1 //===- X86VZeroUpper.cpp - AVX vzeroupper instruction inserter ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the pass which inserts x86 AVX vzeroupper instructions
10 // before calls to SSE encoded functions. This avoids transition latency
11 // penalty when transferring control between AVX encoded instructions and old
12 // SSE encoding mode.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "X86.h"
17 #include "X86InstrInfo.h"
18 #include "X86Subtarget.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/TargetInstrInfo.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/DebugLoc.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37
38 using namespace llvm;
39
40 #define DEBUG_TYPE "x86-vzeroupper"
41
42 STATISTIC(NumVZU, "Number of vzeroupper instructions inserted");
43
44 namespace {
45
46 class VZeroUpperInserter : public MachineFunctionPass {
47 public:
VZeroUpperInserter()48 VZeroUpperInserter() : MachineFunctionPass(ID) {}
49
50 bool runOnMachineFunction(MachineFunction &MF) override;
51
getRequiredProperties() const52 MachineFunctionProperties getRequiredProperties() const override {
53 return MachineFunctionProperties().set(
54 MachineFunctionProperties::Property::NoVRegs);
55 }
56
getPassName() const57 StringRef getPassName() const override { return "X86 vzeroupper inserter"; }
58
59 private:
60 void processBasicBlock(MachineBasicBlock &MBB);
61 void insertVZeroUpper(MachineBasicBlock::iterator I,
62 MachineBasicBlock &MBB);
63 void addDirtySuccessor(MachineBasicBlock &MBB);
64
65 using BlockExitState = enum { PASS_THROUGH, EXITS_CLEAN, EXITS_DIRTY };
66
67 static const char* getBlockExitStateName(BlockExitState ST);
68
69 // Core algorithm state:
70 // BlockState - Each block is either:
71 // - PASS_THROUGH: There are neither YMM/ZMM dirtying instructions nor
72 // vzeroupper instructions in this block.
73 // - EXITS_CLEAN: There is (or will be) a vzeroupper instruction in this
74 // block that will ensure that YMM/ZMM is clean on exit.
75 // - EXITS_DIRTY: An instruction in the block dirties YMM/ZMM and no
76 // subsequent vzeroupper in the block clears it.
77 //
78 // AddedToDirtySuccessors - This flag is raised when a block is added to the
79 // DirtySuccessors list to ensure that it's not
80 // added multiple times.
81 //
82 // FirstUnguardedCall - Records the location of the first unguarded call in
83 // each basic block that may need to be guarded by a
84 // vzeroupper. We won't know whether it actually needs
85 // to be guarded until we discover a predecessor that
86 // is DIRTY_OUT.
87 struct BlockState {
88 BlockExitState ExitState = PASS_THROUGH;
89 bool AddedToDirtySuccessors = false;
90 MachineBasicBlock::iterator FirstUnguardedCall;
91
92 BlockState() = default;
93 };
94
95 using BlockStateMap = SmallVector<BlockState, 8>;
96 using DirtySuccessorsWorkList = SmallVector<MachineBasicBlock *, 8>;
97
98 BlockStateMap BlockStates;
99 DirtySuccessorsWorkList DirtySuccessors;
100 bool EverMadeChange;
101 bool IsX86INTR;
102 const TargetInstrInfo *TII;
103
104 static char ID;
105 };
106
107 } // end anonymous namespace
108
109 char VZeroUpperInserter::ID = 0;
110
createX86IssueVZeroUpperPass()111 FunctionPass *llvm::createX86IssueVZeroUpperPass() {
112 return new VZeroUpperInserter();
113 }
114
115 #ifndef NDEBUG
getBlockExitStateName(BlockExitState ST)116 const char* VZeroUpperInserter::getBlockExitStateName(BlockExitState ST) {
117 switch (ST) {
118 case PASS_THROUGH: return "Pass-through";
119 case EXITS_DIRTY: return "Exits-dirty";
120 case EXITS_CLEAN: return "Exits-clean";
121 }
122 llvm_unreachable("Invalid block exit state.");
123 }
124 #endif
125
126 /// VZEROUPPER cleans state that is related to Y/ZMM0-15 only.
127 /// Thus, there is no need to check for Y/ZMM16 and above.
isYmmOrZmmReg(unsigned Reg)128 static bool isYmmOrZmmReg(unsigned Reg) {
129 return (Reg >= X86::YMM0 && Reg <= X86::YMM15) ||
130 (Reg >= X86::ZMM0 && Reg <= X86::ZMM15);
131 }
132
checkFnHasLiveInYmmOrZmm(MachineRegisterInfo & MRI)133 static bool checkFnHasLiveInYmmOrZmm(MachineRegisterInfo &MRI) {
134 for (std::pair<unsigned, unsigned> LI : MRI.liveins())
135 if (isYmmOrZmmReg(LI.first))
136 return true;
137
138 return false;
139 }
140
clobbersAllYmmAndZmmRegs(const MachineOperand & MO)141 static bool clobbersAllYmmAndZmmRegs(const MachineOperand &MO) {
142 for (unsigned reg = X86::YMM0; reg <= X86::YMM15; ++reg) {
143 if (!MO.clobbersPhysReg(reg))
144 return false;
145 }
146 for (unsigned reg = X86::ZMM0; reg <= X86::ZMM15; ++reg) {
147 if (!MO.clobbersPhysReg(reg))
148 return false;
149 }
150 return true;
151 }
152
hasYmmOrZmmReg(MachineInstr & MI)153 static bool hasYmmOrZmmReg(MachineInstr &MI) {
154 for (const MachineOperand &MO : MI.operands()) {
155 if (MI.isCall() && MO.isRegMask() && !clobbersAllYmmAndZmmRegs(MO))
156 return true;
157 if (!MO.isReg())
158 continue;
159 if (MO.isDebug())
160 continue;
161 if (isYmmOrZmmReg(MO.getReg()))
162 return true;
163 }
164 return false;
165 }
166
167 /// Check if given call instruction has a RegMask operand.
callHasRegMask(MachineInstr & MI)168 static bool callHasRegMask(MachineInstr &MI) {
169 assert(MI.isCall() && "Can only be called on call instructions.");
170 for (const MachineOperand &MO : MI.operands()) {
171 if (MO.isRegMask())
172 return true;
173 }
174 return false;
175 }
176
177 /// Insert a vzeroupper instruction before I.
insertVZeroUpper(MachineBasicBlock::iterator I,MachineBasicBlock & MBB)178 void VZeroUpperInserter::insertVZeroUpper(MachineBasicBlock::iterator I,
179 MachineBasicBlock &MBB) {
180 DebugLoc dl = I->getDebugLoc();
181 BuildMI(MBB, I, dl, TII->get(X86::VZEROUPPER));
182 ++NumVZU;
183 EverMadeChange = true;
184 }
185
186 /// Add MBB to the DirtySuccessors list if it hasn't already been added.
addDirtySuccessor(MachineBasicBlock & MBB)187 void VZeroUpperInserter::addDirtySuccessor(MachineBasicBlock &MBB) {
188 if (!BlockStates[MBB.getNumber()].AddedToDirtySuccessors) {
189 DirtySuccessors.push_back(&MBB);
190 BlockStates[MBB.getNumber()].AddedToDirtySuccessors = true;
191 }
192 }
193
194 /// Loop over all of the instructions in the basic block, inserting vzeroupper
195 /// instructions before function calls.
processBasicBlock(MachineBasicBlock & MBB)196 void VZeroUpperInserter::processBasicBlock(MachineBasicBlock &MBB) {
197 // Start by assuming that the block is PASS_THROUGH which implies no unguarded
198 // calls.
199 BlockExitState CurState = PASS_THROUGH;
200 BlockStates[MBB.getNumber()].FirstUnguardedCall = MBB.end();
201
202 for (MachineInstr &MI : MBB) {
203 bool IsCall = MI.isCall();
204 bool IsReturn = MI.isReturn();
205 bool IsControlFlow = IsCall || IsReturn;
206
207 // No need for vzeroupper before iret in interrupt handler function,
208 // epilogue will restore YMM/ZMM registers if needed.
209 if (IsX86INTR && IsReturn)
210 continue;
211
212 // An existing VZERO* instruction resets the state.
213 if (MI.getOpcode() == X86::VZEROALL || MI.getOpcode() == X86::VZEROUPPER) {
214 CurState = EXITS_CLEAN;
215 continue;
216 }
217
218 // Shortcut: don't need to check regular instructions in dirty state.
219 if (!IsControlFlow && CurState == EXITS_DIRTY)
220 continue;
221
222 if (hasYmmOrZmmReg(MI)) {
223 // We found a ymm/zmm-using instruction; this could be an AVX/AVX512
224 // instruction, or it could be control flow.
225 CurState = EXITS_DIRTY;
226 continue;
227 }
228
229 // Check for control-flow out of the current function (which might
230 // indirectly execute SSE instructions).
231 if (!IsControlFlow)
232 continue;
233
234 // If the call has no RegMask, skip it as well. It usually happens on
235 // helper function calls (such as '_chkstk', '_ftol2') where standard
236 // calling convention is not used (RegMask is not used to mark register
237 // clobbered and register usage (def/implicit-def/use) is well-defined and
238 // explicitly specified.
239 if (IsCall && !callHasRegMask(MI))
240 continue;
241
242 // The VZEROUPPER instruction resets the upper 128 bits of YMM0-YMM15
243 // registers. In addition, the processor changes back to Clean state, after
244 // which execution of SSE instructions or AVX instructions has no transition
245 // penalty. Add the VZEROUPPER instruction before any function call/return
246 // that might execute SSE code.
247 // FIXME: In some cases, we may want to move the VZEROUPPER into a
248 // predecessor block.
249 if (CurState == EXITS_DIRTY) {
250 // After the inserted VZEROUPPER the state becomes clean again, but
251 // other YMM/ZMM may appear before other subsequent calls or even before
252 // the end of the BB.
253 insertVZeroUpper(MI, MBB);
254 CurState = EXITS_CLEAN;
255 } else if (CurState == PASS_THROUGH) {
256 // If this block is currently in pass-through state and we encounter a
257 // call then whether we need a vzeroupper or not depends on whether this
258 // block has successors that exit dirty. Record the location of the call,
259 // and set the state to EXITS_CLEAN, but do not insert the vzeroupper yet.
260 // It will be inserted later if necessary.
261 BlockStates[MBB.getNumber()].FirstUnguardedCall = MI;
262 CurState = EXITS_CLEAN;
263 }
264 }
265
266 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber() << " exit state: "
267 << getBlockExitStateName(CurState) << '\n');
268
269 if (CurState == EXITS_DIRTY)
270 for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
271 SE = MBB.succ_end();
272 SI != SE; ++SI)
273 addDirtySuccessor(**SI);
274
275 BlockStates[MBB.getNumber()].ExitState = CurState;
276 }
277
278 /// Loop over all of the basic blocks, inserting vzeroupper instructions before
279 /// function calls.
runOnMachineFunction(MachineFunction & MF)280 bool VZeroUpperInserter::runOnMachineFunction(MachineFunction &MF) {
281 const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
282 if (!ST.hasAVX() || !ST.insertVZEROUPPER())
283 return false;
284 TII = ST.getInstrInfo();
285 MachineRegisterInfo &MRI = MF.getRegInfo();
286 EverMadeChange = false;
287 IsX86INTR = MF.getFunction().getCallingConv() == CallingConv::X86_INTR;
288
289 bool FnHasLiveInYmmOrZmm = checkFnHasLiveInYmmOrZmm(MRI);
290
291 // Fast check: if the function doesn't use any ymm/zmm registers, we don't
292 // need to insert any VZEROUPPER instructions. This is constant-time, so it
293 // is cheap in the common case of no ymm/zmm use.
294 bool YmmOrZmmUsed = FnHasLiveInYmmOrZmm;
295 for (auto *RC : {&X86::VR256RegClass, &X86::VR512_0_15RegClass}) {
296 if (!YmmOrZmmUsed) {
297 for (TargetRegisterClass::iterator i = RC->begin(), e = RC->end(); i != e;
298 i++) {
299 if (!MRI.reg_nodbg_empty(*i)) {
300 YmmOrZmmUsed = true;
301 break;
302 }
303 }
304 }
305 }
306 if (!YmmOrZmmUsed)
307 return false;
308
309 assert(BlockStates.empty() && DirtySuccessors.empty() &&
310 "X86VZeroUpper state should be clear");
311 BlockStates.resize(MF.getNumBlockIDs());
312
313 // Process all blocks. This will compute block exit states, record the first
314 // unguarded call in each block, and add successors of dirty blocks to the
315 // DirtySuccessors list.
316 for (MachineBasicBlock &MBB : MF)
317 processBasicBlock(MBB);
318
319 // If any YMM/ZMM regs are live-in to this function, add the entry block to
320 // the DirtySuccessors list
321 if (FnHasLiveInYmmOrZmm)
322 addDirtySuccessor(MF.front());
323
324 // Re-visit all blocks that are successors of EXITS_DIRTY blocks. Add
325 // vzeroupper instructions to unguarded calls, and propagate EXITS_DIRTY
326 // through PASS_THROUGH blocks.
327 while (!DirtySuccessors.empty()) {
328 MachineBasicBlock &MBB = *DirtySuccessors.back();
329 DirtySuccessors.pop_back();
330 BlockState &BBState = BlockStates[MBB.getNumber()];
331
332 // MBB is a successor of a dirty block, so its first call needs to be
333 // guarded.
334 if (BBState.FirstUnguardedCall != MBB.end())
335 insertVZeroUpper(BBState.FirstUnguardedCall, MBB);
336
337 // If this successor was a pass-through block, then it is now dirty. Its
338 // successors need to be added to the worklist (if they haven't been
339 // already).
340 if (BBState.ExitState == PASS_THROUGH) {
341 LLVM_DEBUG(dbgs() << "MBB #" << MBB.getNumber()
342 << " was Pass-through, is now Dirty-out.\n");
343 for (MachineBasicBlock *Succ : MBB.successors())
344 addDirtySuccessor(*Succ);
345 }
346 }
347
348 BlockStates.clear();
349 return EverMadeChange;
350 }
351