• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the X86 implementation of TargetFrameLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "X86FrameLowering.h"
14 #include "X86InstrBuilder.h"
15 #include "X86InstrInfo.h"
16 #include "X86MachineFunctionInfo.h"
17 #include "X86Subtarget.h"
18 #include "X86TargetMachine.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include <cstdlib>
34 
35 using namespace llvm;
36 
X86FrameLowering(const X86Subtarget & STI,MaybeAlign StackAlignOverride)37 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
38                                    MaybeAlign StackAlignOverride)
39     : TargetFrameLowering(StackGrowsDown, StackAlignOverride.valueOrOne(),
40                           STI.is64Bit() ? -8 : -4),
41       STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
42   // Cache a bunch of frame-related predicates for this subtarget.
43   SlotSize = TRI->getSlotSize();
44   Is64Bit = STI.is64Bit();
45   IsLP64 = STI.isTarget64BitLP64();
46   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
47   Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
48   StackPtr = TRI->getStackRegister();
49 }
50 
hasReservedCallFrame(const MachineFunction & MF) const51 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
52   return !MF.getFrameInfo().hasVarSizedObjects() &&
53          !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
54 }
55 
56 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
57 /// call frame pseudos can be simplified.  Having a FP, as in the default
58 /// implementation, is not sufficient here since we can't always use it.
59 /// Use a more nuanced condition.
60 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const61 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
62   return hasReservedCallFrame(MF) ||
63          (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
64          TRI->hasBasePointer(MF);
65 }
66 
67 // needsFrameIndexResolution - Do we need to perform FI resolution for
68 // this function. Normally, this is required only when the function
69 // has any stack objects. However, FI resolution actually has another job,
70 // not apparent from the title - it resolves callframesetup/destroy
71 // that were not simplified earlier.
72 // So, this is required for x86 functions that have push sequences even
73 // when there are no stack objects.
74 bool
needsFrameIndexResolution(const MachineFunction & MF) const75 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
76   return MF.getFrameInfo().hasStackObjects() ||
77          MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
78 }
79 
80 /// hasFP - Return true if the specified function should have a dedicated frame
81 /// pointer register.  This is true if the function has variable sized allocas
82 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const83 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
84   const MachineFrameInfo &MFI = MF.getFrameInfo();
85   return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
86           TRI->needsStackRealignment(MF) ||
87           MFI.hasVarSizedObjects() ||
88           MFI.isFrameAddressTaken() || MFI.hasOpaqueSPAdjustment() ||
89           MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
90           MF.callsUnwindInit() || MF.hasEHFunclets() || MF.callsEHReturn() ||
91           MFI.hasStackMap() || MFI.hasPatchPoint() ||
92           MFI.hasCopyImplyingStackAdjustment());
93 }
94 
getSUBriOpcode(bool IsLP64,int64_t Imm)95 static unsigned getSUBriOpcode(bool IsLP64, int64_t Imm) {
96   if (IsLP64) {
97     if (isInt<8>(Imm))
98       return X86::SUB64ri8;
99     return X86::SUB64ri32;
100   } else {
101     if (isInt<8>(Imm))
102       return X86::SUB32ri8;
103     return X86::SUB32ri;
104   }
105 }
106 
getADDriOpcode(bool IsLP64,int64_t Imm)107 static unsigned getADDriOpcode(bool IsLP64, int64_t Imm) {
108   if (IsLP64) {
109     if (isInt<8>(Imm))
110       return X86::ADD64ri8;
111     return X86::ADD64ri32;
112   } else {
113     if (isInt<8>(Imm))
114       return X86::ADD32ri8;
115     return X86::ADD32ri;
116   }
117 }
118 
getSUBrrOpcode(bool IsLP64)119 static unsigned getSUBrrOpcode(bool IsLP64) {
120   return IsLP64 ? X86::SUB64rr : X86::SUB32rr;
121 }
122 
getADDrrOpcode(bool IsLP64)123 static unsigned getADDrrOpcode(bool IsLP64) {
124   return IsLP64 ? X86::ADD64rr : X86::ADD32rr;
125 }
126 
getANDriOpcode(bool IsLP64,int64_t Imm)127 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
128   if (IsLP64) {
129     if (isInt<8>(Imm))
130       return X86::AND64ri8;
131     return X86::AND64ri32;
132   }
133   if (isInt<8>(Imm))
134     return X86::AND32ri8;
135   return X86::AND32ri;
136 }
137 
getLEArOpcode(bool IsLP64)138 static unsigned getLEArOpcode(bool IsLP64) {
139   return IsLP64 ? X86::LEA64r : X86::LEA32r;
140 }
141 
142 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
143 /// when it reaches the "return" instruction. We can then pop a stack object
144 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const X86RegisterInfo * TRI,bool Is64Bit)145 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
146                                        MachineBasicBlock::iterator &MBBI,
147                                        const X86RegisterInfo *TRI,
148                                        bool Is64Bit) {
149   const MachineFunction *MF = MBB.getParent();
150   if (MF->callsEHReturn())
151     return 0;
152 
153   const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
154 
155   if (MBBI == MBB.end())
156     return 0;
157 
158   switch (MBBI->getOpcode()) {
159   default: return 0;
160   case TargetOpcode::PATCHABLE_RET:
161   case X86::RET:
162   case X86::RETL:
163   case X86::RETQ:
164   case X86::RETIL:
165   case X86::RETIQ:
166   case X86::TCRETURNdi:
167   case X86::TCRETURNri:
168   case X86::TCRETURNmi:
169   case X86::TCRETURNdi64:
170   case X86::TCRETURNri64:
171   case X86::TCRETURNmi64:
172   case X86::EH_RETURN:
173   case X86::EH_RETURN64: {
174     SmallSet<uint16_t, 8> Uses;
175     for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
176       MachineOperand &MO = MBBI->getOperand(i);
177       if (!MO.isReg() || MO.isDef())
178         continue;
179       Register Reg = MO.getReg();
180       if (!Reg)
181         continue;
182       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
183         Uses.insert(*AI);
184     }
185 
186     for (auto CS : AvailableRegs)
187       if (!Uses.count(CS) && CS != X86::RIP && CS != X86::RSP &&
188           CS != X86::ESP)
189         return CS;
190   }
191   }
192 
193   return 0;
194 }
195 
isEAXLiveIn(MachineBasicBlock & MBB)196 static bool isEAXLiveIn(MachineBasicBlock &MBB) {
197   for (MachineBasicBlock::RegisterMaskPair RegMask : MBB.liveins()) {
198     unsigned Reg = RegMask.PhysReg;
199 
200     if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
201         Reg == X86::AH || Reg == X86::AL)
202       return true;
203   }
204 
205   return false;
206 }
207 
208 /// Check if the flags need to be preserved before the terminators.
209 /// This would be the case, if the eflags is live-in of the region
210 /// composed by the terminators or live-out of that region, without
211 /// being defined by a terminator.
212 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)213 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
214   for (const MachineInstr &MI : MBB.terminators()) {
215     bool BreakNext = false;
216     for (const MachineOperand &MO : MI.operands()) {
217       if (!MO.isReg())
218         continue;
219       Register Reg = MO.getReg();
220       if (Reg != X86::EFLAGS)
221         continue;
222 
223       // This terminator needs an eflags that is not defined
224       // by a previous another terminator:
225       // EFLAGS is live-in of the region composed by the terminators.
226       if (!MO.isDef())
227         return true;
228       // This terminator defines the eflags, i.e., we don't need to preserve it.
229       // However, we still need to check this specific terminator does not
230       // read a live-in value.
231       BreakNext = true;
232     }
233     // We found a definition of the eflags, no need to preserve them.
234     if (BreakNext)
235       return false;
236   }
237 
238   // None of the terminators use or define the eflags.
239   // Check if they are live-out, that would imply we need to preserve them.
240   for (const MachineBasicBlock *Succ : MBB.successors())
241     if (Succ->isLiveIn(X86::EFLAGS))
242       return true;
243 
244   return false;
245 }
246 
247 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
248 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const DebugLoc & DL,int64_t NumBytes,bool InEpilogue) const249 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
250                                     MachineBasicBlock::iterator &MBBI,
251                                     const DebugLoc &DL,
252                                     int64_t NumBytes, bool InEpilogue) const {
253   bool isSub = NumBytes < 0;
254   uint64_t Offset = isSub ? -NumBytes : NumBytes;
255   MachineInstr::MIFlag Flag =
256       isSub ? MachineInstr::FrameSetup : MachineInstr::FrameDestroy;
257 
258   uint64_t Chunk = (1LL << 31) - 1;
259 
260   if (Offset > Chunk) {
261     // Rather than emit a long series of instructions for large offsets,
262     // load the offset into a register and do one sub/add
263     unsigned Reg = 0;
264     unsigned Rax = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265 
266     if (isSub && !isEAXLiveIn(MBB))
267       Reg = Rax;
268     else
269       Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
270 
271     unsigned MovRIOpc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
272     unsigned AddSubRROpc =
273         isSub ? getSUBrrOpcode(Is64Bit) : getADDrrOpcode(Is64Bit);
274     if (Reg) {
275       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Reg)
276           .addImm(Offset)
277           .setMIFlag(Flag);
278       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AddSubRROpc), StackPtr)
279                              .addReg(StackPtr)
280                              .addReg(Reg);
281       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
282       return;
283     } else if (Offset > 8 * Chunk) {
284       // If we would need more than 8 add or sub instructions (a >16GB stack
285       // frame), it's worth spilling RAX to materialize this immediate.
286       //   pushq %rax
287       //   movabsq +-$Offset+-SlotSize, %rax
288       //   addq %rsp, %rax
289       //   xchg %rax, (%rsp)
290       //   movq (%rsp), %rsp
291       assert(Is64Bit && "can't have 32-bit 16GB stack frame");
292       BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
293           .addReg(Rax, RegState::Kill)
294           .setMIFlag(Flag);
295       // Subtract is not commutative, so negate the offset and always use add.
296       // Subtract 8 less and add 8 more to account for the PUSH we just did.
297       if (isSub)
298         Offset = -(Offset - SlotSize);
299       else
300         Offset = Offset + SlotSize;
301       BuildMI(MBB, MBBI, DL, TII.get(MovRIOpc), Rax)
302           .addImm(Offset)
303           .setMIFlag(Flag);
304       MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(X86::ADD64rr), Rax)
305                              .addReg(Rax)
306                              .addReg(StackPtr);
307       MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
308       // Exchange the new SP in RAX with the top of the stack.
309       addRegOffset(
310           BuildMI(MBB, MBBI, DL, TII.get(X86::XCHG64rm), Rax).addReg(Rax),
311           StackPtr, false, 0);
312       // Load new SP from the top of the stack into RSP.
313       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), StackPtr),
314                    StackPtr, false, 0);
315       return;
316     }
317   }
318 
319   while (Offset) {
320     uint64_t ThisVal = std::min(Offset, Chunk);
321     if (ThisVal == SlotSize) {
322       // Use push / pop for slot sized adjustments as a size optimization. We
323       // need to find a dead register when using pop.
324       unsigned Reg = isSub
325         ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
326         : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
327       if (Reg) {
328         unsigned Opc = isSub
329           ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
330           : (Is64Bit ? X86::POP64r  : X86::POP32r);
331         BuildMI(MBB, MBBI, DL, TII.get(Opc))
332             .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub))
333             .setMIFlag(Flag);
334         Offset -= ThisVal;
335         continue;
336       }
337     }
338 
339     BuildStackAdjustment(MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue)
340         .setMIFlag(Flag);
341 
342     Offset -= ThisVal;
343   }
344 }
345 
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int64_t Offset,bool InEpilogue) const346 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
347     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
348     const DebugLoc &DL, int64_t Offset, bool InEpilogue) const {
349   assert(Offset != 0 && "zero offset stack adjustment requested");
350 
351   // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
352   // is tricky.
353   bool UseLEA;
354   if (!InEpilogue) {
355     // Check if inserting the prologue at the beginning
356     // of MBB would require to use LEA operations.
357     // We need to use LEA operations if EFLAGS is live in, because
358     // it means an instruction will read it before it gets defined.
359     UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
360   } else {
361     // If we can use LEA for SP but we shouldn't, check that none
362     // of the terminators uses the eflags. Otherwise we will insert
363     // a ADD that will redefine the eflags and break the condition.
364     // Alternatively, we could move the ADD, but this may not be possible
365     // and is an optimization anyway.
366     UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
367     if (UseLEA && !STI.useLeaForSP())
368       UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
369     // If that assert breaks, that means we do not do the right thing
370     // in canUseAsEpilogue.
371     assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
372            "We shouldn't have allowed this insertion point");
373   }
374 
375   MachineInstrBuilder MI;
376   if (UseLEA) {
377     MI = addRegOffset(BuildMI(MBB, MBBI, DL,
378                               TII.get(getLEArOpcode(Uses64BitFramePtr)),
379                               StackPtr),
380                       StackPtr, false, Offset);
381   } else {
382     bool IsSub = Offset < 0;
383     uint64_t AbsOffset = IsSub ? -Offset : Offset;
384     unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
385                          : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
386     MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
387              .addReg(StackPtr)
388              .addImm(AbsOffset);
389     MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
390   }
391   return MI;
392 }
393 
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const394 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
395                                      MachineBasicBlock::iterator &MBBI,
396                                      bool doMergeWithPrevious) const {
397   if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
398       (!doMergeWithPrevious && MBBI == MBB.end()))
399     return 0;
400 
401   MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
402 
403   PI = skipDebugInstructionsBackward(PI, MBB.begin());
404   // It is assumed that ADD/SUB/LEA instruction is succeded by one CFI
405   // instruction, and that there are no DBG_VALUE or other instructions between
406   // ADD/SUB/LEA and its corresponding CFI instruction.
407   /* TODO: Add support for the case where there are multiple CFI instructions
408     below the ADD/SUB/LEA, e.g.:
409     ...
410     add
411     cfi_def_cfa_offset
412     cfi_offset
413     ...
414   */
415   if (doMergeWithPrevious && PI != MBB.begin() && PI->isCFIInstruction())
416     PI = std::prev(PI);
417 
418   unsigned Opc = PI->getOpcode();
419   int Offset = 0;
420 
421   if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
422        Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
423       PI->getOperand(0).getReg() == StackPtr){
424     assert(PI->getOperand(1).getReg() == StackPtr);
425     Offset = PI->getOperand(2).getImm();
426   } else if ((Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
427              PI->getOperand(0).getReg() == StackPtr &&
428              PI->getOperand(1).getReg() == StackPtr &&
429              PI->getOperand(2).getImm() == 1 &&
430              PI->getOperand(3).getReg() == X86::NoRegister &&
431              PI->getOperand(5).getReg() == X86::NoRegister) {
432     // For LEAs we have: def = lea SP, FI, noreg, Offset, noreg.
433     Offset = PI->getOperand(4).getImm();
434   } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
435               Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
436              PI->getOperand(0).getReg() == StackPtr) {
437     assert(PI->getOperand(1).getReg() == StackPtr);
438     Offset = -PI->getOperand(2).getImm();
439   } else
440     return 0;
441 
442   PI = MBB.erase(PI);
443   if (PI != MBB.end() && PI->isCFIInstruction()) PI = MBB.erase(PI);
444   if (!doMergeWithPrevious)
445     MBBI = skipDebugInstructionsForward(PI, MBB.end());
446 
447   return Offset;
448 }
449 
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,const MCCFIInstruction & CFIInst) const450 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
451                                 MachineBasicBlock::iterator MBBI,
452                                 const DebugLoc &DL,
453                                 const MCCFIInstruction &CFIInst) const {
454   MachineFunction &MF = *MBB.getParent();
455   unsigned CFIIndex = MF.addFrameInst(CFIInst);
456   BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
457       .addCFIIndex(CFIIndex);
458 }
459 
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL) const460 void X86FrameLowering::emitCalleeSavedFrameMoves(
461     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
462     const DebugLoc &DL) const {
463   MachineFunction &MF = *MBB.getParent();
464   MachineFrameInfo &MFI = MF.getFrameInfo();
465   MachineModuleInfo &MMI = MF.getMMI();
466   const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
467 
468   // Add callee saved registers to move list.
469   const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
470   if (CSI.empty()) return;
471 
472   // Calculate offsets.
473   for (std::vector<CalleeSavedInfo>::const_iterator
474          I = CSI.begin(), E = CSI.end(); I != E; ++I) {
475     int64_t Offset = MFI.getObjectOffset(I->getFrameIdx());
476     unsigned Reg = I->getReg();
477 
478     unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
479     BuildCFI(MBB, MBBI, DL,
480              MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
481   }
482 }
483 
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const484 void X86FrameLowering::emitStackProbe(MachineFunction &MF,
485                                       MachineBasicBlock &MBB,
486                                       MachineBasicBlock::iterator MBBI,
487                                       const DebugLoc &DL, bool InProlog) const {
488   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
489   if (STI.isTargetWindowsCoreCLR()) {
490     if (InProlog) {
491       emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
492     } else {
493       emitStackProbeInline(MF, MBB, MBBI, DL, false);
494     }
495   } else {
496     emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
497   }
498 }
499 
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const500 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
501                                         MachineBasicBlock &PrologMBB) const {
502   const StringRef ChkStkStubSymbol = "__chkstk_stub";
503   MachineInstr *ChkStkStub = nullptr;
504 
505   for (MachineInstr &MI : PrologMBB) {
506     if (MI.isCall() && MI.getOperand(0).isSymbol() &&
507         ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
508       ChkStkStub = &MI;
509       break;
510     }
511   }
512 
513   if (ChkStkStub != nullptr) {
514     assert(!ChkStkStub->isBundled() &&
515            "Not expecting bundled instructions here");
516     MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
517     assert(std::prev(MBBI) == ChkStkStub &&
518            "MBBI expected after __chkstk_stub.");
519     DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
520     emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
521     ChkStkStub->eraseFromParent();
522   }
523 }
524 
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const525 void X86FrameLowering::emitStackProbeInline(MachineFunction &MF,
526                                             MachineBasicBlock &MBB,
527                                             MachineBasicBlock::iterator MBBI,
528                                             const DebugLoc &DL,
529                                             bool InProlog) const {
530   const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
531   assert(STI.is64Bit() && "different expansion needed for 32 bit");
532   assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
533   const TargetInstrInfo &TII = *STI.getInstrInfo();
534   const BasicBlock *LLVM_BB = MBB.getBasicBlock();
535 
536   // RAX contains the number of bytes of desired stack adjustment.
537   // The handling here assumes this value has already been updated so as to
538   // maintain stack alignment.
539   //
540   // We need to exit with RSP modified by this amount and execute suitable
541   // page touches to notify the OS that we're growing the stack responsibly.
542   // All stack probing must be done without modifying RSP.
543   //
544   // MBB:
545   //    SizeReg = RAX;
546   //    ZeroReg = 0
547   //    CopyReg = RSP
548   //    Flags, TestReg = CopyReg - SizeReg
549   //    FinalReg = !Flags.Ovf ? TestReg : ZeroReg
550   //    LimitReg = gs magic thread env access
551   //    if FinalReg >= LimitReg goto ContinueMBB
552   // RoundBB:
553   //    RoundReg = page address of FinalReg
554   // LoopMBB:
555   //    LoopReg = PHI(LimitReg,ProbeReg)
556   //    ProbeReg = LoopReg - PageSize
557   //    [ProbeReg] = 0
558   //    if (ProbeReg > RoundReg) goto LoopMBB
559   // ContinueMBB:
560   //    RSP = RSP - RAX
561   //    [rest of original MBB]
562 
563   // Set up the new basic blocks
564   MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
565   MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
566   MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
567 
568   MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
569   MF.insert(MBBIter, RoundMBB);
570   MF.insert(MBBIter, LoopMBB);
571   MF.insert(MBBIter, ContinueMBB);
572 
573   // Split MBB and move the tail portion down to ContinueMBB.
574   MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
575   ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
576   ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
577 
578   // Some useful constants
579   const int64_t ThreadEnvironmentStackLimit = 0x10;
580   const int64_t PageSize = 0x1000;
581   const int64_t PageMask = ~(PageSize - 1);
582 
583   // Registers we need. For the normal case we use virtual
584   // registers. For the prolog expansion we use RAX, RCX and RDX.
585   MachineRegisterInfo &MRI = MF.getRegInfo();
586   const TargetRegisterClass *RegClass = &X86::GR64RegClass;
587   const Register SizeReg = InProlog ? X86::RAX
588                                     : MRI.createVirtualRegister(RegClass),
589                  ZeroReg = InProlog ? X86::RCX
590                                     : MRI.createVirtualRegister(RegClass),
591                  CopyReg = InProlog ? X86::RDX
592                                     : MRI.createVirtualRegister(RegClass),
593                  TestReg = InProlog ? X86::RDX
594                                     : MRI.createVirtualRegister(RegClass),
595                  FinalReg = InProlog ? X86::RDX
596                                      : MRI.createVirtualRegister(RegClass),
597                  RoundedReg = InProlog ? X86::RDX
598                                        : MRI.createVirtualRegister(RegClass),
599                  LimitReg = InProlog ? X86::RCX
600                                      : MRI.createVirtualRegister(RegClass),
601                  JoinReg = InProlog ? X86::RCX
602                                     : MRI.createVirtualRegister(RegClass),
603                  ProbeReg = InProlog ? X86::RCX
604                                      : MRI.createVirtualRegister(RegClass);
605 
606   // SP-relative offsets where we can save RCX and RDX.
607   int64_t RCXShadowSlot = 0;
608   int64_t RDXShadowSlot = 0;
609 
610   // If inlining in the prolog, save RCX and RDX.
611   if (InProlog) {
612     // Compute the offsets. We need to account for things already
613     // pushed onto the stack at this point: return address, frame
614     // pointer (if used), and callee saves.
615     X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
616     const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
617     const bool HasFP = hasFP(MF);
618 
619     // Check if we need to spill RCX and/or RDX.
620     // Here we assume that no earlier prologue instruction changes RCX and/or
621     // RDX, so checking the block live-ins is enough.
622     const bool IsRCXLiveIn = MBB.isLiveIn(X86::RCX);
623     const bool IsRDXLiveIn = MBB.isLiveIn(X86::RDX);
624     int64_t InitSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
625     // Assign the initial slot to both registers, then change RDX's slot if both
626     // need to be spilled.
627     if (IsRCXLiveIn)
628       RCXShadowSlot = InitSlot;
629     if (IsRDXLiveIn)
630       RDXShadowSlot = InitSlot;
631     if (IsRDXLiveIn && IsRCXLiveIn)
632       RDXShadowSlot += 8;
633     // Emit the saves if needed.
634     if (IsRCXLiveIn)
635       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
636                    RCXShadowSlot)
637           .addReg(X86::RCX);
638     if (IsRDXLiveIn)
639       addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
640                    RDXShadowSlot)
641           .addReg(X86::RDX);
642   } else {
643     // Not in the prolog. Copy RAX to a virtual reg.
644     BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
645   }
646 
647   // Add code to MBB to check for overflow and set the new target stack pointer
648   // to zero if so.
649   BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
650       .addReg(ZeroReg, RegState::Undef)
651       .addReg(ZeroReg, RegState::Undef);
652   BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
653   BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
654       .addReg(CopyReg)
655       .addReg(SizeReg);
656   BuildMI(&MBB, DL, TII.get(X86::CMOV64rr), FinalReg)
657       .addReg(TestReg)
658       .addReg(ZeroReg)
659       .addImm(X86::COND_B);
660 
661   // FinalReg now holds final stack pointer value, or zero if
662   // allocation would overflow. Compare against the current stack
663   // limit from the thread environment block. Note this limit is the
664   // lowest touched page on the stack, not the point at which the OS
665   // will cause an overflow exception, so this is just an optimization
666   // to avoid unnecessarily touching pages that are below the current
667   // SP but already committed to the stack by the OS.
668   BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
669       .addReg(0)
670       .addImm(1)
671       .addReg(0)
672       .addImm(ThreadEnvironmentStackLimit)
673       .addReg(X86::GS);
674   BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
675   // Jump if the desired stack pointer is at or above the stack limit.
676   BuildMI(&MBB, DL, TII.get(X86::JCC_1)).addMBB(ContinueMBB).addImm(X86::COND_AE);
677 
678   // Add code to roundMBB to round the final stack pointer to a page boundary.
679   RoundMBB->addLiveIn(FinalReg);
680   BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
681       .addReg(FinalReg)
682       .addImm(PageMask);
683   BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
684 
685   // LimitReg now holds the current stack limit, RoundedReg page-rounded
686   // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
687   // and probe until we reach RoundedReg.
688   if (!InProlog) {
689     BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
690         .addReg(LimitReg)
691         .addMBB(RoundMBB)
692         .addReg(ProbeReg)
693         .addMBB(LoopMBB);
694   }
695 
696   LoopMBB->addLiveIn(JoinReg);
697   addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
698                false, -PageSize);
699 
700   // Probe by storing a byte onto the stack.
701   BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
702       .addReg(ProbeReg)
703       .addImm(1)
704       .addReg(0)
705       .addImm(0)
706       .addReg(0)
707       .addImm(0);
708 
709   LoopMBB->addLiveIn(RoundedReg);
710   BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
711       .addReg(RoundedReg)
712       .addReg(ProbeReg);
713   BuildMI(LoopMBB, DL, TII.get(X86::JCC_1)).addMBB(LoopMBB).addImm(X86::COND_NE);
714 
715   MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
716 
717   // If in prolog, restore RDX and RCX.
718   if (InProlog) {
719     if (RCXShadowSlot) // It means we spilled RCX in the prologue.
720       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
721                            TII.get(X86::MOV64rm), X86::RCX),
722                    X86::RSP, false, RCXShadowSlot);
723     if (RDXShadowSlot) // It means we spilled RDX in the prologue.
724       addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL,
725                            TII.get(X86::MOV64rm), X86::RDX),
726                    X86::RSP, false, RDXShadowSlot);
727   }
728 
729   // Now that the probing is done, add code to continueMBB to update
730   // the stack pointer for real.
731   ContinueMBB->addLiveIn(SizeReg);
732   BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
733       .addReg(X86::RSP)
734       .addReg(SizeReg);
735 
736   // Add the control flow edges we need.
737   MBB.addSuccessor(ContinueMBB);
738   MBB.addSuccessor(RoundMBB);
739   RoundMBB->addSuccessor(LoopMBB);
740   LoopMBB->addSuccessor(ContinueMBB);
741   LoopMBB->addSuccessor(LoopMBB);
742 
743   // Mark all the instructions added to the prolog as frame setup.
744   if (InProlog) {
745     for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
746       BeforeMBBI->setFlag(MachineInstr::FrameSetup);
747     }
748     for (MachineInstr &MI : *RoundMBB) {
749       MI.setFlag(MachineInstr::FrameSetup);
750     }
751     for (MachineInstr &MI : *LoopMBB) {
752       MI.setFlag(MachineInstr::FrameSetup);
753     }
754     for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
755          CMBBI != ContinueMBBI; ++CMBBI) {
756       CMBBI->setFlag(MachineInstr::FrameSetup);
757     }
758   }
759 }
760 
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const761 void X86FrameLowering::emitStackProbeCall(MachineFunction &MF,
762                                           MachineBasicBlock &MBB,
763                                           MachineBasicBlock::iterator MBBI,
764                                           const DebugLoc &DL,
765                                           bool InProlog) const {
766   bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
767 
768   // FIXME: Add retpoline support and remove this.
769   if (Is64Bit && IsLargeCodeModel && STI.useRetpolineIndirectCalls())
770     report_fatal_error("Emitting stack probe calls on 64-bit with the large "
771                        "code model and retpoline not yet implemented.");
772 
773   unsigned CallOp;
774   if (Is64Bit)
775     CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
776   else
777     CallOp = X86::CALLpcrel32;
778 
779   StringRef Symbol = STI.getTargetLowering()->getStackProbeSymbolName(MF);
780 
781   MachineInstrBuilder CI;
782   MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
783 
784   // All current stack probes take AX and SP as input, clobber flags, and
785   // preserve all registers. x86_64 probes leave RSP unmodified.
786   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
787     // For the large code model, we have to call through a register. Use R11,
788     // as it is scratch in all supported calling conventions.
789     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
790         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
791     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
792   } else {
793     CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp))
794         .addExternalSymbol(MF.createExternalSymbolName(Symbol));
795   }
796 
797   unsigned AX = Uses64BitFramePtr ? X86::RAX : X86::EAX;
798   unsigned SP = Uses64BitFramePtr ? X86::RSP : X86::ESP;
799   CI.addReg(AX, RegState::Implicit)
800       .addReg(SP, RegState::Implicit)
801       .addReg(AX, RegState::Define | RegState::Implicit)
802       .addReg(SP, RegState::Define | RegState::Implicit)
803       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
804 
805   if (STI.isTargetWin64() || !STI.isOSWindows()) {
806     // MSVC x32's _chkstk and cygwin/mingw's _alloca adjust %esp themselves.
807     // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
808     // themselves. They also does not clobber %rax so we can reuse it when
809     // adjusting %rsp.
810     // All other platforms do not specify a particular ABI for the stack probe
811     // function, so we arbitrarily define it to not adjust %esp/%rsp itself.
812     BuildMI(MBB, MBBI, DL, TII.get(getSUBrrOpcode(Uses64BitFramePtr)), SP)
813         .addReg(SP)
814         .addReg(AX);
815   }
816 
817   if (InProlog) {
818     // Apply the frame setup flag to all inserted instrs.
819     for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
820       ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
821   }
822 }
823 
emitStackProbeInlineStub(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool InProlog) const824 void X86FrameLowering::emitStackProbeInlineStub(
825     MachineFunction &MF, MachineBasicBlock &MBB,
826     MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool InProlog) const {
827 
828   assert(InProlog && "ChkStkStub called outside prolog!");
829 
830   BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
831       .addExternalSymbol("__chkstk_stub");
832 }
833 
calculateSetFPREG(uint64_t SPAdjust)834 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
835   // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
836   // and might require smaller successive adjustments.
837   const uint64_t Win64MaxSEHOffset = 128;
838   uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
839   // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
840   return SEHFrameOffset & -16;
841 }
842 
843 // If we're forcing a stack realignment we can't rely on just the frame
844 // info, we need to know the ABI stack alignment as well in case we
845 // have a call out.  Otherwise just make sure we have some alignment - we'll
846 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const847 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
848   const MachineFrameInfo &MFI = MF.getFrameInfo();
849   uint64_t MaxAlign = MFI.getMaxAlignment(); // Desired stack alignment.
850   unsigned StackAlign = getStackAlignment();
851   if (MF.getFunction().hasFnAttribute("stackrealign")) {
852     if (MFI.hasCalls())
853       MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
854     else if (MaxAlign < SlotSize)
855       MaxAlign = SlotSize;
856   }
857   return MaxAlign;
858 }
859 
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,unsigned Reg,uint64_t MaxAlign) const860 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
861                                           MachineBasicBlock::iterator MBBI,
862                                           const DebugLoc &DL, unsigned Reg,
863                                           uint64_t MaxAlign) const {
864   uint64_t Val = -MaxAlign;
865   unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
866   MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
867                          .addReg(Reg)
868                          .addImm(Val)
869                          .setMIFlag(MachineInstr::FrameSetup);
870 
871   // The EFLAGS implicit def is dead.
872   MI->getOperand(3).setIsDead();
873 }
874 
has128ByteRedZone(const MachineFunction & MF) const875 bool X86FrameLowering::has128ByteRedZone(const MachineFunction& MF) const {
876   // x86-64 (non Win64) has a 128 byte red zone which is guaranteed not to be
877   // clobbered by any interrupt handler.
878   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
879          "MF used frame lowering for wrong subtarget");
880   const Function &Fn = MF.getFunction();
881   const bool IsWin64CC = STI.isCallingConvWin64(Fn.getCallingConv());
882   return Is64Bit && !IsWin64CC && !Fn.hasFnAttribute(Attribute::NoRedZone);
883 }
884 
885 
886 /// emitPrologue - Push callee-saved registers onto the stack, which
887 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
888 /// space for local variables. Also emit labels used by the exception handler to
889 /// generate the exception handling frames.
890 
891 /*
892   Here's a gist of what gets emitted:
893 
894   ; Establish frame pointer, if needed
895   [if needs FP]
896       push  %rbp
897       .cfi_def_cfa_offset 16
898       .cfi_offset %rbp, -16
899       .seh_pushreg %rpb
900       mov  %rsp, %rbp
901       .cfi_def_cfa_register %rbp
902 
903   ; Spill general-purpose registers
904   [for all callee-saved GPRs]
905       pushq %<reg>
906       [if not needs FP]
907          .cfi_def_cfa_offset (offset from RETADDR)
908       .seh_pushreg %<reg>
909 
910   ; If the required stack alignment > default stack alignment
911   ; rsp needs to be re-aligned.  This creates a "re-alignment gap"
912   ; of unknown size in the stack frame.
913   [if stack needs re-alignment]
914       and  $MASK, %rsp
915 
916   ; Allocate space for locals
917   [if target is Windows and allocated space > 4096 bytes]
918       ; Windows needs special care for allocations larger
919       ; than one page.
920       mov $NNN, %rax
921       call ___chkstk_ms/___chkstk
922       sub  %rax, %rsp
923   [else]
924       sub  $NNN, %rsp
925 
926   [if needs FP]
927       .seh_stackalloc (size of XMM spill slots)
928       .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
929   [else]
930       .seh_stackalloc NNN
931 
932   ; Spill XMMs
933   ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
934   ; they may get spilled on any platform, if the current function
935   ; calls @llvm.eh.unwind.init
936   [if needs FP]
937       [for all callee-saved XMM registers]
938           movaps  %<xmm reg>, -MMM(%rbp)
939       [for all callee-saved XMM registers]
940           .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
941               ; i.e. the offset relative to (%rbp - SEHFrameOffset)
942   [else]
943       [for all callee-saved XMM registers]
944           movaps  %<xmm reg>, KKK(%rsp)
945       [for all callee-saved XMM registers]
946           .seh_savexmm %<xmm reg>, KKK
947 
948   .seh_endprologue
949 
950   [if needs base pointer]
951       mov  %rsp, %rbx
952       [if needs to restore base pointer]
953           mov %rsp, -MMM(%rbp)
954 
955   ; Emit CFI info
956   [if needs FP]
957       [for all callee-saved registers]
958           .cfi_offset %<reg>, (offset from %rbp)
959   [else]
960        .cfi_def_cfa_offset (offset from RETADDR)
961       [for all callee-saved registers]
962           .cfi_offset %<reg>, (offset from %rsp)
963 
964   Notes:
965   - .seh directives are emitted only for Windows 64 ABI
966   - .cv_fpo directives are emitted on win32 when emitting CodeView
967   - .cfi directives are emitted for all other ABIs
968   - for 32-bit code, substitute %e?? registers for %r??
969 */
970 
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const971 void X86FrameLowering::emitPrologue(MachineFunction &MF,
972                                     MachineBasicBlock &MBB) const {
973   assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
974          "MF used frame lowering for wrong subtarget");
975   MachineBasicBlock::iterator MBBI = MBB.begin();
976   MachineFrameInfo &MFI = MF.getFrameInfo();
977   const Function &Fn = MF.getFunction();
978   MachineModuleInfo &MMI = MF.getMMI();
979   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
980   uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
981   uint64_t StackSize = MFI.getStackSize();    // Number of bytes to allocate.
982   bool IsFunclet = MBB.isEHFuncletEntry();
983   EHPersonality Personality = EHPersonality::Unknown;
984   if (Fn.hasPersonalityFn())
985     Personality = classifyEHPersonality(Fn.getPersonalityFn());
986   bool FnHasClrFunclet =
987       MF.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
988   bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
989   bool HasFP = hasFP(MF);
990   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
991   bool NeedsWin64CFI = IsWin64Prologue && Fn.needsUnwindTableEntry();
992   // FIXME: Emit FPO data for EH funclets.
993   bool NeedsWinFPO =
994       !IsFunclet && STI.isTargetWin32() && MMI.getModule()->getCodeViewFlag();
995   bool NeedsWinCFI = NeedsWin64CFI || NeedsWinFPO;
996   bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves();
997   Register FramePtr = TRI->getFrameRegister(MF);
998   const Register MachineFramePtr =
999       STI.isTarget64BitILP32()
1000           ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1001   Register BasePtr = TRI->getBaseRegister();
1002   bool HasWinCFI = false;
1003 
1004   // Debug location must be unknown since the first debug location is used
1005   // to determine the end of the prologue.
1006   DebugLoc DL;
1007 
1008   // Add RETADDR move area to callee saved frame size.
1009   int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1010   if (TailCallReturnAddrDelta && IsWin64Prologue)
1011     report_fatal_error("Can't handle guaranteed tail call under win64 yet");
1012 
1013   if (TailCallReturnAddrDelta < 0)
1014     X86FI->setCalleeSavedFrameSize(
1015       X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
1016 
1017   bool UseStackProbe = !STI.getTargetLowering()->getStackProbeSymbolName(MF).empty();
1018   unsigned StackProbeSize = STI.getTargetLowering()->getStackProbeSize(MF);
1019 
1020   // Re-align the stack on 64-bit if the x86-interrupt calling convention is
1021   // used and an error code was pushed, since the x86-64 ABI requires a 16-byte
1022   // stack alignment.
1023   if (Fn.getCallingConv() == CallingConv::X86_INTR && Is64Bit &&
1024       Fn.arg_size() == 2) {
1025     StackSize += 8;
1026     MFI.setStackSize(StackSize);
1027     emitSPUpdate(MBB, MBBI, DL, -8, /*InEpilogue=*/false);
1028   }
1029 
1030   // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
1031   // function, and use up to 128 bytes of stack space, don't have a frame
1032   // pointer, calls, or dynamic alloca then we do not need to adjust the
1033   // stack pointer (we fit in the Red Zone). We also check that we don't
1034   // push and pop from the stack.
1035   if (has128ByteRedZone(MF) &&
1036       !TRI->needsStackRealignment(MF) &&
1037       !MFI.hasVarSizedObjects() &&             // No dynamic alloca.
1038       !MFI.adjustsStack() &&                   // No calls.
1039       !UseStackProbe &&                        // No stack probes.
1040       !MFI.hasCopyImplyingStackAdjustment() && // Don't push and pop.
1041       !MF.shouldSplitStack()) {                // Regular stack
1042     uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
1043     if (HasFP) MinSize += SlotSize;
1044     X86FI->setUsesRedZone(MinSize > 0 || StackSize > 0);
1045     StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
1046     MFI.setStackSize(StackSize);
1047   }
1048 
1049   // Insert stack pointer adjustment for later moving of return addr.  Only
1050   // applies to tail call optimized functions where the callee argument stack
1051   // size is bigger than the callers.
1052   if (TailCallReturnAddrDelta < 0) {
1053     BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
1054                          /*InEpilogue=*/false)
1055         .setMIFlag(MachineInstr::FrameSetup);
1056   }
1057 
1058   // Mapping for machine moves:
1059   //
1060   //   DST: VirtualFP AND
1061   //        SRC: VirtualFP              => DW_CFA_def_cfa_offset
1062   //        ELSE                        => DW_CFA_def_cfa
1063   //
1064   //   SRC: VirtualFP AND
1065   //        DST: Register               => DW_CFA_def_cfa_register
1066   //
1067   //   ELSE
1068   //        OFFSET < 0                  => DW_CFA_offset_extended_sf
1069   //        REG < 64                    => DW_CFA_offset + Reg
1070   //        ELSE                        => DW_CFA_offset_extended
1071 
1072   uint64_t NumBytes = 0;
1073   int stackGrowth = -SlotSize;
1074 
1075   // Find the funclet establisher parameter
1076   Register Establisher = X86::NoRegister;
1077   if (IsClrFunclet)
1078     Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1079   else if (IsFunclet)
1080     Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1081 
1082   if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1083     // Immediately spill establisher into the home slot.
1084     // The runtime cares about this.
1085     // MOV64mr %rdx, 16(%rsp)
1086     unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1087     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1088         .addReg(Establisher)
1089         .setMIFlag(MachineInstr::FrameSetup);
1090     MBB.addLiveIn(Establisher);
1091   }
1092 
1093   if (HasFP) {
1094     assert(MF.getRegInfo().isReserved(MachineFramePtr) && "FP reserved");
1095 
1096     // Calculate required stack adjustment.
1097     uint64_t FrameSize = StackSize - SlotSize;
1098     // If required, include space for extra hidden slot for stashing base pointer.
1099     if (X86FI->getRestoreBasePointer())
1100       FrameSize += SlotSize;
1101 
1102     NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1103 
1104     // Callee-saved registers are pushed on stack before the stack is realigned.
1105     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1106       NumBytes = alignTo(NumBytes, MaxAlign);
1107 
1108     // Save EBP/RBP into the appropriate stack slot.
1109     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1110       .addReg(MachineFramePtr, RegState::Kill)
1111       .setMIFlag(MachineInstr::FrameSetup);
1112 
1113     if (NeedsDwarfCFI) {
1114       // Mark the place where EBP/RBP was saved.
1115       // Define the current CFA rule to use the provided offset.
1116       assert(StackSize);
1117       BuildCFI(MBB, MBBI, DL,
1118                MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1119 
1120       // Change the rule for the FramePtr to be an "offset" rule.
1121       unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1122       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1123                                   nullptr, DwarfFramePtr, 2 * stackGrowth));
1124     }
1125 
1126     if (NeedsWinCFI) {
1127       HasWinCFI = true;
1128       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1129           .addImm(FramePtr)
1130           .setMIFlag(MachineInstr::FrameSetup);
1131     }
1132 
1133     if (!IsWin64Prologue && !IsFunclet) {
1134       // Update EBP with the new base value.
1135       BuildMI(MBB, MBBI, DL,
1136               TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1137               FramePtr)
1138           .addReg(StackPtr)
1139           .setMIFlag(MachineInstr::FrameSetup);
1140 
1141       if (NeedsDwarfCFI) {
1142         // Mark effective beginning of when frame pointer becomes valid.
1143         // Define the current CFA to use the EBP/RBP register.
1144         unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1145         BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1146                                     nullptr, DwarfFramePtr));
1147       }
1148 
1149       if (NeedsWinFPO) {
1150         // .cv_fpo_setframe $FramePtr
1151         HasWinCFI = true;
1152         BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1153             .addImm(FramePtr)
1154             .addImm(0)
1155             .setMIFlag(MachineInstr::FrameSetup);
1156       }
1157     }
1158   } else {
1159     assert(!IsFunclet && "funclets without FPs not yet implemented");
1160     NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1161   }
1162 
1163   // Update the offset adjustment, which is mainly used by codeview to translate
1164   // from ESP to VFRAME relative local variable offsets.
1165   if (!IsFunclet) {
1166     if (HasFP && TRI->needsStackRealignment(MF))
1167       MFI.setOffsetAdjustment(-NumBytes);
1168     else
1169       MFI.setOffsetAdjustment(-StackSize);
1170   }
1171 
1172   // For EH funclets, only allocate enough space for outgoing calls. Save the
1173   // NumBytes value that we would've used for the parent frame.
1174   unsigned ParentFrameNumBytes = NumBytes;
1175   if (IsFunclet)
1176     NumBytes = getWinEHFuncletFrameSize(MF);
1177 
1178   // Skip the callee-saved push instructions.
1179   bool PushedRegs = false;
1180   int StackOffset = 2 * stackGrowth;
1181 
1182   while (MBBI != MBB.end() &&
1183          MBBI->getFlag(MachineInstr::FrameSetup) &&
1184          (MBBI->getOpcode() == X86::PUSH32r ||
1185           MBBI->getOpcode() == X86::PUSH64r)) {
1186     PushedRegs = true;
1187     Register Reg = MBBI->getOperand(0).getReg();
1188     ++MBBI;
1189 
1190     if (!HasFP && NeedsDwarfCFI) {
1191       // Mark callee-saved push instruction.
1192       // Define the current CFA rule to use the provided offset.
1193       assert(StackSize);
1194       BuildCFI(MBB, MBBI, DL,
1195                MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1196       StackOffset += stackGrowth;
1197     }
1198 
1199     if (NeedsWinCFI) {
1200       HasWinCFI = true;
1201       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1202           .addImm(Reg)
1203           .setMIFlag(MachineInstr::FrameSetup);
1204     }
1205   }
1206 
1207   // Realign stack after we pushed callee-saved registers (so that we'll be
1208   // able to calculate their offsets from the frame pointer).
1209   // Don't do this for Win64, it needs to realign the stack after the prologue.
1210   if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1211     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1212     BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1213 
1214     if (NeedsWinCFI) {
1215       HasWinCFI = true;
1216       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlign))
1217           .addImm(MaxAlign)
1218           .setMIFlag(MachineInstr::FrameSetup);
1219     }
1220   }
1221 
1222   // If there is an SUB32ri of ESP immediately before this instruction, merge
1223   // the two. This can be the case when tail call elimination is enabled and
1224   // the callee has more arguments then the caller.
1225   NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1226 
1227   // Adjust stack pointer: ESP -= numbytes.
1228 
1229   // Windows and cygwin/mingw require a prologue helper routine when allocating
1230   // more than 4K bytes on the stack.  Windows uses __chkstk and cygwin/mingw
1231   // uses __alloca.  __alloca and the 32-bit version of __chkstk will probe the
1232   // stack and adjust the stack pointer in one go.  The 64-bit version of
1233   // __chkstk is only responsible for probing the stack.  The 64-bit prologue is
1234   // responsible for adjusting the stack pointer.  Touching the stack at 4K
1235   // increments is necessary to ensure that the guard pages used by the OS
1236   // virtual memory manager are allocated in correct sequence.
1237   uint64_t AlignedNumBytes = NumBytes;
1238   if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1239     AlignedNumBytes = alignTo(AlignedNumBytes, MaxAlign);
1240   if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1241     assert(!X86FI->getUsesRedZone() &&
1242            "The Red Zone is not accounted for in stack probes");
1243 
1244     // Check whether EAX is livein for this block.
1245     bool isEAXAlive = isEAXLiveIn(MBB);
1246 
1247     if (isEAXAlive) {
1248       if (Is64Bit) {
1249         // Save RAX
1250         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH64r))
1251           .addReg(X86::RAX, RegState::Kill)
1252           .setMIFlag(MachineInstr::FrameSetup);
1253       } else {
1254         // Save EAX
1255         BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1256           .addReg(X86::EAX, RegState::Kill)
1257           .setMIFlag(MachineInstr::FrameSetup);
1258       }
1259     }
1260 
1261     if (Is64Bit) {
1262       // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1263       // Function prologue is responsible for adjusting the stack pointer.
1264       int64_t Alloc = isEAXAlive ? NumBytes - 8 : NumBytes;
1265       if (isUInt<32>(Alloc)) {
1266         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1267             .addImm(Alloc)
1268             .setMIFlag(MachineInstr::FrameSetup);
1269       } else if (isInt<32>(Alloc)) {
1270         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1271             .addImm(Alloc)
1272             .setMIFlag(MachineInstr::FrameSetup);
1273       } else {
1274         BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1275             .addImm(Alloc)
1276             .setMIFlag(MachineInstr::FrameSetup);
1277       }
1278     } else {
1279       // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1280       // We'll also use 4 already allocated bytes for EAX.
1281       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1282           .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1283           .setMIFlag(MachineInstr::FrameSetup);
1284     }
1285 
1286     // Call __chkstk, __chkstk_ms, or __alloca.
1287     emitStackProbe(MF, MBB, MBBI, DL, true);
1288 
1289     if (isEAXAlive) {
1290       // Restore RAX/EAX
1291       MachineInstr *MI;
1292       if (Is64Bit)
1293         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV64rm), X86::RAX),
1294                           StackPtr, false, NumBytes - 8);
1295       else
1296         MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1297                           StackPtr, false, NumBytes - 4);
1298       MI->setFlag(MachineInstr::FrameSetup);
1299       MBB.insert(MBBI, MI);
1300     }
1301   } else if (NumBytes) {
1302     emitSPUpdate(MBB, MBBI, DL, -(int64_t)NumBytes, /*InEpilogue=*/false);
1303   }
1304 
1305   if (NeedsWinCFI && NumBytes) {
1306     HasWinCFI = true;
1307     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1308         .addImm(NumBytes)
1309         .setMIFlag(MachineInstr::FrameSetup);
1310   }
1311 
1312   int SEHFrameOffset = 0;
1313   unsigned SPOrEstablisher;
1314   if (IsFunclet) {
1315     if (IsClrFunclet) {
1316       // The establisher parameter passed to a CLR funclet is actually a pointer
1317       // to the (mostly empty) frame of its nearest enclosing funclet; we have
1318       // to find the root function establisher frame by loading the PSPSym from
1319       // the intermediate frame.
1320       unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1321       MachinePointerInfo NoInfo;
1322       MBB.addLiveIn(Establisher);
1323       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1324                    Establisher, false, PSPSlotOffset)
1325           .addMemOperand(MF.getMachineMemOperand(
1326               NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1327       ;
1328       // Save the root establisher back into the current funclet's (mostly
1329       // empty) frame, in case a sub-funclet or the GC needs it.
1330       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1331                    false, PSPSlotOffset)
1332           .addReg(Establisher)
1333           .addMemOperand(
1334               MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1335                                                   MachineMemOperand::MOVolatile,
1336                                       SlotSize, SlotSize));
1337     }
1338     SPOrEstablisher = Establisher;
1339   } else {
1340     SPOrEstablisher = StackPtr;
1341   }
1342 
1343   if (IsWin64Prologue && HasFP) {
1344     // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1345     // this calculation on the incoming establisher, which holds the value of
1346     // RSP from the parent frame at the end of the prologue.
1347     SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1348     if (SEHFrameOffset)
1349       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1350                    SPOrEstablisher, false, SEHFrameOffset);
1351     else
1352       BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1353           .addReg(SPOrEstablisher);
1354 
1355     // If this is not a funclet, emit the CFI describing our frame pointer.
1356     if (NeedsWinCFI && !IsFunclet) {
1357       assert(!NeedsWinFPO && "this setframe incompatible with FPO data");
1358       HasWinCFI = true;
1359       BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1360           .addImm(FramePtr)
1361           .addImm(SEHFrameOffset)
1362           .setMIFlag(MachineInstr::FrameSetup);
1363       if (isAsynchronousEHPersonality(Personality))
1364         MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1365     }
1366   } else if (IsFunclet && STI.is32Bit()) {
1367     // Reset EBP / ESI to something good for funclets.
1368     MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1369     // If we're a catch funclet, we can be returned to via catchret. Save ESP
1370     // into the registration node so that the runtime will restore it for us.
1371     if (!MBB.isCleanupFuncletEntry()) {
1372       assert(Personality == EHPersonality::MSVC_CXX);
1373       unsigned FrameReg;
1374       int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1375       int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1376       // ESP is the first field, so no extra displacement is needed.
1377       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1378                    false, EHRegOffset)
1379           .addReg(X86::ESP);
1380     }
1381   }
1382 
1383   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1384     const MachineInstr &FrameInstr = *MBBI;
1385     ++MBBI;
1386 
1387     if (NeedsWinCFI) {
1388       int FI;
1389       if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1390         if (X86::FR64RegClass.contains(Reg)) {
1391           int Offset;
1392           unsigned IgnoredFrameReg;
1393           if (IsWin64Prologue && IsFunclet)
1394             Offset = getWin64EHFrameIndexRef(MF, FI, IgnoredFrameReg);
1395           else
1396             Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg) +
1397                      SEHFrameOffset;
1398 
1399           HasWinCFI = true;
1400           assert(!NeedsWinFPO && "SEH_SaveXMM incompatible with FPO data");
1401           BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1402               .addImm(Reg)
1403               .addImm(Offset)
1404               .setMIFlag(MachineInstr::FrameSetup);
1405         }
1406       }
1407     }
1408   }
1409 
1410   if (NeedsWinCFI && HasWinCFI)
1411     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1412         .setMIFlag(MachineInstr::FrameSetup);
1413 
1414   if (FnHasClrFunclet && !IsFunclet) {
1415     // Save the so-called Initial-SP (i.e. the value of the stack pointer
1416     // immediately after the prolog)  into the PSPSlot so that funclets
1417     // and the GC can recover it.
1418     unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1419     auto PSPInfo = MachinePointerInfo::getFixedStack(
1420         MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1421     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1422                  PSPSlotOffset)
1423         .addReg(StackPtr)
1424         .addMemOperand(MF.getMachineMemOperand(
1425             PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1426             SlotSize, SlotSize));
1427   }
1428 
1429   // Realign stack after we spilled callee-saved registers (so that we'll be
1430   // able to calculate their offsets from the frame pointer).
1431   // Win64 requires aligning the stack after the prologue.
1432   if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1433     assert(HasFP && "There should be a frame pointer if stack is realigned.");
1434     BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1435   }
1436 
1437   // We already dealt with stack realignment and funclets above.
1438   if (IsFunclet && STI.is32Bit())
1439     return;
1440 
1441   // If we need a base pointer, set it up here. It's whatever the value
1442   // of the stack pointer is at this point. Any variable size objects
1443   // will be allocated after this, so we can still use the base pointer
1444   // to reference locals.
1445   if (TRI->hasBasePointer(MF)) {
1446     // Update the base pointer with the current stack pointer.
1447     unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1448     BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1449       .addReg(SPOrEstablisher)
1450       .setMIFlag(MachineInstr::FrameSetup);
1451     if (X86FI->getRestoreBasePointer()) {
1452       // Stash value of base pointer.  Saving RSP instead of EBP shortens
1453       // dependence chain. Used by SjLj EH.
1454       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1455       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1456                    FramePtr, true, X86FI->getRestoreBasePointerOffset())
1457         .addReg(SPOrEstablisher)
1458         .setMIFlag(MachineInstr::FrameSetup);
1459     }
1460 
1461     if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1462       // Stash the value of the frame pointer relative to the base pointer for
1463       // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1464       // it recovers the frame pointer from the base pointer rather than the
1465       // other way around.
1466       unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1467       unsigned UsedReg;
1468       int Offset =
1469           getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1470       assert(UsedReg == BasePtr);
1471       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1472           .addReg(FramePtr)
1473           .setMIFlag(MachineInstr::FrameSetup);
1474     }
1475   }
1476 
1477   if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1478     // Mark end of stack pointer adjustment.
1479     if (!HasFP && NumBytes) {
1480       // Define the current CFA rule to use the provided offset.
1481       assert(StackSize);
1482       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1483                                   nullptr, -StackSize + stackGrowth));
1484     }
1485 
1486     // Emit DWARF info specifying the offsets of the callee-saved registers.
1487     emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1488   }
1489 
1490   // X86 Interrupt handling function cannot assume anything about the direction
1491   // flag (DF in EFLAGS register). Clear this flag by creating "cld" instruction
1492   // in each prologue of interrupt handler function.
1493   //
1494   // FIXME: Create "cld" instruction only in these cases:
1495   // 1. The interrupt handling function uses any of the "rep" instructions.
1496   // 2. Interrupt handling function calls another function.
1497   //
1498   if (Fn.getCallingConv() == CallingConv::X86_INTR)
1499     BuildMI(MBB, MBBI, DL, TII.get(X86::CLD))
1500         .setMIFlag(MachineInstr::FrameSetup);
1501 
1502   // At this point we know if the function has WinCFI or not.
1503   MF.setHasWinCFI(HasWinCFI);
1504 }
1505 
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1506 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1507     const MachineFunction &MF) const {
1508   // We can't use LEA instructions for adjusting the stack pointer if we don't
1509   // have a frame pointer in the Win64 ABI.  Only ADD instructions may be used
1510   // to deallocate the stack.
1511   // This means that we can use LEA for SP in two situations:
1512   // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1513   // 2. We *have* a frame pointer which means we are permitted to use LEA.
1514   return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1515 }
1516 
isFuncletReturnInstr(MachineInstr & MI)1517 static bool isFuncletReturnInstr(MachineInstr &MI) {
1518   switch (MI.getOpcode()) {
1519   case X86::CATCHRET:
1520   case X86::CLEANUPRET:
1521     return true;
1522   default:
1523     return false;
1524   }
1525   llvm_unreachable("impossible");
1526 }
1527 
1528 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1529 // stack. It holds a pointer to the bottom of the root function frame.  The
1530 // establisher frame pointer passed to a nested funclet may point to the
1531 // (mostly empty) frame of its parent funclet, but it will need to find
1532 // the frame of the root function to access locals.  To facilitate this,
1533 // every funclet copies the pointer to the bottom of the root function
1534 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1535 // same offset for the PSPSym in the root function frame that's used in the
1536 // funclets' frames allows each funclet to dynamically accept any ancestor
1537 // frame as its establisher argument (the runtime doesn't guarantee the
1538 // immediate parent for some reason lost to history), and also allows the GC,
1539 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1540 // frame with only a single offset reported for the entire method.
1541 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1542 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1543   const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1544   unsigned SPReg;
1545   int Offset = getFrameIndexReferencePreferSP(MF, Info.PSPSymFrameIdx, SPReg,
1546                                               /*IgnoreSPUpdates*/ true);
1547   assert(Offset >= 0 && SPReg == TRI->getStackRegister());
1548   return static_cast<unsigned>(Offset);
1549 }
1550 
1551 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1552 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1553   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1554   // This is the size of the pushed CSRs.
1555   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1556   // This is the size of callee saved XMMs.
1557   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1558   unsigned XMMSize = WinEHXMMSlotInfo.size() *
1559                      TRI->getSpillSize(X86::VR128RegClass);
1560   // This is the amount of stack a funclet needs to allocate.
1561   unsigned UsedSize;
1562   EHPersonality Personality =
1563       classifyEHPersonality(MF.getFunction().getPersonalityFn());
1564   if (Personality == EHPersonality::CoreCLR) {
1565     // CLR funclets need to hold enough space to include the PSPSym, at the
1566     // same offset from the stack pointer (immediately after the prolog) as it
1567     // resides at in the main function.
1568     UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1569   } else {
1570     // Other funclets just need enough stack for outgoing call arguments.
1571     UsedSize = MF.getFrameInfo().getMaxCallFrameSize();
1572   }
1573   // RBP is not included in the callee saved register block. After pushing RBP,
1574   // everything is 16 byte aligned. Everything we allocate before an outgoing
1575   // call must also be 16 byte aligned.
1576   unsigned FrameSizeMinusRBP = alignTo(CSSize + UsedSize, getStackAlignment());
1577   // Subtract out the size of the callee saved registers. This is how much stack
1578   // each funclet will allocate.
1579   return FrameSizeMinusRBP + XMMSize - CSSize;
1580 }
1581 
isTailCallOpcode(unsigned Opc)1582 static bool isTailCallOpcode(unsigned Opc) {
1583     return Opc == X86::TCRETURNri || Opc == X86::TCRETURNdi ||
1584         Opc == X86::TCRETURNmi ||
1585         Opc == X86::TCRETURNri64 || Opc == X86::TCRETURNdi64 ||
1586         Opc == X86::TCRETURNmi64;
1587 }
1588 
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1589 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1590                                     MachineBasicBlock &MBB) const {
1591   const MachineFrameInfo &MFI = MF.getFrameInfo();
1592   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1593   MachineBasicBlock::iterator Terminator = MBB.getFirstTerminator();
1594   MachineBasicBlock::iterator MBBI = Terminator;
1595   DebugLoc DL;
1596   if (MBBI != MBB.end())
1597     DL = MBBI->getDebugLoc();
1598   // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1599   const bool Is64BitILP32 = STI.isTarget64BitILP32();
1600   Register FramePtr = TRI->getFrameRegister(MF);
1601   unsigned MachineFramePtr =
1602       Is64BitILP32 ? Register(getX86SubSuperRegister(FramePtr, 64)) : FramePtr;
1603 
1604   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1605   bool NeedsWin64CFI =
1606       IsWin64Prologue && MF.getFunction().needsUnwindTableEntry();
1607   bool IsFunclet = MBBI == MBB.end() ? false : isFuncletReturnInstr(*MBBI);
1608 
1609   // Get the number of bytes to allocate from the FrameInfo.
1610   uint64_t StackSize = MFI.getStackSize();
1611   uint64_t MaxAlign = calculateMaxStackAlign(MF);
1612   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1613   bool HasFP = hasFP(MF);
1614   uint64_t NumBytes = 0;
1615 
1616   bool NeedsDwarfCFI = (!MF.getTarget().getTargetTriple().isOSDarwin() &&
1617                         !MF.getTarget().getTargetTriple().isOSWindows()) &&
1618                        MF.needsFrameMoves();
1619 
1620   if (IsFunclet) {
1621     assert(HasFP && "EH funclets without FP not yet implemented");
1622     NumBytes = getWinEHFuncletFrameSize(MF);
1623   } else if (HasFP) {
1624     // Calculate required stack adjustment.
1625     uint64_t FrameSize = StackSize - SlotSize;
1626     NumBytes = FrameSize - CSSize;
1627 
1628     // Callee-saved registers were pushed on stack before the stack was
1629     // realigned.
1630     if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1631       NumBytes = alignTo(FrameSize, MaxAlign);
1632   } else {
1633     NumBytes = StackSize - CSSize;
1634   }
1635   uint64_t SEHStackAllocAmt = NumBytes;
1636 
1637   if (HasFP) {
1638     // Pop EBP.
1639     BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1640             MachineFramePtr)
1641         .setMIFlag(MachineInstr::FrameDestroy);
1642     if (NeedsDwarfCFI) {
1643       unsigned DwarfStackPtr =
1644           TRI->getDwarfRegNum(Is64Bit ? X86::RSP : X86::ESP, true);
1645       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfa(
1646                                   nullptr, DwarfStackPtr, -SlotSize));
1647       --MBBI;
1648     }
1649   }
1650 
1651   MachineBasicBlock::iterator FirstCSPop = MBBI;
1652   // Skip the callee-saved pop instructions.
1653   while (MBBI != MBB.begin()) {
1654     MachineBasicBlock::iterator PI = std::prev(MBBI);
1655     unsigned Opc = PI->getOpcode();
1656 
1657     if (Opc != X86::DBG_VALUE && !PI->isTerminator()) {
1658       if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1659           (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)))
1660         break;
1661       FirstCSPop = PI;
1662     }
1663 
1664     --MBBI;
1665   }
1666   MBBI = FirstCSPop;
1667 
1668   if (IsFunclet && Terminator->getOpcode() == X86::CATCHRET)
1669     emitCatchRetReturnValue(MBB, FirstCSPop, &*Terminator);
1670 
1671   if (MBBI != MBB.end())
1672     DL = MBBI->getDebugLoc();
1673 
1674   // If there is an ADD32ri or SUB32ri of ESP immediately before this
1675   // instruction, merge the two instructions.
1676   if (NumBytes || MFI.hasVarSizedObjects())
1677     NumBytes += mergeSPUpdates(MBB, MBBI, true);
1678 
1679   // If dynamic alloca is used, then reset esp to point to the last callee-saved
1680   // slot before popping them off! Same applies for the case, when stack was
1681   // realigned. Don't do this if this was a funclet epilogue, since the funclets
1682   // will not do realignment or dynamic stack allocation.
1683   if ((TRI->needsStackRealignment(MF) || MFI.hasVarSizedObjects()) &&
1684       !IsFunclet) {
1685     if (TRI->needsStackRealignment(MF))
1686       MBBI = FirstCSPop;
1687     unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1688     uint64_t LEAAmount =
1689         IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1690 
1691     // There are only two legal forms of epilogue:
1692     // - add SEHAllocationSize, %rsp
1693     // - lea SEHAllocationSize(%FramePtr), %rsp
1694     //
1695     // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1696     // However, we may use this sequence if we have a frame pointer because the
1697     // effects of the prologue can safely be undone.
1698     if (LEAAmount != 0) {
1699       unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1700       addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1701                    FramePtr, false, LEAAmount);
1702       --MBBI;
1703     } else {
1704       unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1705       BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1706         .addReg(FramePtr);
1707       --MBBI;
1708     }
1709   } else if (NumBytes) {
1710     // Adjust stack pointer back: ESP += numbytes.
1711     emitSPUpdate(MBB, MBBI, DL, NumBytes, /*InEpilogue=*/true);
1712     if (!hasFP(MF) && NeedsDwarfCFI) {
1713       // Define the current CFA rule to use the provided offset.
1714       BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1715                                   nullptr, -CSSize - SlotSize));
1716     }
1717     --MBBI;
1718   }
1719 
1720   // Windows unwinder will not invoke function's exception handler if IP is
1721   // either in prologue or in epilogue.  This behavior causes a problem when a
1722   // call immediately precedes an epilogue, because the return address points
1723   // into the epilogue.  To cope with that, we insert an epilogue marker here,
1724   // then replace it with a 'nop' if it ends up immediately after a CALL in the
1725   // final emitted code.
1726   if (NeedsWin64CFI && MF.hasWinCFI())
1727     BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1728 
1729   if (!hasFP(MF) && NeedsDwarfCFI) {
1730     MBBI = FirstCSPop;
1731     int64_t Offset = -CSSize - SlotSize;
1732     // Mark callee-saved pop instruction.
1733     // Define the current CFA rule to use the provided offset.
1734     while (MBBI != MBB.end()) {
1735       MachineBasicBlock::iterator PI = MBBI;
1736       unsigned Opc = PI->getOpcode();
1737       ++MBBI;
1738       if (Opc == X86::POP32r || Opc == X86::POP64r) {
1739         Offset += SlotSize;
1740         BuildCFI(MBB, MBBI, DL,
1741                  MCCFIInstruction::createDefCfaOffset(nullptr, Offset));
1742       }
1743     }
1744   }
1745 
1746   if (Terminator == MBB.end() || !isTailCallOpcode(Terminator->getOpcode())) {
1747     // Add the return addr area delta back since we are not tail calling.
1748     int Offset = -1 * X86FI->getTCReturnAddrDelta();
1749     assert(Offset >= 0 && "TCDelta should never be positive");
1750     if (Offset) {
1751       // Check for possible merge with preceding ADD instruction.
1752       Offset += mergeSPUpdates(MBB, Terminator, true);
1753       emitSPUpdate(MBB, Terminator, DL, Offset, /*InEpilogue=*/true);
1754     }
1755   }
1756 }
1757 
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1758 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1759                                              unsigned &FrameReg) const {
1760   const MachineFrameInfo &MFI = MF.getFrameInfo();
1761 
1762   bool IsFixed = MFI.isFixedObjectIndex(FI);
1763   // We can't calculate offset from frame pointer if the stack is realigned,
1764   // so enforce usage of stack/base pointer.  The base pointer is used when we
1765   // have dynamic allocas in addition to dynamic realignment.
1766   if (TRI->hasBasePointer(MF))
1767     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getBaseRegister();
1768   else if (TRI->needsStackRealignment(MF))
1769     FrameReg = IsFixed ? TRI->getFramePtr() : TRI->getStackRegister();
1770   else
1771     FrameReg = TRI->getFrameRegister(MF);
1772 
1773   // Offset will hold the offset from the stack pointer at function entry to the
1774   // object.
1775   // We need to factor in additional offsets applied during the prologue to the
1776   // frame, base, and stack pointer depending on which is used.
1777   int Offset = MFI.getObjectOffset(FI) - getOffsetOfLocalArea();
1778   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1779   unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1780   uint64_t StackSize = MFI.getStackSize();
1781   bool HasFP = hasFP(MF);
1782   bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1783   int64_t FPDelta = 0;
1784 
1785   // In an x86 interrupt, remove the offset we added to account for the return
1786   // address from any stack object allocated in the caller's frame. Interrupts
1787   // do not have a standard return address. Fixed objects in the current frame,
1788   // such as SSE register spills, should not get this treatment.
1789   if (MF.getFunction().getCallingConv() == CallingConv::X86_INTR &&
1790       Offset >= 0) {
1791     Offset += getOffsetOfLocalArea();
1792   }
1793 
1794   if (IsWin64Prologue) {
1795     assert(!MFI.hasCalls() || (StackSize % 16) == 8);
1796 
1797     // Calculate required stack adjustment.
1798     uint64_t FrameSize = StackSize - SlotSize;
1799     // If required, include space for extra hidden slot for stashing base pointer.
1800     if (X86FI->getRestoreBasePointer())
1801       FrameSize += SlotSize;
1802     uint64_t NumBytes = FrameSize - CSSize;
1803 
1804     uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1805     if (FI && FI == X86FI->getFAIndex())
1806       return -SEHFrameOffset;
1807 
1808     // FPDelta is the offset from the "traditional" FP location of the old base
1809     // pointer followed by return address and the location required by the
1810     // restricted Win64 prologue.
1811     // Add FPDelta to all offsets below that go through the frame pointer.
1812     FPDelta = FrameSize - SEHFrameOffset;
1813     assert((!MFI.hasCalls() || (FPDelta % 16) == 0) &&
1814            "FPDelta isn't aligned per the Win64 ABI!");
1815   }
1816 
1817 
1818   if (TRI->hasBasePointer(MF)) {
1819     assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1820     if (FI < 0) {
1821       // Skip the saved EBP.
1822       return Offset + SlotSize + FPDelta;
1823     } else {
1824       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1825       return Offset + StackSize;
1826     }
1827   } else if (TRI->needsStackRealignment(MF)) {
1828     if (FI < 0) {
1829       // Skip the saved EBP.
1830       return Offset + SlotSize + FPDelta;
1831     } else {
1832       assert((-(Offset + StackSize)) % MFI.getObjectAlignment(FI) == 0);
1833       return Offset + StackSize;
1834     }
1835     // FIXME: Support tail calls
1836   } else {
1837     if (!HasFP)
1838       return Offset + StackSize;
1839 
1840     // Skip the saved EBP.
1841     Offset += SlotSize;
1842 
1843     // Skip the RETADDR move area
1844     int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1845     if (TailCallReturnAddrDelta < 0)
1846       Offset -= TailCallReturnAddrDelta;
1847   }
1848 
1849   return Offset + FPDelta;
1850 }
1851 
getWin64EHFrameIndexRef(const MachineFunction & MF,int FI,unsigned & FrameReg) const1852 int X86FrameLowering::getWin64EHFrameIndexRef(const MachineFunction &MF,
1853                                               int FI, unsigned &FrameReg) const {
1854   const MachineFrameInfo &MFI = MF.getFrameInfo();
1855   const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1856   const auto& WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1857   const auto it = WinEHXMMSlotInfo.find(FI);
1858 
1859   if (it == WinEHXMMSlotInfo.end())
1860     return getFrameIndexReference(MF, FI, FrameReg);
1861 
1862   FrameReg = TRI->getStackRegister();
1863   return alignDown(MFI.getMaxCallFrameSize(), getStackAlignment()) + it->second;
1864 }
1865 
getFrameIndexReferenceSP(const MachineFunction & MF,int FI,unsigned & FrameReg,int Adjustment) const1866 int X86FrameLowering::getFrameIndexReferenceSP(const MachineFunction &MF,
1867                                                int FI, unsigned &FrameReg,
1868                                                int Adjustment) const {
1869   const MachineFrameInfo &MFI = MF.getFrameInfo();
1870   FrameReg = TRI->getStackRegister();
1871   return MFI.getObjectOffset(FI) - getOffsetOfLocalArea() + Adjustment;
1872 }
1873 
1874 int
getFrameIndexReferencePreferSP(const MachineFunction & MF,int FI,unsigned & FrameReg,bool IgnoreSPUpdates) const1875 X86FrameLowering::getFrameIndexReferencePreferSP(const MachineFunction &MF,
1876                                                  int FI, unsigned &FrameReg,
1877                                                  bool IgnoreSPUpdates) const {
1878 
1879   const MachineFrameInfo &MFI = MF.getFrameInfo();
1880   // Does not include any dynamic realign.
1881   const uint64_t StackSize = MFI.getStackSize();
1882   // LLVM arranges the stack as follows:
1883   //   ...
1884   //   ARG2
1885   //   ARG1
1886   //   RETADDR
1887   //   PUSH RBP   <-- RBP points here
1888   //   PUSH CSRs
1889   //   ~~~~~~~    <-- possible stack realignment (non-win64)
1890   //   ...
1891   //   STACK OBJECTS
1892   //   ...        <-- RSP after prologue points here
1893   //   ~~~~~~~    <-- possible stack realignment (win64)
1894   //
1895   // if (hasVarSizedObjects()):
1896   //   ...        <-- "base pointer" (ESI/RBX) points here
1897   //   DYNAMIC ALLOCAS
1898   //   ...        <-- RSP points here
1899   //
1900   // Case 1: In the simple case of no stack realignment and no dynamic
1901   // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1902   // with fixed offsets from RSP.
1903   //
1904   // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1905   // stack objects are addressed with RBP and regular stack objects with RSP.
1906   //
1907   // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1908   // to address stack arguments for outgoing calls and nothing else. The "base
1909   // pointer" points to local variables, and RBP points to fixed objects.
1910   //
1911   // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1912   // answer we give is relative to the SP after the prologue, and not the
1913   // SP in the middle of the function.
1914 
1915   if (MFI.isFixedObjectIndex(FI) && TRI->needsStackRealignment(MF) &&
1916       !STI.isTargetWin64())
1917     return getFrameIndexReference(MF, FI, FrameReg);
1918 
1919   // If !hasReservedCallFrame the function might have SP adjustement in the
1920   // body.  So, even though the offset is statically known, it depends on where
1921   // we are in the function.
1922   if (!IgnoreSPUpdates && !hasReservedCallFrame(MF))
1923     return getFrameIndexReference(MF, FI, FrameReg);
1924 
1925   // We don't handle tail calls, and shouldn't be seeing them either.
1926   assert(MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta() >= 0 &&
1927          "we don't handle this case!");
1928 
1929   // This is how the math works out:
1930   //
1931   //  %rsp grows (i.e. gets lower) left to right. Each box below is
1932   //  one word (eight bytes).  Obj0 is the stack slot we're trying to
1933   //  get to.
1934   //
1935   //    ----------------------------------
1936   //    | BP | Obj0 | Obj1 | ... | ObjN |
1937   //    ----------------------------------
1938   //    ^    ^      ^                   ^
1939   //    A    B      C                   E
1940   //
1941   // A is the incoming stack pointer.
1942   // (B - A) is the local area offset (-8 for x86-64) [1]
1943   // (C - A) is the Offset returned by MFI.getObjectOffset for Obj0 [2]
1944   //
1945   // |(E - B)| is the StackSize (absolute value, positive).  For a
1946   // stack that grown down, this works out to be (B - E). [3]
1947   //
1948   // E is also the value of %rsp after stack has been set up, and we
1949   // want (C - E) -- the value we can add to %rsp to get to Obj0.  Now
1950   // (C - E) == (C - A) - (B - A) + (B - E)
1951   //            { Using [1], [2] and [3] above }
1952   //         == getObjectOffset - LocalAreaOffset + StackSize
1953 
1954   return getFrameIndexReferenceSP(MF, FI, FrameReg, StackSize);
1955 }
1956 
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1957 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1958     MachineFunction &MF, const TargetRegisterInfo *TRI,
1959     std::vector<CalleeSavedInfo> &CSI) const {
1960   MachineFrameInfo &MFI = MF.getFrameInfo();
1961   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1962 
1963   unsigned CalleeSavedFrameSize = 0;
1964   unsigned XMMCalleeSavedFrameSize = 0;
1965   auto &WinEHXMMSlotInfo = X86FI->getWinEHXMMSlotInfo();
1966   int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1967 
1968   int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1969 
1970   if (TailCallReturnAddrDelta < 0) {
1971     // create RETURNADDR area
1972     //   arg
1973     //   arg
1974     //   RETADDR
1975     //   { ...
1976     //     RETADDR area
1977     //     ...
1978     //   }
1979     //   [EBP]
1980     MFI.CreateFixedObject(-TailCallReturnAddrDelta,
1981                            TailCallReturnAddrDelta - SlotSize, true);
1982   }
1983 
1984   // Spill the BasePtr if it's used.
1985   if (this->TRI->hasBasePointer(MF)) {
1986     // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1987     if (MF.hasEHFunclets()) {
1988       int FI = MFI.CreateSpillStackObject(SlotSize, SlotSize);
1989       X86FI->setHasSEHFramePtrSave(true);
1990       X86FI->setSEHFramePtrSaveIndex(FI);
1991     }
1992   }
1993 
1994   if (hasFP(MF)) {
1995     // emitPrologue always spills frame register the first thing.
1996     SpillSlotOffset -= SlotSize;
1997     MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1998 
1999     // Since emitPrologue and emitEpilogue will handle spilling and restoring of
2000     // the frame register, we can delete it from CSI list and not have to worry
2001     // about avoiding it later.
2002     Register FPReg = TRI->getFrameRegister(MF);
2003     for (unsigned i = 0; i < CSI.size(); ++i) {
2004       if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
2005         CSI.erase(CSI.begin() + i);
2006         break;
2007       }
2008     }
2009   }
2010 
2011   // Assign slots for GPRs. It increases frame size.
2012   for (unsigned i = CSI.size(); i != 0; --i) {
2013     unsigned Reg = CSI[i - 1].getReg();
2014 
2015     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2016       continue;
2017 
2018     SpillSlotOffset -= SlotSize;
2019     CalleeSavedFrameSize += SlotSize;
2020 
2021     int SlotIndex = MFI.CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
2022     CSI[i - 1].setFrameIdx(SlotIndex);
2023   }
2024 
2025   X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
2026   MFI.setCVBytesOfCalleeSavedRegisters(CalleeSavedFrameSize);
2027 
2028   // Assign slots for XMMs.
2029   for (unsigned i = CSI.size(); i != 0; --i) {
2030     unsigned Reg = CSI[i - 1].getReg();
2031     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2032       continue;
2033 
2034     // If this is k-register make sure we lookup via the largest legal type.
2035     MVT VT = MVT::Other;
2036     if (X86::VK16RegClass.contains(Reg))
2037       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2038 
2039     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2040     unsigned Size = TRI->getSpillSize(*RC);
2041     unsigned Align = TRI->getSpillAlignment(*RC);
2042     // ensure alignment
2043     assert(SpillSlotOffset < 0 && "SpillSlotOffset should always < 0 on X86");
2044     SpillSlotOffset = -alignTo(-SpillSlotOffset, Align);
2045 
2046     // spill into slot
2047     SpillSlotOffset -= Size;
2048     int SlotIndex = MFI.CreateFixedSpillStackObject(Size, SpillSlotOffset);
2049     CSI[i - 1].setFrameIdx(SlotIndex);
2050     MFI.ensureMaxAlignment(Align);
2051 
2052     // Save the start offset and size of XMM in stack frame for funclets.
2053     if (X86::VR128RegClass.contains(Reg)) {
2054       WinEHXMMSlotInfo[SlotIndex] = XMMCalleeSavedFrameSize;
2055       XMMCalleeSavedFrameSize += Size;
2056     }
2057   }
2058 
2059   return true;
2060 }
2061 
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2062 bool X86FrameLowering::spillCalleeSavedRegisters(
2063     MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
2064     const std::vector<CalleeSavedInfo> &CSI,
2065     const TargetRegisterInfo *TRI) const {
2066   DebugLoc DL = MBB.findDebugLoc(MI);
2067 
2068   // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
2069   // for us, and there are no XMM CSRs on Win32.
2070   if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
2071     return true;
2072 
2073   // Push GPRs. It increases frame size.
2074   const MachineFunction &MF = *MBB.getParent();
2075   unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
2076   for (unsigned i = CSI.size(); i != 0; --i) {
2077     unsigned Reg = CSI[i - 1].getReg();
2078 
2079     if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
2080       continue;
2081 
2082     const MachineRegisterInfo &MRI = MF.getRegInfo();
2083     bool isLiveIn = MRI.isLiveIn(Reg);
2084     if (!isLiveIn)
2085       MBB.addLiveIn(Reg);
2086 
2087     // Decide whether we can add a kill flag to the use.
2088     bool CanKill = !isLiveIn;
2089     // Check if any subregister is live-in
2090     if (CanKill) {
2091       for (MCRegAliasIterator AReg(Reg, TRI, false); AReg.isValid(); ++AReg) {
2092         if (MRI.isLiveIn(*AReg)) {
2093           CanKill = false;
2094           break;
2095         }
2096       }
2097     }
2098 
2099     // Do not set a kill flag on values that are also marked as live-in. This
2100     // happens with the @llvm-returnaddress intrinsic and with arguments
2101     // passed in callee saved registers.
2102     // Omitting the kill flags is conservatively correct even if the live-in
2103     // is not used after all.
2104     BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, getKillRegState(CanKill))
2105       .setMIFlag(MachineInstr::FrameSetup);
2106   }
2107 
2108   // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
2109   // It can be done by spilling XMMs to stack frame.
2110   for (unsigned i = CSI.size(); i != 0; --i) {
2111     unsigned Reg = CSI[i-1].getReg();
2112     if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
2113       continue;
2114 
2115     // If this is k-register make sure we lookup via the largest legal type.
2116     MVT VT = MVT::Other;
2117     if (X86::VK16RegClass.contains(Reg))
2118       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2119 
2120     // Add the callee-saved register as live-in. It's killed at the spill.
2121     MBB.addLiveIn(Reg);
2122     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2123 
2124     TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
2125                             TRI);
2126     --MI;
2127     MI->setFlag(MachineInstr::FrameSetup);
2128     ++MI;
2129   }
2130 
2131   return true;
2132 }
2133 
emitCatchRetReturnValue(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,MachineInstr * CatchRet) const2134 void X86FrameLowering::emitCatchRetReturnValue(MachineBasicBlock &MBB,
2135                                                MachineBasicBlock::iterator MBBI,
2136                                                MachineInstr *CatchRet) const {
2137   // SEH shouldn't use catchret.
2138   assert(!isAsynchronousEHPersonality(classifyEHPersonality(
2139              MBB.getParent()->getFunction().getPersonalityFn())) &&
2140          "SEH should not use CATCHRET");
2141   DebugLoc DL = CatchRet->getDebugLoc();
2142   MachineBasicBlock *CatchRetTarget = CatchRet->getOperand(0).getMBB();
2143 
2144   // Fill EAX/RAX with the address of the target block.
2145   if (STI.is64Bit()) {
2146     // LEA64r CatchRetTarget(%rip), %rax
2147     BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), X86::RAX)
2148         .addReg(X86::RIP)
2149         .addImm(0)
2150         .addReg(0)
2151         .addMBB(CatchRetTarget)
2152         .addReg(0);
2153   } else {
2154     // MOV32ri $CatchRetTarget, %eax
2155     BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
2156         .addMBB(CatchRetTarget);
2157   }
2158 
2159   // Record that we've taken the address of CatchRetTarget and no longer just
2160   // reference it in a terminator.
2161   CatchRetTarget->setHasAddressTaken();
2162 }
2163 
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const2164 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
2165                                                MachineBasicBlock::iterator MI,
2166                                           std::vector<CalleeSavedInfo> &CSI,
2167                                           const TargetRegisterInfo *TRI) const {
2168   if (CSI.empty())
2169     return false;
2170 
2171   if (MI != MBB.end() && isFuncletReturnInstr(*MI) && STI.isOSWindows()) {
2172     // Don't restore CSRs in 32-bit EH funclets. Matches
2173     // spillCalleeSavedRegisters.
2174     if (STI.is32Bit())
2175       return true;
2176     // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
2177     // funclets. emitEpilogue transforms these to normal jumps.
2178     if (MI->getOpcode() == X86::CATCHRET) {
2179       const Function &F = MBB.getParent()->getFunction();
2180       bool IsSEH = isAsynchronousEHPersonality(
2181           classifyEHPersonality(F.getPersonalityFn()));
2182       if (IsSEH)
2183         return true;
2184     }
2185   }
2186 
2187   DebugLoc DL = MBB.findDebugLoc(MI);
2188 
2189   // Reload XMMs from stack frame.
2190   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2191     unsigned Reg = CSI[i].getReg();
2192     if (X86::GR64RegClass.contains(Reg) ||
2193         X86::GR32RegClass.contains(Reg))
2194       continue;
2195 
2196     // If this is k-register make sure we lookup via the largest legal type.
2197     MVT VT = MVT::Other;
2198     if (X86::VK16RegClass.contains(Reg))
2199       VT = STI.hasBWI() ? MVT::v64i1 : MVT::v16i1;
2200 
2201     const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2202     TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
2203   }
2204 
2205   // POP GPRs.
2206   unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
2207   for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
2208     unsigned Reg = CSI[i].getReg();
2209     if (!X86::GR64RegClass.contains(Reg) &&
2210         !X86::GR32RegClass.contains(Reg))
2211       continue;
2212 
2213     BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
2214         .setMIFlag(MachineInstr::FrameDestroy);
2215   }
2216   return true;
2217 }
2218 
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const2219 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
2220                                             BitVector &SavedRegs,
2221                                             RegScavenger *RS) const {
2222   TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
2223 
2224   // Spill the BasePtr if it's used.
2225   if (TRI->hasBasePointer(MF)){
2226     Register BasePtr = TRI->getBaseRegister();
2227     if (STI.isTarget64BitILP32())
2228       BasePtr = getX86SubSuperRegister(BasePtr, 64);
2229     SavedRegs.set(BasePtr);
2230   }
2231 }
2232 
2233 static bool
HasNestArgument(const MachineFunction * MF)2234 HasNestArgument(const MachineFunction *MF) {
2235   const Function &F = MF->getFunction();
2236   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
2237        I != E; I++) {
2238     if (I->hasNestAttr() && !I->use_empty())
2239       return true;
2240   }
2241   return false;
2242 }
2243 
2244 /// GetScratchRegister - Get a temp register for performing work in the
2245 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2246 /// and the properties of the function either one or two registers will be
2247 /// needed. Set primary to true for the first register, false for the second.
2248 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2249 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2250   CallingConv::ID CallingConvention = MF.getFunction().getCallingConv();
2251 
2252   // Erlang stuff.
2253   if (CallingConvention == CallingConv::HiPE) {
2254     if (Is64Bit)
2255       return Primary ? X86::R14 : X86::R13;
2256     else
2257       return Primary ? X86::EBX : X86::EDI;
2258   }
2259 
2260   if (Is64Bit) {
2261     if (IsLP64)
2262       return Primary ? X86::R11 : X86::R12;
2263     else
2264       return Primary ? X86::R11D : X86::R12D;
2265   }
2266 
2267   bool IsNested = HasNestArgument(&MF);
2268 
2269   if (CallingConvention == CallingConv::X86_FastCall ||
2270       CallingConvention == CallingConv::Fast ||
2271       CallingConvention == CallingConv::Tail) {
2272     if (IsNested)
2273       report_fatal_error("Segmented stacks does not support fastcall with "
2274                          "nested function.");
2275     return Primary ? X86::EAX : X86::ECX;
2276   }
2277   if (IsNested)
2278     return Primary ? X86::EDX : X86::EAX;
2279   return Primary ? X86::ECX : X86::EAX;
2280 }
2281 
2282 // The stack limit in the TCB is set to this many bytes above the actual stack
2283 // limit.
2284 static const uint64_t kSplitStackAvailable = 256;
2285 
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2286 void X86FrameLowering::adjustForSegmentedStacks(
2287     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2288   MachineFrameInfo &MFI = MF.getFrameInfo();
2289   uint64_t StackSize;
2290   unsigned TlsReg, TlsOffset;
2291   DebugLoc DL;
2292 
2293   // To support shrink-wrapping we would need to insert the new blocks
2294   // at the right place and update the branches to PrologueMBB.
2295   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2296 
2297   unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2298   assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2299          "Scratch register is live-in");
2300 
2301   if (MF.getFunction().isVarArg())
2302     report_fatal_error("Segmented stacks do not support vararg functions.");
2303   if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2304       !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2305       !STI.isTargetDragonFly())
2306     report_fatal_error("Segmented stacks not supported on this platform.");
2307 
2308   // Eventually StackSize will be calculated by a link-time pass; which will
2309   // also decide whether checking code needs to be injected into this particular
2310   // prologue.
2311   StackSize = MFI.getStackSize();
2312 
2313   // Do not generate a prologue for leaf functions with a stack of size zero.
2314   // For non-leaf functions we have to allow for the possibility that the
2315   // callis to a non-split function, as in PR37807. This function could also
2316   // take the address of a non-split function. When the linker tries to adjust
2317   // its non-existent prologue, it would fail with an error. Mark the object
2318   // file so that such failures are not errors. See this Go language bug-report
2319   // https://go-review.googlesource.com/c/go/+/148819/
2320   if (StackSize == 0 && !MFI.hasTailCall()) {
2321     MF.getMMI().setHasNosplitStack(true);
2322     return;
2323   }
2324 
2325   MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2326   MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2327   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2328   bool IsNested = false;
2329 
2330   // We need to know if the function has a nest argument only in 64 bit mode.
2331   if (Is64Bit)
2332     IsNested = HasNestArgument(&MF);
2333 
2334   // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2335   // allocMBB needs to be last (terminating) instruction.
2336 
2337   for (const auto &LI : PrologueMBB.liveins()) {
2338     allocMBB->addLiveIn(LI);
2339     checkMBB->addLiveIn(LI);
2340   }
2341 
2342   if (IsNested)
2343     allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2344 
2345   MF.push_front(allocMBB);
2346   MF.push_front(checkMBB);
2347 
2348   // When the frame size is less than 256 we just compare the stack
2349   // boundary directly to the value of the stack pointer, per gcc.
2350   bool CompareStackPointer = StackSize < kSplitStackAvailable;
2351 
2352   // Read the limit off the current stacklet off the stack_guard location.
2353   if (Is64Bit) {
2354     if (STI.isTargetLinux()) {
2355       TlsReg = X86::FS;
2356       TlsOffset = IsLP64 ? 0x70 : 0x40;
2357     } else if (STI.isTargetDarwin()) {
2358       TlsReg = X86::GS;
2359       TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2360     } else if (STI.isTargetWin64()) {
2361       TlsReg = X86::GS;
2362       TlsOffset = 0x28; // pvArbitrary, reserved for application use
2363     } else if (STI.isTargetFreeBSD()) {
2364       TlsReg = X86::FS;
2365       TlsOffset = 0x18;
2366     } else if (STI.isTargetDragonFly()) {
2367       TlsReg = X86::FS;
2368       TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2369     } else {
2370       report_fatal_error("Segmented stacks not supported on this platform.");
2371     }
2372 
2373     if (CompareStackPointer)
2374       ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2375     else
2376       BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2377         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2378 
2379     BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2380       .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2381   } else {
2382     if (STI.isTargetLinux()) {
2383       TlsReg = X86::GS;
2384       TlsOffset = 0x30;
2385     } else if (STI.isTargetDarwin()) {
2386       TlsReg = X86::GS;
2387       TlsOffset = 0x48 + 90*4;
2388     } else if (STI.isTargetWin32()) {
2389       TlsReg = X86::FS;
2390       TlsOffset = 0x14; // pvArbitrary, reserved for application use
2391     } else if (STI.isTargetDragonFly()) {
2392       TlsReg = X86::FS;
2393       TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2394     } else if (STI.isTargetFreeBSD()) {
2395       report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2396     } else {
2397       report_fatal_error("Segmented stacks not supported on this platform.");
2398     }
2399 
2400     if (CompareStackPointer)
2401       ScratchReg = X86::ESP;
2402     else
2403       BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2404         .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2405 
2406     if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2407         STI.isTargetDragonFly()) {
2408       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2409         .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2410     } else if (STI.isTargetDarwin()) {
2411 
2412       // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2413       unsigned ScratchReg2;
2414       bool SaveScratch2;
2415       if (CompareStackPointer) {
2416         // The primary scratch register is available for holding the TLS offset.
2417         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2418         SaveScratch2 = false;
2419       } else {
2420         // Need to use a second register to hold the TLS offset
2421         ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2422 
2423         // Unfortunately, with fastcc the second scratch register may hold an
2424         // argument.
2425         SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2426       }
2427 
2428       // If Scratch2 is live-in then it needs to be saved.
2429       assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2430              "Scratch register is live-in and not saved");
2431 
2432       if (SaveScratch2)
2433         BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2434           .addReg(ScratchReg2, RegState::Kill);
2435 
2436       BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2437         .addImm(TlsOffset);
2438       BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2439         .addReg(ScratchReg)
2440         .addReg(ScratchReg2).addImm(1).addReg(0)
2441         .addImm(0)
2442         .addReg(TlsReg);
2443 
2444       if (SaveScratch2)
2445         BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2446     }
2447   }
2448 
2449   // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2450   // It jumps to normal execution of the function body.
2451   BuildMI(checkMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_A);
2452 
2453   // On 32 bit we first push the arguments size and then the frame size. On 64
2454   // bit, we pass the stack frame size in r10 and the argument size in r11.
2455   if (Is64Bit) {
2456     // Functions with nested arguments use R10, so it needs to be saved across
2457     // the call to _morestack
2458 
2459     const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2460     const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2461     const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2462     const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2463     const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2464 
2465     if (IsNested)
2466       BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2467 
2468     BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2469       .addImm(StackSize);
2470     BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2471       .addImm(X86FI->getArgumentStackSize());
2472   } else {
2473     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2474       .addImm(X86FI->getArgumentStackSize());
2475     BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2476       .addImm(StackSize);
2477   }
2478 
2479   // __morestack is in libgcc
2480   if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2481     // Under the large code model, we cannot assume that __morestack lives
2482     // within 2^31 bytes of the call site, so we cannot use pc-relative
2483     // addressing. We cannot perform the call via a temporary register,
2484     // as the rax register may be used to store the static chain, and all
2485     // other suitable registers may be either callee-save or used for
2486     // parameter passing. We cannot use the stack at this point either
2487     // because __morestack manipulates the stack directly.
2488     //
2489     // To avoid these issues, perform an indirect call via a read-only memory
2490     // location containing the address.
2491     //
2492     // This solution is not perfect, as it assumes that the .rodata section
2493     // is laid out within 2^31 bytes of each function body, but this seems
2494     // to be sufficient for JIT.
2495     // FIXME: Add retpoline support and remove the error here..
2496     if (STI.useRetpolineIndirectCalls())
2497       report_fatal_error("Emitting morestack calls on 64-bit with the large "
2498                          "code model and retpoline not yet implemented.");
2499     BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2500         .addReg(X86::RIP)
2501         .addImm(0)
2502         .addReg(0)
2503         .addExternalSymbol("__morestack_addr")
2504         .addReg(0);
2505     MF.getMMI().setUsesMorestackAddr(true);
2506   } else {
2507     if (Is64Bit)
2508       BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2509         .addExternalSymbol("__morestack");
2510     else
2511       BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2512         .addExternalSymbol("__morestack");
2513   }
2514 
2515   if (IsNested)
2516     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2517   else
2518     BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2519 
2520   allocMBB->addSuccessor(&PrologueMBB);
2521 
2522   checkMBB->addSuccessor(allocMBB, BranchProbability::getZero());
2523   checkMBB->addSuccessor(&PrologueMBB, BranchProbability::getOne());
2524 
2525 #ifdef EXPENSIVE_CHECKS
2526   MF.verify();
2527 #endif
2528 }
2529 
2530 /// Lookup an ERTS parameter in the !hipe.literals named metadata node.
2531 /// HiPE provides Erlang Runtime System-internal parameters, such as PCB offsets
2532 /// to fields it needs, through a named metadata node "hipe.literals" containing
2533 /// name-value pairs.
getHiPELiteral(NamedMDNode * HiPELiteralsMD,const StringRef LiteralName)2534 static unsigned getHiPELiteral(
2535     NamedMDNode *HiPELiteralsMD, const StringRef LiteralName) {
2536   for (int i = 0, e = HiPELiteralsMD->getNumOperands(); i != e; ++i) {
2537     MDNode *Node = HiPELiteralsMD->getOperand(i);
2538     if (Node->getNumOperands() != 2) continue;
2539     MDString *NodeName = dyn_cast<MDString>(Node->getOperand(0));
2540     ValueAsMetadata *NodeVal = dyn_cast<ValueAsMetadata>(Node->getOperand(1));
2541     if (!NodeName || !NodeVal) continue;
2542     ConstantInt *ValConst = dyn_cast_or_null<ConstantInt>(NodeVal->getValue());
2543     if (ValConst && NodeName->getString() == LiteralName) {
2544       return ValConst->getZExtValue();
2545     }
2546   }
2547 
2548   report_fatal_error("HiPE literal " + LiteralName
2549                      + " required but not provided");
2550 }
2551 
2552 // Return true if there are no non-ehpad successors to MBB and there are no
2553 // non-meta instructions between MBBI and MBB.end().
blockEndIsUnreachable(const MachineBasicBlock & MBB,MachineBasicBlock::const_iterator MBBI)2554 static bool blockEndIsUnreachable(const MachineBasicBlock &MBB,
2555                                   MachineBasicBlock::const_iterator MBBI) {
2556   return std::all_of(
2557              MBB.succ_begin(), MBB.succ_end(),
2558              [](const MachineBasicBlock *Succ) { return Succ->isEHPad(); }) &&
2559          std::all_of(MBBI, MBB.end(), [](const MachineInstr &MI) {
2560            return MI.isMetaInstruction();
2561          });
2562 }
2563 
2564 /// Erlang programs may need a special prologue to handle the stack size they
2565 /// might need at runtime. That is because Erlang/OTP does not implement a C
2566 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2567 /// (for more information see Eric Stenman's Ph.D. thesis:
2568 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2569 ///
2570 /// CheckStack:
2571 ///       temp0 = sp - MaxStack
2572 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2573 /// OldStart:
2574 ///       ...
2575 /// IncStack:
2576 ///       call inc_stack   # doubles the stack space
2577 ///       temp0 = sp - MaxStack
2578 ///       if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2579 void X86FrameLowering::adjustForHiPEPrologue(
2580     MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2581   MachineFrameInfo &MFI = MF.getFrameInfo();
2582   DebugLoc DL;
2583 
2584   // To support shrink-wrapping we would need to insert the new blocks
2585   // at the right place and update the branches to PrologueMBB.
2586   assert(&(*MF.begin()) == &PrologueMBB && "Shrink-wrapping not supported yet");
2587 
2588   // HiPE-specific values
2589   NamedMDNode *HiPELiteralsMD = MF.getMMI().getModule()
2590     ->getNamedMetadata("hipe.literals");
2591   if (!HiPELiteralsMD)
2592     report_fatal_error(
2593         "Can't generate HiPE prologue without runtime parameters");
2594   const unsigned HipeLeafWords
2595     = getHiPELiteral(HiPELiteralsMD,
2596                      Is64Bit ? "AMD64_LEAF_WORDS" : "X86_LEAF_WORDS");
2597   const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2598   const unsigned Guaranteed = HipeLeafWords * SlotSize;
2599   unsigned CallerStkArity = MF.getFunction().arg_size() > CCRegisteredArgs ?
2600                             MF.getFunction().arg_size() - CCRegisteredArgs : 0;
2601   unsigned MaxStack = MFI.getStackSize() + CallerStkArity*SlotSize + SlotSize;
2602 
2603   assert(STI.isTargetLinux() &&
2604          "HiPE prologue is only supported on Linux operating systems.");
2605 
2606   // Compute the largest caller's frame that is needed to fit the callees'
2607   // frames. This 'MaxStack' is computed from:
2608   //
2609   // a) the fixed frame size, which is the space needed for all spilled temps,
2610   // b) outgoing on-stack parameter areas, and
2611   // c) the minimum stack space this function needs to make available for the
2612   //    functions it calls (a tunable ABI property).
2613   if (MFI.hasCalls()) {
2614     unsigned MoreStackForCalls = 0;
2615 
2616     for (auto &MBB : MF) {
2617       for (auto &MI : MBB) {
2618         if (!MI.isCall())
2619           continue;
2620 
2621         // Get callee operand.
2622         const MachineOperand &MO = MI.getOperand(0);
2623 
2624         // Only take account of global function calls (no closures etc.).
2625         if (!MO.isGlobal())
2626           continue;
2627 
2628         const Function *F = dyn_cast<Function>(MO.getGlobal());
2629         if (!F)
2630           continue;
2631 
2632         // Do not update 'MaxStack' for primitive and built-in functions
2633         // (encoded with names either starting with "erlang."/"bif_" or not
2634         // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2635         // "_", such as the BIF "suspend_0") as they are executed on another
2636         // stack.
2637         if (F->getName().find("erlang.") != StringRef::npos ||
2638             F->getName().find("bif_") != StringRef::npos ||
2639             F->getName().find_first_of("._") == StringRef::npos)
2640           continue;
2641 
2642         unsigned CalleeStkArity =
2643           F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2644         if (HipeLeafWords - 1 > CalleeStkArity)
2645           MoreStackForCalls = std::max(MoreStackForCalls,
2646                                (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2647       }
2648     }
2649     MaxStack += MoreStackForCalls;
2650   }
2651 
2652   // If the stack frame needed is larger than the guaranteed then runtime checks
2653   // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2654   if (MaxStack > Guaranteed) {
2655     MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2656     MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2657 
2658     for (const auto &LI : PrologueMBB.liveins()) {
2659       stackCheckMBB->addLiveIn(LI);
2660       incStackMBB->addLiveIn(LI);
2661     }
2662 
2663     MF.push_front(incStackMBB);
2664     MF.push_front(stackCheckMBB);
2665 
2666     unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2667     unsigned LEAop, CMPop, CALLop;
2668     SPLimitOffset = getHiPELiteral(HiPELiteralsMD, "P_NSP_LIMIT");
2669     if (Is64Bit) {
2670       SPReg = X86::RSP;
2671       PReg  = X86::RBP;
2672       LEAop = X86::LEA64r;
2673       CMPop = X86::CMP64rm;
2674       CALLop = X86::CALL64pcrel32;
2675     } else {
2676       SPReg = X86::ESP;
2677       PReg  = X86::EBP;
2678       LEAop = X86::LEA32r;
2679       CMPop = X86::CMP32rm;
2680       CALLop = X86::CALLpcrel32;
2681     }
2682 
2683     ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2684     assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2685            "HiPE prologue scratch register is live-in");
2686 
2687     // Create new MBB for StackCheck:
2688     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2689                  SPReg, false, -MaxStack);
2690     // SPLimitOffset is in a fixed heap location (pointed by BP).
2691     addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2692                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2693     BuildMI(stackCheckMBB, DL, TII.get(X86::JCC_1)).addMBB(&PrologueMBB).addImm(X86::COND_AE);
2694 
2695     // Create new MBB for IncStack:
2696     BuildMI(incStackMBB, DL, TII.get(CALLop)).
2697       addExternalSymbol("inc_stack_0");
2698     addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2699                  SPReg, false, -MaxStack);
2700     addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2701                  .addReg(ScratchReg), PReg, false, SPLimitOffset);
2702     BuildMI(incStackMBB, DL, TII.get(X86::JCC_1)).addMBB(incStackMBB).addImm(X86::COND_LE);
2703 
2704     stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2705     stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2706     incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2707     incStackMBB->addSuccessor(incStackMBB, {1, 100});
2708   }
2709 #ifdef EXPENSIVE_CHECKS
2710   MF.verify();
2711 #endif
2712 }
2713 
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,int Offset) const2714 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2715                                            MachineBasicBlock::iterator MBBI,
2716                                            const DebugLoc &DL,
2717                                            int Offset) const {
2718 
2719   if (Offset <= 0)
2720     return false;
2721 
2722   if (Offset % SlotSize)
2723     return false;
2724 
2725   int NumPops = Offset / SlotSize;
2726   // This is only worth it if we have at most 2 pops.
2727   if (NumPops != 1 && NumPops != 2)
2728     return false;
2729 
2730   // Handle only the trivial case where the adjustment directly follows
2731   // a call. This is the most common one, anyway.
2732   if (MBBI == MBB.begin())
2733     return false;
2734   MachineBasicBlock::iterator Prev = std::prev(MBBI);
2735   if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2736     return false;
2737 
2738   unsigned Regs[2];
2739   unsigned FoundRegs = 0;
2740 
2741   auto &MRI = MBB.getParent()->getRegInfo();
2742   auto RegMask = Prev->getOperand(1);
2743 
2744   auto &RegClass =
2745       Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2746   // Try to find up to NumPops free registers.
2747   for (auto Candidate : RegClass) {
2748 
2749     // Poor man's liveness:
2750     // Since we're immediately after a call, any register that is clobbered
2751     // by the call and not defined by it can be considered dead.
2752     if (!RegMask.clobbersPhysReg(Candidate))
2753       continue;
2754 
2755     // Don't clobber reserved registers
2756     if (MRI.isReserved(Candidate))
2757       continue;
2758 
2759     bool IsDef = false;
2760     for (const MachineOperand &MO : Prev->implicit_operands()) {
2761       if (MO.isReg() && MO.isDef() &&
2762           TRI->isSuperOrSubRegisterEq(MO.getReg(), Candidate)) {
2763         IsDef = true;
2764         break;
2765       }
2766     }
2767 
2768     if (IsDef)
2769       continue;
2770 
2771     Regs[FoundRegs++] = Candidate;
2772     if (FoundRegs == (unsigned)NumPops)
2773       break;
2774   }
2775 
2776   if (FoundRegs == 0)
2777     return false;
2778 
2779   // If we found only one free register, but need two, reuse the same one twice.
2780   while (FoundRegs < (unsigned)NumPops)
2781     Regs[FoundRegs++] = Regs[0];
2782 
2783   for (int i = 0; i < NumPops; ++i)
2784     BuildMI(MBB, MBBI, DL,
2785             TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2786 
2787   return true;
2788 }
2789 
2790 MachineBasicBlock::iterator X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2791 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2792                               MachineBasicBlock::iterator I) const {
2793   bool reserveCallFrame = hasReservedCallFrame(MF);
2794   unsigned Opcode = I->getOpcode();
2795   bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2796   DebugLoc DL = I->getDebugLoc();
2797   uint64_t Amount = TII.getFrameSize(*I);
2798   uint64_t InternalAmt = (isDestroy || Amount) ? TII.getFrameAdjustment(*I) : 0;
2799   I = MBB.erase(I);
2800   auto InsertPos = skipDebugInstructionsForward(I, MBB.end());
2801 
2802   if (!reserveCallFrame) {
2803     // If the stack pointer can be changed after prologue, turn the
2804     // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2805     // adjcallstackdown instruction into 'add ESP, <amt>'
2806 
2807     // We need to keep the stack aligned properly.  To do this, we round the
2808     // amount of space needed for the outgoing arguments up to the next
2809     // alignment boundary.
2810     unsigned StackAlign = getStackAlignment();
2811     Amount = alignTo(Amount, StackAlign);
2812 
2813     const Function &F = MF.getFunction();
2814     bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2815     bool DwarfCFI = !WindowsCFI && MF.needsFrameMoves();
2816 
2817     // If we have any exception handlers in this function, and we adjust
2818     // the SP before calls, we may need to indicate this to the unwinder
2819     // using GNU_ARGS_SIZE. Note that this may be necessary even when
2820     // Amount == 0, because the preceding function may have set a non-0
2821     // GNU_ARGS_SIZE.
2822     // TODO: We don't need to reset this between subsequent functions,
2823     // if it didn't change.
2824     bool HasDwarfEHHandlers = !WindowsCFI && !MF.getLandingPads().empty();
2825 
2826     if (HasDwarfEHHandlers && !isDestroy &&
2827         MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2828       BuildCFI(MBB, InsertPos, DL,
2829                MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2830 
2831     if (Amount == 0)
2832       return I;
2833 
2834     // Factor out the amount that gets handled inside the sequence
2835     // (Pushes of argument for frame setup, callee pops for frame destroy)
2836     Amount -= InternalAmt;
2837 
2838     // TODO: This is needed only if we require precise CFA.
2839     // If this is a callee-pop calling convention, emit a CFA adjust for
2840     // the amount the callee popped.
2841     if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2842       BuildCFI(MBB, InsertPos, DL,
2843                MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2844 
2845     // Add Amount to SP to destroy a frame, or subtract to setup.
2846     int64_t StackAdjustment = isDestroy ? Amount : -Amount;
2847 
2848     if (StackAdjustment) {
2849       // Merge with any previous or following adjustment instruction. Note: the
2850       // instructions merged with here do not have CFI, so their stack
2851       // adjustments do not feed into CfaAdjustment.
2852       StackAdjustment += mergeSPUpdates(MBB, InsertPos, true);
2853       StackAdjustment += mergeSPUpdates(MBB, InsertPos, false);
2854 
2855       if (StackAdjustment) {
2856         if (!(F.hasMinSize() &&
2857               adjustStackWithPops(MBB, InsertPos, DL, StackAdjustment)))
2858           BuildStackAdjustment(MBB, InsertPos, DL, StackAdjustment,
2859                                /*InEpilogue=*/false);
2860       }
2861     }
2862 
2863     if (DwarfCFI && !hasFP(MF)) {
2864       // If we don't have FP, but need to generate unwind information,
2865       // we need to set the correct CFA offset after the stack adjustment.
2866       // How much we adjust the CFA offset depends on whether we're emitting
2867       // CFI only for EH purposes or for debugging. EH only requires the CFA
2868       // offset to be correct at each call site, while for debugging we want
2869       // it to be more precise.
2870 
2871       int64_t CfaAdjustment = -StackAdjustment;
2872       // TODO: When not using precise CFA, we also need to adjust for the
2873       // InternalAmt here.
2874       if (CfaAdjustment) {
2875         BuildCFI(MBB, InsertPos, DL,
2876                  MCCFIInstruction::createAdjustCfaOffset(nullptr,
2877                                                          CfaAdjustment));
2878       }
2879     }
2880 
2881     return I;
2882   }
2883 
2884   if (isDestroy && InternalAmt && !blockEndIsUnreachable(MBB, I)) {
2885     // If we are performing frame pointer elimination and if the callee pops
2886     // something off the stack pointer, add it back.  We do this until we have
2887     // more advanced stack pointer tracking ability.
2888     // We are not tracking the stack pointer adjustment by the callee, so make
2889     // sure we restore the stack pointer immediately after the call, there may
2890     // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2891     MachineBasicBlock::iterator CI = I;
2892     MachineBasicBlock::iterator B = MBB.begin();
2893     while (CI != B && !std::prev(CI)->isCall())
2894       --CI;
2895     BuildStackAdjustment(MBB, CI, DL, -InternalAmt, /*InEpilogue=*/false);
2896   }
2897 
2898   return I;
2899 }
2900 
canUseAsPrologue(const MachineBasicBlock & MBB) const2901 bool X86FrameLowering::canUseAsPrologue(const MachineBasicBlock &MBB) const {
2902   assert(MBB.getParent() && "Block is not attached to a function!");
2903   const MachineFunction &MF = *MBB.getParent();
2904   return !TRI->needsStackRealignment(MF) || !MBB.isLiveIn(X86::EFLAGS);
2905 }
2906 
canUseAsEpilogue(const MachineBasicBlock & MBB) const2907 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2908   assert(MBB.getParent() && "Block is not attached to a function!");
2909 
2910   // Win64 has strict requirements in terms of epilogue and we are
2911   // not taking a chance at messing with them.
2912   // I.e., unless this block is already an exit block, we can't use
2913   // it as an epilogue.
2914   if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2915     return false;
2916 
2917   if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2918     return true;
2919 
2920   // If we cannot use LEA to adjust SP, we may need to use ADD, which
2921   // clobbers the EFLAGS. Check that we do not need to preserve it,
2922   // otherwise, conservatively assume this is not
2923   // safe to insert the epilogue here.
2924   return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2925 }
2926 
enableShrinkWrapping(const MachineFunction & MF) const2927 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2928   // If we may need to emit frameless compact unwind information, give
2929   // up as this is currently broken: PR25614.
2930   return (MF.getFunction().hasFnAttribute(Attribute::NoUnwind) || hasFP(MF)) &&
2931          // The lowering of segmented stack and HiPE only support entry blocks
2932          // as prologue blocks: PR26107.
2933          // This limitation may be lifted if we fix:
2934          // - adjustForSegmentedStacks
2935          // - adjustForHiPEPrologue
2936          MF.getFunction().getCallingConv() != CallingConv::HiPE &&
2937          !MF.shouldSplitStack();
2938 }
2939 
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,const DebugLoc & DL,bool RestoreSP) const2940 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2941     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2942     const DebugLoc &DL, bool RestoreSP) const {
2943   assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2944   assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2945   assert(STI.is32Bit() && !Uses64BitFramePtr &&
2946          "restoring EBP/ESI on non-32-bit target");
2947 
2948   MachineFunction &MF = *MBB.getParent();
2949   Register FramePtr = TRI->getFrameRegister(MF);
2950   Register BasePtr = TRI->getBaseRegister();
2951   WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2952   X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2953   MachineFrameInfo &MFI = MF.getFrameInfo();
2954 
2955   // FIXME: Don't set FrameSetup flag in catchret case.
2956 
2957   int FI = FuncInfo.EHRegNodeFrameIndex;
2958   int EHRegSize = MFI.getObjectSize(FI);
2959 
2960   if (RestoreSP) {
2961     // MOV32rm -EHRegSize(%ebp), %esp
2962     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2963                  X86::EBP, true, -EHRegSize)
2964         .setMIFlag(MachineInstr::FrameSetup);
2965   }
2966 
2967   unsigned UsedReg;
2968   int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2969   int EndOffset = -EHRegOffset - EHRegSize;
2970   FuncInfo.EHRegNodeEndOffset = EndOffset;
2971 
2972   if (UsedReg == FramePtr) {
2973     // ADD $offset, %ebp
2974     unsigned ADDri = getADDriOpcode(false, EndOffset);
2975     BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2976         .addReg(FramePtr)
2977         .addImm(EndOffset)
2978         .setMIFlag(MachineInstr::FrameSetup)
2979         ->getOperand(3)
2980         .setIsDead();
2981     assert(EndOffset >= 0 &&
2982            "end of registration object above normal EBP position!");
2983   } else if (UsedReg == BasePtr) {
2984     // LEA offset(%ebp), %esi
2985     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2986                  FramePtr, false, EndOffset)
2987         .setMIFlag(MachineInstr::FrameSetup);
2988     // MOV32rm SavedEBPOffset(%esi), %ebp
2989     assert(X86FI->getHasSEHFramePtrSave());
2990     int Offset =
2991         getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2992     assert(UsedReg == BasePtr);
2993     addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2994                  UsedReg, true, Offset)
2995         .setMIFlag(MachineInstr::FrameSetup);
2996   } else {
2997     llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2998   }
2999   return MBBI;
3000 }
3001 
getInitialCFAOffset(const MachineFunction & MF) const3002 int X86FrameLowering::getInitialCFAOffset(const MachineFunction &MF) const {
3003   return TRI->getSlotSize();
3004 }
3005 
getInitialCFARegister(const MachineFunction & MF) const3006 unsigned X86FrameLowering::getInitialCFARegister(const MachineFunction &MF)
3007     const {
3008   return TRI->getDwarfRegNum(StackPtr, true);
3009 }
3010 
3011 namespace {
3012 // Struct used by orderFrameObjects to help sort the stack objects.
3013 struct X86FrameSortingObject {
3014   bool IsValid = false;         // true if we care about this Object.
3015   unsigned ObjectIndex = 0;     // Index of Object into MFI list.
3016   unsigned ObjectSize = 0;      // Size of Object in bytes.
3017   unsigned ObjectAlignment = 1; // Alignment of Object in bytes.
3018   unsigned ObjectNumUses = 0;   // Object static number of uses.
3019 };
3020 
3021 // The comparison function we use for std::sort to order our local
3022 // stack symbols. The current algorithm is to use an estimated
3023 // "density". This takes into consideration the size and number of
3024 // uses each object has in order to roughly minimize code size.
3025 // So, for example, an object of size 16B that is referenced 5 times
3026 // will get higher priority than 4 4B objects referenced 1 time each.
3027 // It's not perfect and we may be able to squeeze a few more bytes out of
3028 // it (for example : 0(esp) requires fewer bytes, symbols allocated at the
3029 // fringe end can have special consideration, given their size is less
3030 // important, etc.), but the algorithmic complexity grows too much to be
3031 // worth the extra gains we get. This gets us pretty close.
3032 // The final order leaves us with objects with highest priority going
3033 // at the end of our list.
3034 struct X86FrameSortingComparator {
operator ()__anon5b246f1e0311::X86FrameSortingComparator3035   inline bool operator()(const X86FrameSortingObject &A,
3036                          const X86FrameSortingObject &B) {
3037     uint64_t DensityAScaled, DensityBScaled;
3038 
3039     // For consistency in our comparison, all invalid objects are placed
3040     // at the end. This also allows us to stop walking when we hit the
3041     // first invalid item after it's all sorted.
3042     if (!A.IsValid)
3043       return false;
3044     if (!B.IsValid)
3045       return true;
3046 
3047     // The density is calculated by doing :
3048     //     (double)DensityA = A.ObjectNumUses / A.ObjectSize
3049     //     (double)DensityB = B.ObjectNumUses / B.ObjectSize
3050     // Since this approach may cause inconsistencies in
3051     // the floating point <, >, == comparisons, depending on the floating
3052     // point model with which the compiler was built, we're going
3053     // to scale both sides by multiplying with
3054     // A.ObjectSize * B.ObjectSize. This ends up factoring away
3055     // the division and, with it, the need for any floating point
3056     // arithmetic.
3057     DensityAScaled = static_cast<uint64_t>(A.ObjectNumUses) *
3058       static_cast<uint64_t>(B.ObjectSize);
3059     DensityBScaled = static_cast<uint64_t>(B.ObjectNumUses) *
3060       static_cast<uint64_t>(A.ObjectSize);
3061 
3062     // If the two densities are equal, prioritize highest alignment
3063     // objects. This allows for similar alignment objects
3064     // to be packed together (given the same density).
3065     // There's room for improvement here, also, since we can pack
3066     // similar alignment (different density) objects next to each
3067     // other to save padding. This will also require further
3068     // complexity/iterations, and the overall gain isn't worth it,
3069     // in general. Something to keep in mind, though.
3070     if (DensityAScaled == DensityBScaled)
3071       return A.ObjectAlignment < B.ObjectAlignment;
3072 
3073     return DensityAScaled < DensityBScaled;
3074   }
3075 };
3076 } // namespace
3077 
3078 // Order the symbols in the local stack.
3079 // We want to place the local stack objects in some sort of sensible order.
3080 // The heuristic we use is to try and pack them according to static number
3081 // of uses and size of object in order to minimize code size.
orderFrameObjects(const MachineFunction & MF,SmallVectorImpl<int> & ObjectsToAllocate) const3082 void X86FrameLowering::orderFrameObjects(
3083     const MachineFunction &MF, SmallVectorImpl<int> &ObjectsToAllocate) const {
3084   const MachineFrameInfo &MFI = MF.getFrameInfo();
3085 
3086   // Don't waste time if there's nothing to do.
3087   if (ObjectsToAllocate.empty())
3088     return;
3089 
3090   // Create an array of all MFI objects. We won't need all of these
3091   // objects, but we're going to create a full array of them to make
3092   // it easier to index into when we're counting "uses" down below.
3093   // We want to be able to easily/cheaply access an object by simply
3094   // indexing into it, instead of having to search for it every time.
3095   std::vector<X86FrameSortingObject> SortingObjects(MFI.getObjectIndexEnd());
3096 
3097   // Walk the objects we care about and mark them as such in our working
3098   // struct.
3099   for (auto &Obj : ObjectsToAllocate) {
3100     SortingObjects[Obj].IsValid = true;
3101     SortingObjects[Obj].ObjectIndex = Obj;
3102     SortingObjects[Obj].ObjectAlignment = MFI.getObjectAlignment(Obj);
3103     // Set the size.
3104     int ObjectSize = MFI.getObjectSize(Obj);
3105     if (ObjectSize == 0)
3106       // Variable size. Just use 4.
3107       SortingObjects[Obj].ObjectSize = 4;
3108     else
3109       SortingObjects[Obj].ObjectSize = ObjectSize;
3110   }
3111 
3112   // Count the number of uses for each object.
3113   for (auto &MBB : MF) {
3114     for (auto &MI : MBB) {
3115       if (MI.isDebugInstr())
3116         continue;
3117       for (const MachineOperand &MO : MI.operands()) {
3118         // Check to see if it's a local stack symbol.
3119         if (!MO.isFI())
3120           continue;
3121         int Index = MO.getIndex();
3122         // Check to see if it falls within our range, and is tagged
3123         // to require ordering.
3124         if (Index >= 0 && Index < MFI.getObjectIndexEnd() &&
3125             SortingObjects[Index].IsValid)
3126           SortingObjects[Index].ObjectNumUses++;
3127       }
3128     }
3129   }
3130 
3131   // Sort the objects using X86FrameSortingAlgorithm (see its comment for
3132   // info).
3133   llvm::stable_sort(SortingObjects, X86FrameSortingComparator());
3134 
3135   // Now modify the original list to represent the final order that
3136   // we want. The order will depend on whether we're going to access them
3137   // from the stack pointer or the frame pointer. For SP, the list should
3138   // end up with the END containing objects that we want with smaller offsets.
3139   // For FP, it should be flipped.
3140   int i = 0;
3141   for (auto &Obj : SortingObjects) {
3142     // All invalid items are sorted at the end, so it's safe to stop.
3143     if (!Obj.IsValid)
3144       break;
3145     ObjectsToAllocate[i++] = Obj.ObjectIndex;
3146   }
3147 
3148   // Flip it if we're accessing off of the FP.
3149   if (!TRI->needsStackRealignment(MF) && hasFP(MF))
3150     std::reverse(ObjectsToAllocate.begin(), ObjectsToAllocate.end());
3151 }
3152 
3153 
getWinEHParentFrameOffset(const MachineFunction & MF) const3154 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
3155   // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
3156   unsigned Offset = 16;
3157   // RBP is immediately pushed.
3158   Offset += SlotSize;
3159   // All callee-saved registers are then pushed.
3160   Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
3161   // Every funclet allocates enough stack space for the largest outgoing call.
3162   Offset += getWinEHFuncletFrameSize(MF);
3163   return Offset;
3164 }
3165 
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const3166 void X86FrameLowering::processFunctionBeforeFrameFinalized(
3167     MachineFunction &MF, RegScavenger *RS) const {
3168   // Mark the function as not having WinCFI. We will set it back to true in
3169   // emitPrologue if it gets called and emits CFI.
3170   MF.setHasWinCFI(false);
3171 
3172   // If this function isn't doing Win64-style C++ EH, we don't need to do
3173   // anything.
3174   const Function &F = MF.getFunction();
3175   if (!STI.is64Bit() || !MF.hasEHFunclets() ||
3176       classifyEHPersonality(F.getPersonalityFn()) != EHPersonality::MSVC_CXX)
3177     return;
3178 
3179   // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
3180   // relative to RSP after the prologue.  Find the offset of the last fixed
3181   // object, so that we can allocate a slot immediately following it. If there
3182   // were no fixed objects, use offset -SlotSize, which is immediately after the
3183   // return address. Fixed objects have negative frame indices.
3184   MachineFrameInfo &MFI = MF.getFrameInfo();
3185   WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo();
3186   int64_t MinFixedObjOffset = -SlotSize;
3187   for (int I = MFI.getObjectIndexBegin(); I < 0; ++I)
3188     MinFixedObjOffset = std::min(MinFixedObjOffset, MFI.getObjectOffset(I));
3189 
3190   for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
3191     for (WinEHHandlerType &H : TBME.HandlerArray) {
3192       int FrameIndex = H.CatchObj.FrameIndex;
3193       if (FrameIndex != INT_MAX) {
3194         // Ensure alignment.
3195         unsigned Align = MFI.getObjectAlignment(FrameIndex);
3196         MinFixedObjOffset -= std::abs(MinFixedObjOffset) % Align;
3197         MinFixedObjOffset -= MFI.getObjectSize(FrameIndex);
3198         MFI.setObjectOffset(FrameIndex, MinFixedObjOffset);
3199       }
3200     }
3201   }
3202 
3203   // Ensure alignment.
3204   MinFixedObjOffset -= std::abs(MinFixedObjOffset) % 8;
3205   int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
3206   int UnwindHelpFI =
3207       MFI.CreateFixedObject(SlotSize, UnwindHelpOffset, /*IsImmutable=*/false);
3208   EHInfo.UnwindHelpFrameIdx = UnwindHelpFI;
3209 
3210   // Store -2 into UnwindHelp on function entry. We have to scan forwards past
3211   // other frame setup instructions.
3212   MachineBasicBlock &MBB = MF.front();
3213   auto MBBI = MBB.begin();
3214   while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
3215     ++MBBI;
3216 
3217   DebugLoc DL = MBB.findDebugLoc(MBBI);
3218   addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
3219                     UnwindHelpFI)
3220       .addImm(-2);
3221 }
3222