1//===-- X86InstrControl.td - Control Flow Instructions -----*- tablegen -*-===// 2// 3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4// See https://llvm.org/LICENSE.txt for license information. 5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6// 7//===----------------------------------------------------------------------===// 8// 9// This file describes the X86 jump, return, call, and related instructions. 10// 11//===----------------------------------------------------------------------===// 12 13//===----------------------------------------------------------------------===// 14// Control Flow Instructions. 15// 16 17// Return instructions. 18// 19// The X86retflag return instructions are variadic because we may add ST0 and 20// ST1 arguments when returning values on the x87 stack. 21let isTerminator = 1, isReturn = 1, isBarrier = 1, 22 hasCtrlDep = 1, FPForm = SpecialFP, SchedRW = [WriteJumpLd] in { 23 def RETL : I <0xC3, RawFrm, (outs), (ins variable_ops), 24 "ret{l}", []>, OpSize32, Requires<[Not64BitMode]>; 25 def RETQ : I <0xC3, RawFrm, (outs), (ins variable_ops), 26 "ret{q}", []>, OpSize32, Requires<[In64BitMode]>; 27 def RETW : I <0xC3, RawFrm, (outs), (ins), 28 "ret{w}", []>, OpSize16; 29 def RETIL : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 30 "ret{l}\t$amt", []>, OpSize32, Requires<[Not64BitMode]>; 31 def RETIQ : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt, variable_ops), 32 "ret{q}\t$amt", []>, OpSize32, Requires<[In64BitMode]>; 33 def RETIW : Ii16<0xC2, RawFrm, (outs), (ins i16imm:$amt), 34 "ret{w}\t$amt", []>, OpSize16; 35 def LRETL : I <0xCB, RawFrm, (outs), (ins), 36 "{l}ret{l|f}", []>, OpSize32; 37 def LRETQ : RI <0xCB, RawFrm, (outs), (ins), 38 "{l}ret{|f}q", []>, Requires<[In64BitMode]>; 39 def LRETW : I <0xCB, RawFrm, (outs), (ins), 40 "{l}ret{w|f}", []>, OpSize16; 41 def LRETIL : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 42 "{l}ret{l|f}\t$amt", []>, OpSize32; 43 def LRETIQ : RIi16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 44 "{l}ret{|f}q\t$amt", []>, Requires<[In64BitMode]>; 45 def LRETIW : Ii16<0xCA, RawFrm, (outs), (ins i16imm:$amt), 46 "{l}ret{w|f}\t$amt", []>, OpSize16; 47 48 // The machine return from interrupt instruction, but sometimes we need to 49 // perform a post-epilogue stack adjustment. Codegen emits the pseudo form 50 // which expands to include an SP adjustment if necessary. 51 def IRET16 : I <0xcf, RawFrm, (outs), (ins), "iret{w}", []>, 52 OpSize16; 53 def IRET32 : I <0xcf, RawFrm, (outs), (ins), "iret{l|d}", []>, OpSize32; 54 def IRET64 : RI <0xcf, RawFrm, (outs), (ins), "iretq", []>, Requires<[In64BitMode]>; 55 let isCodeGenOnly = 1 in 56 def IRET : PseudoI<(outs), (ins i32imm:$adj), [(X86iret timm:$adj)]>; 57 def RET : PseudoI<(outs), (ins i32imm:$adj, variable_ops), [(X86retflag timm:$adj)]>; 58} 59 60// Unconditional branches. 61let isBarrier = 1, isBranch = 1, isTerminator = 1, SchedRW = [WriteJump] in { 62 def JMP_1 : Ii8PCRel<0xEB, RawFrm, (outs), (ins brtarget8:$dst), 63 "jmp\t$dst", [(br bb:$dst)]>; 64 let hasSideEffects = 0, isCodeGenOnly = 1, ForceDisassemble = 1 in { 65 def JMP_2 : Ii16PCRel<0xE9, RawFrm, (outs), (ins brtarget16:$dst), 66 "jmp\t$dst", []>, OpSize16; 67 def JMP_4 : Ii32PCRel<0xE9, RawFrm, (outs), (ins brtarget32:$dst), 68 "jmp\t$dst", []>, OpSize32; 69 } 70} 71 72// Conditional Branches. 73let isBranch = 1, isTerminator = 1, Uses = [EFLAGS], SchedRW = [WriteJump], 74 isCodeGenOnly = 1, ForceDisassemble = 1 in { 75 def JCC_1 : Ii8PCRel <0x70, AddCCFrm, (outs), 76 (ins brtarget8:$dst, ccode:$cond), 77 "j${cond}\t$dst", 78 [(X86brcond bb:$dst, timm:$cond, EFLAGS)]>; 79 let hasSideEffects = 0 in { 80 def JCC_2 : Ii16PCRel<0x80, AddCCFrm, (outs), 81 (ins brtarget16:$dst, ccode:$cond), 82 "j${cond}\t$dst", 83 []>, OpSize16, TB; 84 def JCC_4 : Ii32PCRel<0x80, AddCCFrm, (outs), 85 (ins brtarget32:$dst, ccode:$cond), 86 "j${cond}\t$dst", 87 []>, TB, OpSize32; 88 } 89} 90 91def : InstAlias<"jo\t$dst", (JCC_1 brtarget8:$dst, 0), 0>; 92def : InstAlias<"jno\t$dst", (JCC_1 brtarget8:$dst, 1), 0>; 93def : InstAlias<"jb\t$dst", (JCC_1 brtarget8:$dst, 2), 0>; 94def : InstAlias<"jae\t$dst", (JCC_1 brtarget8:$dst, 3), 0>; 95def : InstAlias<"je\t$dst", (JCC_1 brtarget8:$dst, 4), 0>; 96def : InstAlias<"jne\t$dst", (JCC_1 brtarget8:$dst, 5), 0>; 97def : InstAlias<"jbe\t$dst", (JCC_1 brtarget8:$dst, 6), 0>; 98def : InstAlias<"ja\t$dst", (JCC_1 brtarget8:$dst, 7), 0>; 99def : InstAlias<"js\t$dst", (JCC_1 brtarget8:$dst, 8), 0>; 100def : InstAlias<"jns\t$dst", (JCC_1 brtarget8:$dst, 9), 0>; 101def : InstAlias<"jp\t$dst", (JCC_1 brtarget8:$dst, 10), 0>; 102def : InstAlias<"jnp\t$dst", (JCC_1 brtarget8:$dst, 11), 0>; 103def : InstAlias<"jl\t$dst", (JCC_1 brtarget8:$dst, 12), 0>; 104def : InstAlias<"jge\t$dst", (JCC_1 brtarget8:$dst, 13), 0>; 105def : InstAlias<"jle\t$dst", (JCC_1 brtarget8:$dst, 14), 0>; 106def : InstAlias<"jg\t$dst", (JCC_1 brtarget8:$dst, 15), 0>; 107 108// jcx/jecx/jrcx instructions. 109let isBranch = 1, isTerminator = 1, hasSideEffects = 0, SchedRW = [WriteJump] in { 110 // These are the 32-bit versions of this instruction for the asmparser. In 111 // 32-bit mode, the address size prefix is jcxz and the unprefixed version is 112 // jecxz. 113 let Uses = [CX] in 114 def JCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 115 "jcxz\t$dst", []>, AdSize16, Requires<[Not64BitMode]>; 116 let Uses = [ECX] in 117 def JECXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 118 "jecxz\t$dst", []>, AdSize32; 119 120 let Uses = [RCX] in 121 def JRCXZ : Ii8PCRel<0xE3, RawFrm, (outs), (ins brtarget8:$dst), 122 "jrcxz\t$dst", []>, AdSize64, Requires<[In64BitMode]>; 123} 124 125// Indirect branches 126let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in { 127 def JMP16r : I<0xFF, MRM4r, (outs), (ins GR16:$dst), "jmp{w}\t{*}$dst", 128 [(brind GR16:$dst)]>, Requires<[Not64BitMode]>, 129 OpSize16, Sched<[WriteJump]>; 130 def JMP16m : I<0xFF, MRM4m, (outs), (ins i16mem:$dst), "jmp{w}\t{*}$dst", 131 [(brind (loadi16 addr:$dst))]>, Requires<[Not64BitMode]>, 132 OpSize16, Sched<[WriteJumpLd]>; 133 134 def JMP32r : I<0xFF, MRM4r, (outs), (ins GR32:$dst), "jmp{l}\t{*}$dst", 135 [(brind GR32:$dst)]>, Requires<[Not64BitMode]>, 136 OpSize32, Sched<[WriteJump]>; 137 def JMP32m : I<0xFF, MRM4m, (outs), (ins i32mem:$dst), "jmp{l}\t{*}$dst", 138 [(brind (loadi32 addr:$dst))]>, Requires<[Not64BitMode]>, 139 OpSize32, Sched<[WriteJumpLd]>; 140 141 def JMP64r : I<0xFF, MRM4r, (outs), (ins GR64:$dst), "jmp{q}\t{*}$dst", 142 [(brind GR64:$dst)]>, Requires<[In64BitMode]>, 143 Sched<[WriteJump]>; 144 def JMP64m : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), "jmp{q}\t{*}$dst", 145 [(brind (loadi64 addr:$dst))]>, Requires<[In64BitMode]>, 146 Sched<[WriteJumpLd]>; 147 148 // Win64 wants indirect jumps leaving the function to have a REX_W prefix. 149 // These are switched from TAILJMPr/m64_REX in MCInstLower. 150 let isCodeGenOnly = 1, hasREX_WPrefix = 1 in { 151 def JMP64r_REX : I<0xFF, MRM4r, (outs), (ins GR64:$dst), 152 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJump]>; 153 let mayLoad = 1 in 154 def JMP64m_REX : I<0xFF, MRM4m, (outs), (ins i64mem:$dst), 155 "rex64 jmp{q}\t{*}$dst", []>, Sched<[WriteJumpLd]>; 156 157 } 158 159 // Non-tracking jumps for IBT, use with caution. 160 let isCodeGenOnly = 1 in { 161 def JMP16r_NT : I<0xFF, MRM4r, (outs), (ins GR16 : $dst), "jmp{w}\t{*}$dst", 162 [(X86NoTrackBrind GR16 : $dst)]>, Requires<[Not64BitMode]>, 163 OpSize16, Sched<[WriteJump]>, NOTRACK; 164 165 def JMP16m_NT : I<0xFF, MRM4m, (outs), (ins i16mem : $dst), "jmp{w}\t{*}$dst", 166 [(X86NoTrackBrind (loadi16 addr : $dst))]>, 167 Requires<[Not64BitMode]>, OpSize16, Sched<[WriteJumpLd]>, 168 NOTRACK; 169 170 def JMP32r_NT : I<0xFF, MRM4r, (outs), (ins GR32 : $dst), "jmp{l}\t{*}$dst", 171 [(X86NoTrackBrind GR32 : $dst)]>, Requires<[Not64BitMode]>, 172 OpSize32, Sched<[WriteJump]>, NOTRACK; 173 def JMP32m_NT : I<0xFF, MRM4m, (outs), (ins i32mem : $dst), "jmp{l}\t{*}$dst", 174 [(X86NoTrackBrind (loadi32 addr : $dst))]>, 175 Requires<[Not64BitMode]>, OpSize32, Sched<[WriteJumpLd]>, 176 NOTRACK; 177 178 def JMP64r_NT : I<0xFF, MRM4r, (outs), (ins GR64 : $dst), "jmp{q}\t{*}$dst", 179 [(X86NoTrackBrind GR64 : $dst)]>, Requires<[In64BitMode]>, 180 Sched<[WriteJump]>, NOTRACK; 181 def JMP64m_NT : I<0xFF, MRM4m, (outs), (ins i64mem : $dst), "jmp{q}\t{*}$dst", 182 [(X86NoTrackBrind(loadi64 addr : $dst))]>, 183 Requires<[In64BitMode]>, Sched<[WriteJumpLd]>, NOTRACK; 184 } 185 186 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 187 def FARJMP16i : Iseg16<0xEA, RawFrmImm16, (outs), 188 (ins i16imm:$off, i16imm:$seg), 189 "ljmp{w}\t$seg, $off", []>, 190 OpSize16, Sched<[WriteJump]>; 191 def FARJMP32i : Iseg32<0xEA, RawFrmImm16, (outs), 192 (ins i32imm:$off, i16imm:$seg), 193 "ljmp{l}\t$seg, $off", []>, 194 OpSize32, Sched<[WriteJump]>; 195 } 196 def FARJMP64 : RI<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 197 "ljmp{q}\t{*}$dst", []>, Sched<[WriteJump]>, Requires<[In64BitMode]>; 198 199 let AsmVariantName = "att" in 200 def FARJMP16m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 201 "ljmp{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 202 def FARJMP32m : I<0xFF, MRM5m, (outs), (ins opaquemem:$dst), 203 "{l}jmp{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 204} 205 206// Loop instructions 207let SchedRW = [WriteJump] in { 208def LOOP : Ii8PCRel<0xE2, RawFrm, (outs), (ins brtarget8:$dst), "loop\t$dst", []>; 209def LOOPE : Ii8PCRel<0xE1, RawFrm, (outs), (ins brtarget8:$dst), "loope\t$dst", []>; 210def LOOPNE : Ii8PCRel<0xE0, RawFrm, (outs), (ins brtarget8:$dst), "loopne\t$dst", []>; 211} 212 213//===----------------------------------------------------------------------===// 214// Call Instructions... 215// 216let isCall = 1 in 217 // All calls clobber the non-callee saved registers. ESP is marked as 218 // a use to prevent stack-pointer assignments that appear immediately 219 // before calls from potentially appearing dead. Uses for argument 220 // registers are added manually. 221 let Uses = [ESP, SSP] in { 222 def CALLpcrel32 : Ii32PCRel<0xE8, RawFrm, 223 (outs), (ins i32imm_brtarget:$dst), 224 "call{l}\t$dst", []>, OpSize32, 225 Requires<[Not64BitMode]>, Sched<[WriteJump]>; 226 let hasSideEffects = 0 in 227 def CALLpcrel16 : Ii16PCRel<0xE8, RawFrm, 228 (outs), (ins i16imm_brtarget:$dst), 229 "call{w}\t$dst", []>, OpSize16, 230 Sched<[WriteJump]>; 231 def CALL16r : I<0xFF, MRM2r, (outs), (ins GR16:$dst), 232 "call{w}\t{*}$dst", [(X86call GR16:$dst)]>, 233 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>; 234 def CALL16m : I<0xFF, MRM2m, (outs), (ins i16mem:$dst), 235 "call{w}\t{*}$dst", [(X86call (loadi16 addr:$dst))]>, 236 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 237 Sched<[WriteJumpLd]>; 238 def CALL32r : I<0xFF, MRM2r, (outs), (ins GR32:$dst), 239 "call{l}\t{*}$dst", [(X86call GR32:$dst)]>, OpSize32, 240 Requires<[Not64BitMode,NotUseRetpolineIndirectCalls]>, 241 Sched<[WriteJump]>; 242 def CALL32m : I<0xFF, MRM2m, (outs), (ins i32mem:$dst), 243 "call{l}\t{*}$dst", [(X86call (loadi32 addr:$dst))]>, 244 OpSize32, 245 Requires<[Not64BitMode,FavorMemIndirectCall, 246 NotUseRetpolineIndirectCalls]>, 247 Sched<[WriteJumpLd]>; 248 249 // Non-tracking calls for IBT, use with caution. 250 let isCodeGenOnly = 1 in { 251 def CALL16r_NT : I<0xFF, MRM2r, (outs), (ins GR16 : $dst), 252 "call{w}\t{*}$dst",[(X86NoTrackCall GR16 : $dst)]>, 253 OpSize16, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 254 def CALL16m_NT : I<0xFF, MRM2m, (outs), (ins i16mem : $dst), 255 "call{w}\t{*}$dst",[(X86NoTrackCall(loadi16 addr : $dst))]>, 256 OpSize16, Requires<[Not64BitMode,FavorMemIndirectCall]>, 257 Sched<[WriteJumpLd]>, NOTRACK; 258 def CALL32r_NT : I<0xFF, MRM2r, (outs), (ins GR32 : $dst), 259 "call{l}\t{*}$dst",[(X86NoTrackCall GR32 : $dst)]>, 260 OpSize32, Requires<[Not64BitMode]>, Sched<[WriteJump]>, NOTRACK; 261 def CALL32m_NT : I<0xFF, MRM2m, (outs), (ins i32mem : $dst), 262 "call{l}\t{*}$dst",[(X86NoTrackCall(loadi32 addr : $dst))]>, 263 OpSize32, Requires<[Not64BitMode,FavorMemIndirectCall]>, 264 Sched<[WriteJumpLd]>, NOTRACK; 265 } 266 267 let Predicates = [Not64BitMode], AsmVariantName = "att" in { 268 def FARCALL16i : Iseg16<0x9A, RawFrmImm16, (outs), 269 (ins i16imm:$off, i16imm:$seg), 270 "lcall{w}\t$seg, $off", []>, 271 OpSize16, Sched<[WriteJump]>; 272 def FARCALL32i : Iseg32<0x9A, RawFrmImm16, (outs), 273 (ins i32imm:$off, i16imm:$seg), 274 "lcall{l}\t$seg, $off", []>, 275 OpSize32, Sched<[WriteJump]>; 276 } 277 278 def FARCALL16m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 279 "lcall{w}\t{*}$dst", []>, OpSize16, Sched<[WriteJumpLd]>; 280 def FARCALL32m : I<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 281 "{l}call{l}\t{*}$dst", []>, OpSize32, Sched<[WriteJumpLd]>; 282 } 283 284 285// Tail call stuff. 286let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 287 isCodeGenOnly = 1, Uses = [ESP, SSP] in { 288 def TCRETURNdi : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$offset), 289 []>, Sched<[WriteJump]>, NotMemoryFoldable; 290 def TCRETURNri : PseudoI<(outs), (ins ptr_rc_tailcall:$dst, i32imm:$offset), 291 []>, Sched<[WriteJump]>, NotMemoryFoldable; 292 let mayLoad = 1 in 293 def TCRETURNmi : PseudoI<(outs), (ins i32mem_TC:$dst, i32imm:$offset), 294 []>, Sched<[WriteJumpLd]>; 295 296 def TAILJMPd : PseudoI<(outs), (ins i32imm_brtarget:$dst), 297 []>, Sched<[WriteJump]>; 298 299 def TAILJMPr : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 300 []>, Sched<[WriteJump]>; 301 let mayLoad = 1 in 302 def TAILJMPm : PseudoI<(outs), (ins i32mem_TC:$dst), 303 []>, Sched<[WriteJumpLd]>; 304} 305 306// Conditional tail calls are similar to the above, but they are branches 307// rather than barriers, and they use EFLAGS. 308let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 309 isCodeGenOnly = 1, SchedRW = [WriteJump] in 310 let Uses = [ESP, EFLAGS, SSP] in { 311 def TCRETURNdicc : PseudoI<(outs), 312 (ins i32imm_brtarget:$dst, i32imm:$offset, i32imm:$cond), 313 []>; 314 315 // This gets substituted to a conditional jump instruction in MC lowering. 316 def TAILJMPd_CC : PseudoI<(outs), (ins i32imm_brtarget:$dst, i32imm:$cond), []>; 317} 318 319 320//===----------------------------------------------------------------------===// 321// Call Instructions... 322// 323 324// RSP is marked as a use to prevent stack-pointer assignments that appear 325// immediately before calls from potentially appearing dead. Uses for argument 326// registers are added manually. 327let isCall = 1, Uses = [RSP, SSP], SchedRW = [WriteJump] in { 328 // NOTE: this pattern doesn't match "X86call imm", because we do not know 329 // that the offset between an arbitrary immediate and the call will fit in 330 // the 32-bit pcrel field that we have. 331 def CALL64pcrel32 : Ii32PCRel<0xE8, RawFrm, 332 (outs), (ins i64i32imm_brtarget:$dst), 333 "call{q}\t$dst", []>, OpSize32, 334 Requires<[In64BitMode]>; 335 def CALL64r : I<0xFF, MRM2r, (outs), (ins GR64:$dst), 336 "call{q}\t{*}$dst", [(X86call GR64:$dst)]>, 337 Requires<[In64BitMode,NotUseRetpolineIndirectCalls]>; 338 def CALL64m : I<0xFF, MRM2m, (outs), (ins i64mem:$dst), 339 "call{q}\t{*}$dst", [(X86call (loadi64 addr:$dst))]>, 340 Requires<[In64BitMode,FavorMemIndirectCall, 341 NotUseRetpolineIndirectCalls]>; 342 343 // Non-tracking calls for IBT, use with caution. 344 let isCodeGenOnly = 1 in { 345 def CALL64r_NT : I<0xFF, MRM2r, (outs), (ins GR64 : $dst), 346 "call{q}\t{*}$dst",[(X86NoTrackCall GR64 : $dst)]>, 347 Requires<[In64BitMode]>, NOTRACK; 348 def CALL64m_NT : I<0xFF, MRM2m, (outs), (ins i64mem : $dst), 349 "call{q}\t{*}$dst", 350 [(X86NoTrackCall(loadi64 addr : $dst))]>, 351 Requires<[In64BitMode,FavorMemIndirectCall]>, NOTRACK; 352 } 353 354 def FARCALL64 : RI<0xFF, MRM3m, (outs), (ins opaquemem:$dst), 355 "lcall{q}\t{*}$dst", []>; 356} 357 358let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, 359 isCodeGenOnly = 1, Uses = [RSP, SSP] in { 360 def TCRETURNdi64 : PseudoI<(outs), 361 (ins i64i32imm_brtarget:$dst, i32imm:$offset), 362 []>, Sched<[WriteJump]>; 363 def TCRETURNri64 : PseudoI<(outs), 364 (ins ptr_rc_tailcall:$dst, i32imm:$offset), 365 []>, Sched<[WriteJump]>, NotMemoryFoldable; 366 let mayLoad = 1 in 367 def TCRETURNmi64 : PseudoI<(outs), 368 (ins i64mem_TC:$dst, i32imm:$offset), 369 []>, Sched<[WriteJumpLd]>, NotMemoryFoldable; 370 371 def TAILJMPd64 : PseudoI<(outs), (ins i64i32imm_brtarget:$dst), 372 []>, Sched<[WriteJump]>; 373 374 def TAILJMPr64 : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 375 []>, Sched<[WriteJump]>; 376 377 let mayLoad = 1 in 378 def TAILJMPm64 : PseudoI<(outs), (ins i64mem_TC:$dst), 379 []>, Sched<[WriteJumpLd]>; 380 381 // Win64 wants indirect jumps leaving the function to have a REX_W prefix. 382 let hasREX_WPrefix = 1 in { 383 def TAILJMPr64_REX : PseudoI<(outs), (ins ptr_rc_tailcall:$dst), 384 []>, Sched<[WriteJump]>; 385 386 let mayLoad = 1 in 387 def TAILJMPm64_REX : PseudoI<(outs), (ins i64mem_TC:$dst), 388 []>, Sched<[WriteJumpLd]>; 389 } 390} 391 392let isPseudo = 1, isCall = 1, isCodeGenOnly = 1, 393 Uses = [RSP, SSP], 394 usesCustomInserter = 1, 395 SchedRW = [WriteJump] in { 396 def RETPOLINE_CALL32 : 397 PseudoI<(outs), (ins GR32:$dst), [(X86call GR32:$dst)]>, 398 Requires<[Not64BitMode,UseRetpolineIndirectCalls]>; 399 400 def RETPOLINE_CALL64 : 401 PseudoI<(outs), (ins GR64:$dst), [(X86call GR64:$dst)]>, 402 Requires<[In64BitMode,UseRetpolineIndirectCalls]>; 403 404 // Retpoline variant of indirect tail calls. 405 let isTerminator = 1, isReturn = 1, isBarrier = 1 in { 406 def RETPOLINE_TCRETURN64 : 407 PseudoI<(outs), (ins GR64:$dst, i32imm:$offset), []>; 408 def RETPOLINE_TCRETURN32 : 409 PseudoI<(outs), (ins GR32:$dst, i32imm:$offset), []>; 410 } 411} 412 413// Conditional tail calls are similar to the above, but they are branches 414// rather than barriers, and they use EFLAGS. 415let isCall = 1, isTerminator = 1, isReturn = 1, isBranch = 1, 416 isCodeGenOnly = 1, SchedRW = [WriteJump] in 417 let Uses = [RSP, EFLAGS, SSP] in { 418 def TCRETURNdi64cc : PseudoI<(outs), 419 (ins i64i32imm_brtarget:$dst, i32imm:$offset, 420 i32imm:$cond), []>; 421 422 // This gets substituted to a conditional jump instruction in MC lowering. 423 def TAILJMPd64_CC : PseudoI<(outs), 424 (ins i64i32imm_brtarget:$dst, i32imm:$cond), []>; 425} 426