, false, -MaxStack);
2700 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2701 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2702 BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2703
2704 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2705 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2706 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2707 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2708 }
2709 #ifdef EXPENSIVE_CHECKS
2710 MF.verify();
2711 #endif
2712 }
2713
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const2714 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2715 MachineBasicBlock::iterator MBBI,
2716 const DebugLoc &DL,
2717 int Offset) const {
2718
2719 if (Offset <= 0)
2720 return false;
2721
2722 if (Offset % SlotSize)
2723 return false;
2724
2725 int NumPops = Offset / SlotSize;
2726 // This is only worth it if we have at most 2 pops.
2727 if (NumPops != 1 && NumPops != 2)
2728 return false;
2729
2730 // Handle only the trivial case where the adjustment directly follows
2731 // a call. This is the most common one, anyway.
2732 if (MBBI == MBB.begin())
2733 return false;
2734 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2735 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2736 return false;
2737
2738 unsigned Regs[2];
2739 unsigned FoundRegs = 0;
2740
2741 auto &MRI = MBB.getParent()->getRegInfo();
2742 auto RegMask = Prev->getOperand(1);
2743
2744 auto &RegClass =
2745 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2746 // Try to find up to NumPops free registers.
2747 for (auto Candidate : RegClass) {
2748
2749 // Poor man's liveness:
2750 // Since we're immediately after a call, any register that is clobbered
2751 // by the call and not defined by it can be considered dead.
2752 if (!RegMask.clobbersPhysReg(Candidate))
2753 continue;
2754
2755 // Don't clobber reserved registers
2756 if (MRI.isReserved(Candidate))
2757 continue;
2758
2759 bool IsDef = false;
2760 for (const MachineOperand &MO : Prev->implicit_operands()) {
2761 if (MO.isReg() && MO.isDef() &&
2762 TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2763 IsDef = true;
2764 break;
2765 }
2766 }
2767
2768 if (IsDef)
2769 continue;
2770
2771 Regs[FoundRegs++] = Candidate;
2772 if (FoundRegs == (unsigned)NumPops)
2773 break;
2774 }
2775
2776 if (FoundRegs == 0)
2777 return false;
2778
2779 // If we found only one free register, but need two, reuse the same one twice.
2780 while (FoundRegs < (unsigned)NumPops)
2781 Regs[FoundRegs++] = Regs[0];
2782
2783 for (int i = 0; i < NumPops; ++i)
2784 BuildMI(MBB, MBBI, DL,
2785 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2786
2787 return true;
2788 }
2789
2790 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2791 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2792 MachineBasicBlock::iterator I) const {
2793 bool reserveCallFrame = hasReservedCallFrame(MF);
2794 unsigned Opcode = I->getOpcode();
2795 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2796 DebugLoc DL = I->getDebugLoc();
2797 uint64_t Amount = TII.getFrameSize(*I);
2798 uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2799 I = MBB.erase(I);
2800 auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2801
2802 if (!reserveCallFrame) {
2803 // If the stack pointer can be changed after prologue, turn the
2804 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2805 // adjcallstackdown instruction into 'add ESP, <amt>'
2806
2807 // We need to keep the stack aligned properly. To do this, we round the
2808 // amount of space needed for the outgoing arguments up to the next
2809 // alignment boundary.
2810 unsigned StackAlign = getStackAlignment();
2811 Amount = alignTo(Amount, StackAlign);
2812
2813 const Function &F = MF.getFunction();
2814 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2815 bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
2816
2817 // If we have any exception handlers in this function, and we adjust
2818 // the SP before calls, we may need to indicate this to the unwinder
2819 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2820 // Amount == 0, because the preceding function may have set a non-0
2821 // GNU_ARGS_SIZE.
2822 // TODO: We don't need to reset this between subsequent functions,
2823 // if it didn't change.
2824 bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2825
2826 if (HasDwarfEHHandlers && !isDestroy &&
2827 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2828 BuildCFI(MBB, InsertPos, DL,
2829 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2830
2831 if (Amount == 0)
2832 return I;
2833
2834 // Factor out the amount that gets handled inside the sequence
2835 // (Pushes of argument for frame setup, callee pops for frame destroy)
2836 Amount -= InternalAmt;
2837
2838 // TODO: This is needed only if we require precise CFA.
2839 // If this is a callee-pop calling convention, emit a CFA adjust for
2840 // the amount the callee popped.
2841 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2842 BuildCFI(MBB, InsertPos, DL,
2843 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2844
2845 // Add Amount to SP to destroy a frame, or subtract to setup.
2846 int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2847
2848 if (StackAdjustment) {
2849 // Merge with any previous or following adjustment instruction. Note: the
2850 // instructions merged with here do not have CFI, so their stack
2851 // adjustments do not feed into CfaAdjustment.
2852 StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2853 StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2854
2855 if (StackAdjustment) {
2856 if (!(F.hasMinSize() &&
2857 adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2858 BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2859 /*InEpilogue=*/false);
2860 }
2861 }
2862
2863 if (DwarfCFI && !hasFP(MF)) {
2864 // If we don't have FP, but need to generate unwind information,
2865 // we need to set the correct CFA offset after the stack adjustment.
2866 // How much we adjust the CFA offset depends on whether we're emitting
2867 // CFI only for EH purposes or for debugging. EH only requires the CFA
2868 // offset to be correct at each call site, while for debugging we want
2869 // it to be more precise.
2870
2871 int64_t CfaAdjustment = -StackAdjustment;
2872 // TODO: When not using precise CFA, we also need to adjust for the
2873 // InternalAmt here.
2874 if (CfaAdjustment) {
2875 BuildCFI(MBB, InsertPos, DL,
2876 MCCFIInstruction::createAdjustCfaOffset(nullptr,
2877 CfaAdjustment));
2878 }
2879 }
2880
2881 return I;
2882 }
2883
2884 if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) {
2885 // If we are performing frame pointer elimination and if the callee pops
2886 // something off the stack pointer, add it back. We do this until we have
2887 // more advanced stack pointer tracking ability.
2888 // We are not tracking the stack pointer adjustment by the callee, so make
2889 // sure we restore the stack pointer immediately after the call, there may
2890 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2891 MachineBasicBlock::iterator CI = I;
2892 MachineBasicBlock::iterator B = MBB.begin();
2893 while (CI != B && !std::prev(CI)->isCall())
2894 --CI;
2895 BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2896 }
2897
2898 return I;
2899 }
2900
canUseAsPrologue(const MachineBasicBlock & MBB) const2901 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2902 assert(MBB.getParent() && "Block is not attached to a function!");
2903 const MachineFunction &MF = *MBB.getParent();
2904 return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2905 }
2906
canUseAsEpilogue(const MachineBasicBlock & MBB) const2907 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2908 assert(MBB.getParent() && "Block is not attached to a function!");
2909
2910 // Win64 has strict requirements in terms of epilogue and we are
2911 // not taking a chance at messing with them.
2912 // I.e., unless this block is already an exit block, we can't use
2913 // it as an epilogue.
2914 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2915 return false;
2916
2917 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2918 return true;
2919
2920 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2921 // clobbers the EFLAGS. Check that we do not need to preserve it,
2922 // otherwise, conservatively assume this is not
2923 // safe to insert the epilogue here.
2924 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2925 }
2926
enableShrinkWrapping(const MachineFunction & MF) const2927 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2928 // If we may need to emit frameless compact unwind information, give
2929 // up as this is currently broken: PR25614.
2930 return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2931 // The lowering of segmented stack and HiPE only support entry blocks
2932 // as prologue blocks: PR26107.
2933 // This limitation may be lifted if we fix:
2934 // - adjustForSegmentedStacks
2935 // - adjustForHiPEPrologue
2936 MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2937 !MF.shouldSplitStack();
2938 }
2939
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const2940 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2941 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2942 const DebugLoc &DL, bool RestoreSP) const {
2943 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2944 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2945 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2946 "restoring EBP/ESI on non-32-bit target");
2947
2948 MachineFunction &MF = *MBB.getParent();
2949 Register FramePtr = TRI->getFrameRegister(MF);
2950 Register BasePtr = TRI->getBaseRegister();
2951 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2952 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2953 MachineFrameInfo &MFI = MF.getFrameInfo();
2954
2955 // FIXME: Don't set FrameSetup flag in catchret case.
2956
2957 int FI = FuncInfo.EHRegNodeFrameIndex;
2958 int EHRegSize = MFI.getObjectSize(FI);
2959
2960 if (RestoreSP) {
2961 // MOV32rm -EHRegSize(%ebp), %esp
2962 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2963 X86::EBP, true, -EHRegSize)
2964 .setMIFlag(MachineInstr::FrameSetup);
2965 }
2966
2967 unsigned UsedReg;
2968 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2969 int EndOffset = -EHRegOffset - EHRegSize;
2970 FuncInfo.EHRegNodeEndOffset = EndOffset;
2971
2972 if (UsedReg == FramePtr) {
2973 // ADD $offset, %ebp
2974 unsigned ADDri = getADDriOpcode(false, EndOffset);
2975 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2976 .addReg(FramePtr)
2977 .addImm(EndOffset)
2978 .setMIFlag(MachineInstr::FrameSetup)
2979 ->getOperand(3)
2980 .setIsDead();
2981 assert(EndOffset >= 0 &&
2982 "end of registration object above normal EBP position!");
2983 } else if (UsedReg == BasePtr) {
2984 // LEA offset(%ebp), %esi
2985 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2986 FramePtr, false, EndOffset)
2987 .setMIFlag(MachineInstr::FrameSetup);
2988 // MOV32rm SavedEBPOffset(%esi), %ebp
2989 assert(X86FI->getHasSEHFramePtrSave());
2990 int Offset =
2991 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2992 assert(UsedReg == BasePtr);
2993 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2994 UsedReg, true, Offset)
2995 .setMIFlag(MachineInstr::FrameSetup);
2996 } else {
2997 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2998 }
2999 return MBBI;
3000 }
3001
getInitialCFAOffset(const MachineFunction & MF) const3002 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3003 return TRI->getSlotSize();
3004 }
3005
getInitialCFARegister(const MachineFunction & MF) const3006 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
3007 const {
3008 return TRI->getDwarfRegNum(StackPtr, true);
3009 }
3010
3011 namespace {
3012 // Struct used by orderFrameObjects to help sort the stack objects.
3013 struct X86FrameSortingObject {
3014 bool IsValid = false; // true if we care about this Object.
3015 unsigned ObjectIndex = 0; // Index of Object into MFI list.
3016 unsigned ObjectSize = 0; // Size of Object in bytes.
3017 unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
3018 unsigned ObjectNumUses = 0; // Object static number of uses.
3019 };
3020
3021 // The comparison function we use for std::sort to order our local
3022 // stack symbols. The current algorithm is to use an estimated
3023 // "density". This takes into consideration the size and number of
3024 // uses each object has in order to roughly minimize code size.
3025 // So, for example, an object of size 16B that is referenced 5 times
3026 // will get higher priority than 4 4B objects referenced 1 time each.
3027 // It's not perfect and we may be able to squeeze a few more bytes out of
3028 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3029 // fringe end can have special consideration, given their size is less
3030 // important, etc.), but the algorithmic complexity grows too much to be
3031 // worth the extra gains we get. This gets us pretty close.
3032 // The final order leaves us with objects with highest priority going
3033 // at the end of our list.
3034 struct X86FrameSortingComparator {
operator ()__anon5b246f1e0311::X86FrameSortingComparator3035 inline bool operator()(const X86FrameSortingObject &A,
3036 const X86FrameSortingObject &B) {
3037 uint64_t DensityAScaled, DensityBScaled;
3038
3039 // For consistency in our comparison, all invalid objects are placed
3040 // at the end. This also allows us to stop walking when we hit the
3041 // first invalid item after it's all sorted.
3042 if (!A.IsValid)
3043 return false;
3044 if (!B.IsValid)
3045 return true;
3046
3047 // The density is calculated by doing :
3048 // (double)DensityA = A.ObjectNumUses / A.ObjectSize
3049 // (double)DensityB = B.ObjectNumUses / B.ObjectSize
3050 // Since this approach may cause inconsistencies in
3051 // the floating point <, >, == comparisons, depending on the floating
3052 // point model with which the compiler was built, we're going
3053 // to scale both sides by multiplying with
3054 // A.ObjectSize * B.ObjectSize. This ends up factoring away
3055 // the division and, with it, the need for any floating point
3056 // arithmetic.
3057 DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3058 static_cast<uint64_t>(B.ObjectSize);
3059 DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3060 static_cast<uint64_t>(A.ObjectSize);
3061
3062 // If the two densities are equal, prioritize highest alignment
3063 // objects. This allows for similar alignment objects
3064 // to be packed together (given the same density).
3065 // There's room for improvement here, also, since we can pack
3066 // similar alignment (different density) objects next to each
3067 // other to save padding. This will also require further
3068 // complexity/iterations, and the overall gain isn't worth it,
3069 // in general. Something to keep in mind, though.
3070 if (DensityAScaled == DensityBScaled)
3071 return A.ObjectAlignment < B.ObjectAlignment;
3072
3073 return DensityAScaled < DensityBScaled;
3074 }
3075 };
3076 } // namespace
3077
3078 // Order the symbols in the local stack.
3079 // We want to place the local stack objects in some sort of sensible order.
3080 // The heuristic we use is to try and pack them according to static number
3081 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3082 void X86FrameLowering::orderFrameObjects(
3083 const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3084 const MachineFrameInfo &MFI = MF.getFrameInfo();
3085
3086 // Don't waste time if there's nothing to do.
3087 if (ObjectsToAllocate.empty())
3088 return;
3089
3090 // Create an array of all MFI objects. We won't need all of these
3091 // objects, but we're going to create a full array of them to make
3092 // it easier to index into when we're counting "uses" down below.
3093 // We want to be able to easily/cheaply access an object by simply
3094 // indexing into it, instead of having to search for it every time.
3095 std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3096
3097 // Walk the objects we care about and mark them as such in our working
3098 // struct.
3099 for (auto &Obj : ObjectsToAllocate) {
3100 SortingObjects[Obj].IsValid = true;
3101 SortingObjects[Obj].ObjectIndex = Obj;
3102 SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3103 // Set the size.
3104 int ObjectSize = MFI.getObjectSize(Obj);
3105 if (ObjectSize == 0)
3106 // Variable size. Just use 4.
3107 SortingObjects[Obj].ObjectSize = 4;
3108 else
3109 SortingObjects[Obj].ObjectSize = ObjectSize;
3110 }
3111
3112 // Count the number of uses for each object.
3113 for (auto &MBB : MF) {
3114 for (auto &MI : MBB) {
3115 if (MI.isDebugInstr())
3116 continue;
3117 for (const MachineOperand &MO : MI.operands()) {
3118 // Check to see if it's a local stack symbol.
3119 if (!MO.isFI())
3120 continue;
3121 int Index = MO.getIndex();
3122 // Check to see if it falls within our range, and is tagged
3123 // to require ordering.
3124 if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3125 SortingObjects[Index].IsValid)
3126 SortingObjects[Index].ObjectNumUses++;
3127 }
3128 }
3129 }
3130
3131 // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3132 // info).
3133 llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3134
3135 // Now modify the original list to represent the final order that
3136 // we want. The order will depend on whether we're going to access them
3137 // from the stack pointer or the frame pointer. For SP, the list should
3138 // end up with the END containing objects that we want with smaller offsets.
3139 // For FP, it should be flipped.
3140 int i = 0;
3141 for (auto &Obj : SortingObjects) {
3142 // All invalid items are sorted at the end, so it's safe to stop.
3143 if (!Obj.IsValid)
3144 break;
3145 ObjectsToAllocate[i++] = Obj.ObjectIndex;
3146 }
3147
3148 // Flip it if we're accessing off of the FP.
3149 if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3150 std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3151 }
3152
3153
getWinEHParentFrameOffset(const MachineFunction & MF) const3154 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3155 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3156 unsigned Offset = 16;
3157 // RBP is immediately pushed.
3158 Offset += SlotSize;
3159 // All callee-saved registers are then pushed.
3160 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3161 // Every funclet allocates enough stack space for the largest outgoing call.
3162 Offset += getWinEHFuncletFrameSize(MF);
3163 return Offset;
3164 }
3165
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3166 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3167 MachineFunction &MF, RegScavenger *RS) const {
3168 // Mark the function as not having WinCFI. We will set it back to true in
3169 // emitPrologue if it gets called and emits CFI.
3170 MF.setHasWinCFI(false);
3171
3172 // If this function isn't doing Win64-style C++ EH, we don't need to do
3173 // anything.
3174 const Function &F = MF.getFunction();
3175 if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3176 classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3177 return;
3178
3179 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3180 // relative to RSP after the prologue. Find the offset of the last fixed
3181 // object, so that we can allocate a slot immediately following it. If there
3182 // were no fixed objects, use offset -SlotSize, which is immediately after the
3183 // return address. Fixed objects have negative frame indices.
3184 MachineFrameInfo &MFI = MF.getFrameInfo();
3185 WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3186 int64_t MinFixedObjOffset = -SlotSize;
3187 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3188 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3189
3190 for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3191 for (WinEHHandlerType &H : TBME.HandlerArray) {
3192 int FrameIndex = H.CatchObj.FrameIndex;
3193 if (FrameIndex != INT_MAX) {
3194 // Ensure alignment.
3195 unsigned Align = MFI.getObjectAlignment(FrameIndex);
3196 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3197 MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3198 MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3199 }
3200 }
3201 }
3202
3203 // Ensure alignment.
3204 MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3205 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3206 int UnwindHelpFI =
3207 MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3208 EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3209
3210 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3211 // other frame setup instructions.
3212 MachineBasicBlock &MBB = MF.front();
3213 auto MBBI = MBB.begin();
3214 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3215 ++MBBI;
3216
3217 DebugLoc DL = MBB.findDebugLoc(MBBI);
3218 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3219 UnwindHelpFI)
3220 .addImm(-2);
3221 }
3222