1 //===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains logic for simplifying instructions based on information
10 // about how they are used.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "InstCombineInternal.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/IR/IntrinsicInst.h"
17 #include "llvm/IR/IntrinsicsAMDGPU.h"
18 #include "llvm/IR/IntrinsicsX86.h"
19 #include "llvm/IR/PatternMatch.h"
20 #include "llvm/Support/KnownBits.h"
21
22 using namespace llvm;
23 using namespace llvm::PatternMatch;
24
25 #define DEBUG_TYPE "instcombine"
26
27 namespace {
28
29 struct AMDGPUImageDMaskIntrinsic {
30 unsigned Intr;
31 };
32
33 #define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
34 #include "InstCombineTables.inc"
35
36 } // end anonymous namespace
37
38 /// Check to see if the specified operand of the specified instruction is a
39 /// constant integer. If so, check to see if there are any bits set in the
40 /// constant that are not demanded. If so, shrink the constant and return true.
ShrinkDemandedConstant(Instruction * I,unsigned OpNo,const APInt & Demanded)41 static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
42 const APInt &Demanded) {
43 assert(I && "No instruction?");
44 assert(OpNo < I->getNumOperands() && "Operand index too large");
45
46 // The operand must be a constant integer or splat integer.
47 Value *Op = I->getOperand(OpNo);
48 const APInt *C;
49 if (!match(Op, m_APInt(C)))
50 return false;
51
52 // If there are no bits set that aren't demanded, nothing to do.
53 if (C->isSubsetOf(Demanded))
54 return false;
55
56 // This instruction is producing bits that are not demanded. Shrink the RHS.
57 I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
58
59 return true;
60 }
61
62
63
64 /// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
65 /// the instruction has any properties that allow us to simplify its operands.
SimplifyDemandedInstructionBits(Instruction & Inst)66 bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
67 unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
68 KnownBits Known(BitWidth);
69 APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
70
71 Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
72 0, &Inst);
73 if (!V) return false;
74 if (V == &Inst) return true;
75 replaceInstUsesWith(Inst, V);
76 return true;
77 }
78
79 /// This form of SimplifyDemandedBits simplifies the specified instruction
80 /// operand if possible, updating it in place. It returns true if it made any
81 /// change and false otherwise.
SimplifyDemandedBits(Instruction * I,unsigned OpNo,const APInt & DemandedMask,KnownBits & Known,unsigned Depth)82 bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
83 const APInt &DemandedMask,
84 KnownBits &Known,
85 unsigned Depth) {
86 Use &U = I->getOperandUse(OpNo);
87 Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
88 Depth, I);
89 if (!NewVal) return false;
90 U = NewVal;
91 return true;
92 }
93
94
95 /// This function attempts to replace V with a simpler value based on the
96 /// demanded bits. When this function is called, it is known that only the bits
97 /// set in DemandedMask of the result of V are ever used downstream.
98 /// Consequently, depending on the mask and V, it may be possible to replace V
99 /// with a constant or one of its operands. In such cases, this function does
100 /// the replacement and returns true. In all other cases, it returns false after
101 /// analyzing the expression and setting KnownOne and known to be one in the
102 /// expression. Known.Zero contains all the bits that are known to be zero in
103 /// the expression. These are provided to potentially allow the caller (which
104 /// might recursively be SimplifyDemandedBits itself) to simplify the
105 /// expression.
106 /// Known.One and Known.Zero always follow the invariant that:
107 /// Known.One & Known.Zero == 0.
108 /// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
109 /// Known.Zero may only be accurate for those bits set in DemandedMask. Note
110 /// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
111 /// be the same.
112 ///
113 /// This returns null if it did not change anything and it permits no
114 /// simplification. This returns V itself if it did some simplification of V's
115 /// operands based on the information about what bits are demanded. This returns
116 /// some other non-null value if it found out that V is equal to another value
117 /// in the context where the specified bits are demanded, but not for all users.
SimplifyDemandedUseBits(Value * V,APInt DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)118 Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
119 KnownBits &Known, unsigned Depth,
120 Instruction *CxtI) {
121 assert(V != nullptr && "Null pointer of Value???");
122 assert(Depth <= 6 && "Limit Search Depth");
123 uint32_t BitWidth = DemandedMask.getBitWidth();
124 Type *VTy = V->getType();
125 assert(
126 (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
127 Known.getBitWidth() == BitWidth &&
128 "Value *V, DemandedMask and Known must have same BitWidth");
129
130 if (isa<Constant>(V)) {
131 computeKnownBits(V, Known, Depth, CxtI);
132 return nullptr;
133 }
134
135 Known.resetAll();
136 if (DemandedMask.isNullValue()) // Not demanding any bits from V.
137 return UndefValue::get(VTy);
138
139 if (Depth == 6) // Limit search depth.
140 return nullptr;
141
142 Instruction *I = dyn_cast<Instruction>(V);
143 if (!I) {
144 computeKnownBits(V, Known, Depth, CxtI);
145 return nullptr; // Only analyze instructions.
146 }
147
148 // If there are multiple uses of this value and we aren't at the root, then
149 // we can't do any simplifications of the operands, because DemandedMask
150 // only reflects the bits demanded by *one* of the users.
151 if (Depth != 0 && !I->hasOneUse())
152 return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
153
154 KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
155
156 // If this is the root being simplified, allow it to have multiple uses,
157 // just set the DemandedMask to all bits so that we can try to simplify the
158 // operands. This allows visitTruncInst (for example) to simplify the
159 // operand of a trunc without duplicating all the logic below.
160 if (Depth == 0 && !V->hasOneUse())
161 DemandedMask.setAllBits();
162
163 switch (I->getOpcode()) {
164 default:
165 computeKnownBits(I, Known, Depth, CxtI);
166 break;
167 case Instruction::And: {
168 // If either the LHS or the RHS are Zero, the result is zero.
169 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
170 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
171 Depth + 1))
172 return I;
173 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
174 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
175
176 // Output known-0 are known to be clear if zero in either the LHS | RHS.
177 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
178 // Output known-1 bits are only known if set in both the LHS & RHS.
179 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
180
181 // If the client is only demanding bits that we know, return the known
182 // constant.
183 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
184 return Constant::getIntegerValue(VTy, IKnownOne);
185
186 // If all of the demanded bits are known 1 on one side, return the other.
187 // These bits cannot contribute to the result of the 'and'.
188 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
189 return I->getOperand(0);
190 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
191 return I->getOperand(1);
192
193 // If the RHS is a constant, see if we can simplify it.
194 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
195 return I;
196
197 Known.Zero = std::move(IKnownZero);
198 Known.One = std::move(IKnownOne);
199 break;
200 }
201 case Instruction::Or: {
202 // If either the LHS or the RHS are One, the result is One.
203 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
204 SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
205 Depth + 1))
206 return I;
207 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
208 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
209
210 // Output known-0 bits are only known if clear in both the LHS & RHS.
211 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
212 // Output known-1 are known. to be set if s.et in either the LHS | RHS.
213 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
214
215 // If the client is only demanding bits that we know, return the known
216 // constant.
217 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
218 return Constant::getIntegerValue(VTy, IKnownOne);
219
220 // If all of the demanded bits are known zero on one side, return the other.
221 // These bits cannot contribute to the result of the 'or'.
222 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
223 return I->getOperand(0);
224 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
225 return I->getOperand(1);
226
227 // If the RHS is a constant, see if we can simplify it.
228 if (ShrinkDemandedConstant(I, 1, DemandedMask))
229 return I;
230
231 Known.Zero = std::move(IKnownZero);
232 Known.One = std::move(IKnownOne);
233 break;
234 }
235 case Instruction::Xor: {
236 if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
237 SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
238 return I;
239 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
240 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
241
242 // Output known-0 bits are known if clear or set in both the LHS & RHS.
243 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
244 (RHSKnown.One & LHSKnown.One);
245 // Output known-1 are known to be set if set in only one of the LHS, RHS.
246 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
247 (RHSKnown.One & LHSKnown.Zero);
248
249 // If the client is only demanding bits that we know, return the known
250 // constant.
251 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
252 return Constant::getIntegerValue(VTy, IKnownOne);
253
254 // If all of the demanded bits are known zero on one side, return the other.
255 // These bits cannot contribute to the result of the 'xor'.
256 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
257 return I->getOperand(0);
258 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
259 return I->getOperand(1);
260
261 // If all of the demanded bits are known to be zero on one side or the
262 // other, turn this into an *inclusive* or.
263 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
264 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
265 Instruction *Or =
266 BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
267 I->getName());
268 return InsertNewInstWith(Or, *I);
269 }
270
271 // If all of the demanded bits on one side are known, and all of the set
272 // bits on that side are also known to be set on the other side, turn this
273 // into an AND, as we know the bits will be cleared.
274 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
275 if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
276 RHSKnown.One.isSubsetOf(LHSKnown.One)) {
277 Constant *AndC = Constant::getIntegerValue(VTy,
278 ~RHSKnown.One & DemandedMask);
279 Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
280 return InsertNewInstWith(And, *I);
281 }
282
283 // If the RHS is a constant, see if we can simplify it.
284 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
285 if (ShrinkDemandedConstant(I, 1, DemandedMask))
286 return I;
287
288 // If our LHS is an 'and' and if it has one use, and if any of the bits we
289 // are flipping are known to be set, then the xor is just resetting those
290 // bits to zero. We can just knock out bits from the 'and' and the 'xor',
291 // simplifying both of them.
292 if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
293 if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
294 isa<ConstantInt>(I->getOperand(1)) &&
295 isa<ConstantInt>(LHSInst->getOperand(1)) &&
296 (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
297 ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
298 ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
299 APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
300
301 Constant *AndC =
302 ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
303 Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
304 InsertNewInstWith(NewAnd, *I);
305
306 Constant *XorC =
307 ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
308 Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
309 return InsertNewInstWith(NewXor, *I);
310 }
311
312 // Output known-0 bits are known if clear or set in both the LHS & RHS.
313 Known.Zero = std::move(IKnownZero);
314 // Output known-1 are known to be set if set in only one of the LHS, RHS.
315 Known.One = std::move(IKnownOne);
316 break;
317 }
318 case Instruction::Select: {
319 Value *LHS, *RHS;
320 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
321 if (SPF == SPF_UMAX) {
322 // UMax(A, C) == A if ...
323 // The lowest non-zero bit of DemandMask is higher than the highest
324 // non-zero bit of C.
325 const APInt *C;
326 unsigned CTZ = DemandedMask.countTrailingZeros();
327 if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
328 return LHS;
329 } else if (SPF == SPF_UMIN) {
330 // UMin(A, C) == A if ...
331 // The lowest non-zero bit of DemandMask is higher than the highest
332 // non-one bit of C.
333 // This comes from using DeMorgans on the above umax example.
334 const APInt *C;
335 unsigned CTZ = DemandedMask.countTrailingZeros();
336 if (match(RHS, m_APInt(C)) &&
337 CTZ >= C->getBitWidth() - C->countLeadingOnes())
338 return LHS;
339 }
340
341 // If this is a select as part of any other min/max pattern, don't simplify
342 // any further in case we break the structure.
343 if (SPF != SPF_UNKNOWN)
344 return nullptr;
345
346 if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
347 SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
348 return I;
349 assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
350 assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
351
352 // If the operands are constants, see if we can simplify them.
353 // This is similar to ShrinkDemandedConstant, but for a select we want to
354 // try to keep the selected constants the same as icmp value constants, if
355 // we can. This helps not break apart (or helps put back together)
356 // canonical patterns like min and max.
357 auto CanonicalizeSelectConstant = [](Instruction *I, unsigned OpNo,
358 APInt DemandedMask) {
359 const APInt *SelC;
360 if (!match(I->getOperand(OpNo), m_APInt(SelC)))
361 return false;
362
363 // Get the constant out of the ICmp, if there is one.
364 const APInt *CmpC;
365 ICmpInst::Predicate Pred;
366 if (!match(I->getOperand(0), m_c_ICmp(Pred, m_APInt(CmpC), m_Value())) ||
367 CmpC->getBitWidth() != SelC->getBitWidth())
368 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
369
370 // If the constant is already the same as the ICmp, leave it as-is.
371 if (*CmpC == *SelC)
372 return false;
373 // If the constants are not already the same, but can be with the demand
374 // mask, use the constant value from the ICmp.
375 if ((*CmpC & DemandedMask) == (*SelC & DemandedMask)) {
376 I->setOperand(OpNo, ConstantInt::get(I->getType(), *CmpC));
377 return true;
378 }
379 return ShrinkDemandedConstant(I, OpNo, DemandedMask);
380 };
381 if (CanonicalizeSelectConstant(I, 1, DemandedMask) ||
382 CanonicalizeSelectConstant(I, 2, DemandedMask))
383 return I;
384
385 // Only known if known in both the LHS and RHS.
386 Known.One = RHSKnown.One & LHSKnown.One;
387 Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
388 break;
389 }
390 case Instruction::ZExt:
391 case Instruction::Trunc: {
392 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
393
394 APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
395 KnownBits InputKnown(SrcBitWidth);
396 if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
397 return I;
398 assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
399 Known = InputKnown.zextOrTrunc(BitWidth,
400 true /* ExtendedBitsAreKnownZero */);
401 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
402 break;
403 }
404 case Instruction::BitCast:
405 if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
406 return nullptr; // vector->int or fp->int?
407
408 if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
409 if (VectorType *SrcVTy =
410 dyn_cast<VectorType>(I->getOperand(0)->getType())) {
411 if (DstVTy->getNumElements() != SrcVTy->getNumElements())
412 // Don't touch a bitcast between vectors of different element counts.
413 return nullptr;
414 } else
415 // Don't touch a scalar-to-vector bitcast.
416 return nullptr;
417 } else if (I->getOperand(0)->getType()->isVectorTy())
418 // Don't touch a vector-to-scalar bitcast.
419 return nullptr;
420
421 if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
422 return I;
423 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
424 break;
425 case Instruction::SExt: {
426 // Compute the bits in the result that are not present in the input.
427 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
428
429 APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
430
431 // If any of the sign extended bits are demanded, we know that the sign
432 // bit is demanded.
433 if (DemandedMask.getActiveBits() > SrcBitWidth)
434 InputDemandedBits.setBit(SrcBitWidth-1);
435
436 KnownBits InputKnown(SrcBitWidth);
437 if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
438 return I;
439
440 // If the input sign bit is known zero, or if the NewBits are not demanded
441 // convert this into a zero extension.
442 if (InputKnown.isNonNegative() ||
443 DemandedMask.getActiveBits() <= SrcBitWidth) {
444 // Convert to ZExt cast.
445 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
446 return InsertNewInstWith(NewCast, *I);
447 }
448
449 // If the sign bit of the input is known set or clear, then we know the
450 // top bits of the result.
451 Known = InputKnown.sext(BitWidth);
452 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
453 break;
454 }
455 case Instruction::Add:
456 case Instruction::Sub: {
457 /// If the high-bits of an ADD/SUB are not demanded, then we do not care
458 /// about the high bits of the operands.
459 unsigned NLZ = DemandedMask.countLeadingZeros();
460 // Right fill the mask of bits for this ADD/SUB to demand the most
461 // significant bit and all those below it.
462 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
463 if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
464 SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
465 ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
466 SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
467 if (NLZ > 0) {
468 // Disable the nsw and nuw flags here: We can no longer guarantee that
469 // we won't wrap after simplification. Removing the nsw/nuw flags is
470 // legal here because the top bit is not demanded.
471 BinaryOperator &BinOP = *cast<BinaryOperator>(I);
472 BinOP.setHasNoSignedWrap(false);
473 BinOP.setHasNoUnsignedWrap(false);
474 }
475 return I;
476 }
477
478 // If we are known to be adding/subtracting zeros to every bit below
479 // the highest demanded bit, we just return the other side.
480 if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
481 return I->getOperand(0);
482 // We can't do this with the LHS for subtraction, unless we are only
483 // demanding the LSB.
484 if ((I->getOpcode() == Instruction::Add ||
485 DemandedFromOps.isOneValue()) &&
486 DemandedFromOps.isSubsetOf(LHSKnown.Zero))
487 return I->getOperand(1);
488
489 // Otherwise just compute the known bits of the result.
490 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
491 Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
492 NSW, LHSKnown, RHSKnown);
493 break;
494 }
495 case Instruction::Shl: {
496 const APInt *SA;
497 if (match(I->getOperand(1), m_APInt(SA))) {
498 const APInt *ShrAmt;
499 if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
500 if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
501 if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
502 DemandedMask, Known))
503 return R;
504
505 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
506 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
507
508 // If the shift is NUW/NSW, then it does demand the high bits.
509 ShlOperator *IOp = cast<ShlOperator>(I);
510 if (IOp->hasNoSignedWrap())
511 DemandedMaskIn.setHighBits(ShiftAmt+1);
512 else if (IOp->hasNoUnsignedWrap())
513 DemandedMaskIn.setHighBits(ShiftAmt);
514
515 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
516 return I;
517 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
518 Known.Zero <<= ShiftAmt;
519 Known.One <<= ShiftAmt;
520 // low bits known zero.
521 if (ShiftAmt)
522 Known.Zero.setLowBits(ShiftAmt);
523 }
524 break;
525 }
526 case Instruction::LShr: {
527 const APInt *SA;
528 if (match(I->getOperand(1), m_APInt(SA))) {
529 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
530
531 // Unsigned shift right.
532 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
533
534 // If the shift is exact, then it does demand the low bits (and knows that
535 // they are zero).
536 if (cast<LShrOperator>(I)->isExact())
537 DemandedMaskIn.setLowBits(ShiftAmt);
538
539 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
540 return I;
541 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
542 Known.Zero.lshrInPlace(ShiftAmt);
543 Known.One.lshrInPlace(ShiftAmt);
544 if (ShiftAmt)
545 Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
546 }
547 break;
548 }
549 case Instruction::AShr: {
550 // If this is an arithmetic shift right and only the low-bit is set, we can
551 // always convert this into a logical shr, even if the shift amount is
552 // variable. The low bit of the shift cannot be an input sign bit unless
553 // the shift amount is >= the size of the datatype, which is undefined.
554 if (DemandedMask.isOneValue()) {
555 // Perform the logical shift right.
556 Instruction *NewVal = BinaryOperator::CreateLShr(
557 I->getOperand(0), I->getOperand(1), I->getName());
558 return InsertNewInstWith(NewVal, *I);
559 }
560
561 // If the sign bit is the only bit demanded by this ashr, then there is no
562 // need to do it, the shift doesn't change the high bit.
563 if (DemandedMask.isSignMask())
564 return I->getOperand(0);
565
566 const APInt *SA;
567 if (match(I->getOperand(1), m_APInt(SA))) {
568 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
569
570 // Signed shift right.
571 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
572 // If any of the high bits are demanded, we should set the sign bit as
573 // demanded.
574 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
575 DemandedMaskIn.setSignBit();
576
577 // If the shift is exact, then it does demand the low bits (and knows that
578 // they are zero).
579 if (cast<AShrOperator>(I)->isExact())
580 DemandedMaskIn.setLowBits(ShiftAmt);
581
582 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
583 return I;
584
585 unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
586
587 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
588 // Compute the new bits that are at the top now plus sign bits.
589 APInt HighBits(APInt::getHighBitsSet(
590 BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
591 Known.Zero.lshrInPlace(ShiftAmt);
592 Known.One.lshrInPlace(ShiftAmt);
593
594 // If the input sign bit is known to be zero, or if none of the top bits
595 // are demanded, turn this into an unsigned shift right.
596 assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
597 if (Known.Zero[BitWidth-ShiftAmt-1] ||
598 !DemandedMask.intersects(HighBits)) {
599 BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
600 I->getOperand(1));
601 LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
602 return InsertNewInstWith(LShr, *I);
603 } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
604 Known.One |= HighBits;
605 }
606 }
607 break;
608 }
609 case Instruction::UDiv: {
610 // UDiv doesn't demand low bits that are zero in the divisor.
611 const APInt *SA;
612 if (match(I->getOperand(1), m_APInt(SA))) {
613 // If the shift is exact, then it does demand the low bits.
614 if (cast<UDivOperator>(I)->isExact())
615 break;
616
617 // FIXME: Take the demanded mask of the result into account.
618 unsigned RHSTrailingZeros = SA->countTrailingZeros();
619 APInt DemandedMaskIn =
620 APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
621 if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
622 return I;
623
624 // Propagate zero bits from the input.
625 Known.Zero.setHighBits(std::min(
626 BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
627 }
628 break;
629 }
630 case Instruction::SRem:
631 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
632 // X % -1 demands all the bits because we don't want to introduce
633 // INT_MIN % -1 (== undef) by accident.
634 if (Rem->isMinusOne())
635 break;
636 APInt RA = Rem->getValue().abs();
637 if (RA.isPowerOf2()) {
638 if (DemandedMask.ult(RA)) // srem won't affect demanded bits
639 return I->getOperand(0);
640
641 APInt LowBits = RA - 1;
642 APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
643 if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
644 return I;
645
646 // The low bits of LHS are unchanged by the srem.
647 Known.Zero = LHSKnown.Zero & LowBits;
648 Known.One = LHSKnown.One & LowBits;
649
650 // If LHS is non-negative or has all low bits zero, then the upper bits
651 // are all zero.
652 if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
653 Known.Zero |= ~LowBits;
654
655 // If LHS is negative and not all low bits are zero, then the upper bits
656 // are all one.
657 if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
658 Known.One |= ~LowBits;
659
660 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
661 break;
662 }
663 }
664
665 // The sign bit is the LHS's sign bit, except when the result of the
666 // remainder is zero.
667 if (DemandedMask.isSignBitSet()) {
668 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
669 // If it's known zero, our sign bit is also zero.
670 if (LHSKnown.isNonNegative())
671 Known.makeNonNegative();
672 }
673 break;
674 case Instruction::URem: {
675 KnownBits Known2(BitWidth);
676 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
677 if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
678 SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
679 return I;
680
681 unsigned Leaders = Known2.countMinLeadingZeros();
682 Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
683 break;
684 }
685 case Instruction::Call:
686 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
687 switch (II->getIntrinsicID()) {
688 default: break;
689 case Intrinsic::bswap: {
690 // If the only bits demanded come from one byte of the bswap result,
691 // just shift the input byte into position to eliminate the bswap.
692 unsigned NLZ = DemandedMask.countLeadingZeros();
693 unsigned NTZ = DemandedMask.countTrailingZeros();
694
695 // Round NTZ down to the next byte. If we have 11 trailing zeros, then
696 // we need all the bits down to bit 8. Likewise, round NLZ. If we
697 // have 14 leading zeros, round to 8.
698 NLZ &= ~7;
699 NTZ &= ~7;
700 // If we need exactly one byte, we can do this transformation.
701 if (BitWidth-NLZ-NTZ == 8) {
702 unsigned ResultBit = NTZ;
703 unsigned InputBit = BitWidth-NTZ-8;
704
705 // Replace this with either a left or right shift to get the byte into
706 // the right place.
707 Instruction *NewVal;
708 if (InputBit > ResultBit)
709 NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
710 ConstantInt::get(I->getType(), InputBit-ResultBit));
711 else
712 NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
713 ConstantInt::get(I->getType(), ResultBit-InputBit));
714 NewVal->takeName(I);
715 return InsertNewInstWith(NewVal, *I);
716 }
717
718 // TODO: Could compute known zero/one bits based on the input.
719 break;
720 }
721 case Intrinsic::fshr:
722 case Intrinsic::fshl: {
723 const APInt *SA;
724 if (!match(I->getOperand(2), m_APInt(SA)))
725 break;
726
727 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
728 // defined, so no need to special-case zero shifts here.
729 uint64_t ShiftAmt = SA->urem(BitWidth);
730 if (II->getIntrinsicID() == Intrinsic::fshr)
731 ShiftAmt = BitWidth - ShiftAmt;
732
733 APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
734 APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
735 if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
736 SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
737 return I;
738
739 Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
740 RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
741 Known.One = LHSKnown.One.shl(ShiftAmt) |
742 RHSKnown.One.lshr(BitWidth - ShiftAmt);
743 break;
744 }
745 case Intrinsic::x86_mmx_pmovmskb:
746 case Intrinsic::x86_sse_movmsk_ps:
747 case Intrinsic::x86_sse2_movmsk_pd:
748 case Intrinsic::x86_sse2_pmovmskb_128:
749 case Intrinsic::x86_avx_movmsk_ps_256:
750 case Intrinsic::x86_avx_movmsk_pd_256:
751 case Intrinsic::x86_avx2_pmovmskb: {
752 // MOVMSK copies the vector elements' sign bits to the low bits
753 // and zeros the high bits.
754 unsigned ArgWidth;
755 if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
756 ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
757 } else {
758 auto Arg = II->getArgOperand(0);
759 auto ArgType = cast<VectorType>(Arg->getType());
760 ArgWidth = ArgType->getNumElements();
761 }
762
763 // If we don't need any of low bits then return zero,
764 // we know that DemandedMask is non-zero already.
765 APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
766 if (DemandedElts.isNullValue())
767 return ConstantInt::getNullValue(VTy);
768
769 // We know that the upper bits are set to zero.
770 Known.Zero.setBitsFrom(ArgWidth);
771 return nullptr;
772 }
773 case Intrinsic::x86_sse42_crc32_64_64:
774 Known.Zero.setBitsFrom(32);
775 return nullptr;
776 }
777 }
778 computeKnownBits(V, Known, Depth, CxtI);
779 break;
780 }
781
782 // If the client is only demanding bits that we know, return the known
783 // constant.
784 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
785 return Constant::getIntegerValue(VTy, Known.One);
786 return nullptr;
787 }
788
789 /// Helper routine of SimplifyDemandedUseBits. It computes Known
790 /// bits. It also tries to handle simplifications that can be done based on
791 /// DemandedMask, but without modifying the Instruction.
SimplifyMultipleUseDemandedBits(Instruction * I,const APInt & DemandedMask,KnownBits & Known,unsigned Depth,Instruction * CxtI)792 Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
793 const APInt &DemandedMask,
794 KnownBits &Known,
795 unsigned Depth,
796 Instruction *CxtI) {
797 unsigned BitWidth = DemandedMask.getBitWidth();
798 Type *ITy = I->getType();
799
800 KnownBits LHSKnown(BitWidth);
801 KnownBits RHSKnown(BitWidth);
802
803 // Despite the fact that we can't simplify this instruction in all User's
804 // context, we can at least compute the known bits, and we can
805 // do simplifications that apply to *just* the one user if we know that
806 // this instruction has a simpler value in that context.
807 switch (I->getOpcode()) {
808 case Instruction::And: {
809 // If either the LHS or the RHS are Zero, the result is zero.
810 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
811 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
812 CxtI);
813
814 // Output known-0 are known to be clear if zero in either the LHS | RHS.
815 APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
816 // Output known-1 bits are only known if set in both the LHS & RHS.
817 APInt IKnownOne = RHSKnown.One & LHSKnown.One;
818
819 // If the client is only demanding bits that we know, return the known
820 // constant.
821 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
822 return Constant::getIntegerValue(ITy, IKnownOne);
823
824 // If all of the demanded bits are known 1 on one side, return the other.
825 // These bits cannot contribute to the result of the 'and' in this
826 // context.
827 if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
828 return I->getOperand(0);
829 if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
830 return I->getOperand(1);
831
832 Known.Zero = std::move(IKnownZero);
833 Known.One = std::move(IKnownOne);
834 break;
835 }
836 case Instruction::Or: {
837 // We can simplify (X|Y) -> X or Y in the user's context if we know that
838 // only bits from X or Y are demanded.
839
840 // If either the LHS or the RHS are One, the result is One.
841 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
842 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
843 CxtI);
844
845 // Output known-0 bits are only known if clear in both the LHS & RHS.
846 APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
847 // Output known-1 are known to be set if set in either the LHS | RHS.
848 APInt IKnownOne = RHSKnown.One | LHSKnown.One;
849
850 // If the client is only demanding bits that we know, return the known
851 // constant.
852 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
853 return Constant::getIntegerValue(ITy, IKnownOne);
854
855 // If all of the demanded bits are known zero on one side, return the
856 // other. These bits cannot contribute to the result of the 'or' in this
857 // context.
858 if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
859 return I->getOperand(0);
860 if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
861 return I->getOperand(1);
862
863 Known.Zero = std::move(IKnownZero);
864 Known.One = std::move(IKnownOne);
865 break;
866 }
867 case Instruction::Xor: {
868 // We can simplify (X^Y) -> X or Y in the user's context if we know that
869 // only bits from X or Y are demanded.
870
871 computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
872 computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
873 CxtI);
874
875 // Output known-0 bits are known if clear or set in both the LHS & RHS.
876 APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
877 (RHSKnown.One & LHSKnown.One);
878 // Output known-1 are known to be set if set in only one of the LHS, RHS.
879 APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
880 (RHSKnown.One & LHSKnown.Zero);
881
882 // If the client is only demanding bits that we know, return the known
883 // constant.
884 if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
885 return Constant::getIntegerValue(ITy, IKnownOne);
886
887 // If all of the demanded bits are known zero on one side, return the
888 // other.
889 if (DemandedMask.isSubsetOf(RHSKnown.Zero))
890 return I->getOperand(0);
891 if (DemandedMask.isSubsetOf(LHSKnown.Zero))
892 return I->getOperand(1);
893
894 // Output known-0 bits are known if clear or set in both the LHS & RHS.
895 Known.Zero = std::move(IKnownZero);
896 // Output known-1 are known to be set if set in only one of the LHS, RHS.
897 Known.One = std::move(IKnownOne);
898 break;
899 }
900 default:
901 // Compute the Known bits to simplify things downstream.
902 computeKnownBits(I, Known, Depth, CxtI);
903
904 // If this user is only demanding bits that we know, return the known
905 // constant.
906 if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
907 return Constant::getIntegerValue(ITy, Known.One);
908
909 break;
910 }
911
912 return nullptr;
913 }
914
915
916 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify
917 /// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
918 /// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
919 /// of "C2-C1".
920 ///
921 /// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
922 /// ..., bn}, without considering the specific value X is holding.
923 /// This transformation is legal iff one of following conditions is hold:
924 /// 1) All the bit in S are 0, in this case E1 == E2.
925 /// 2) We don't care those bits in S, per the input DemandedMask.
926 /// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
927 /// rest bits.
928 ///
929 /// Currently we only test condition 2).
930 ///
931 /// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
932 /// not successful.
933 Value *
simplifyShrShlDemandedBits(Instruction * Shr,const APInt & ShrOp1,Instruction * Shl,const APInt & ShlOp1,const APInt & DemandedMask,KnownBits & Known)934 InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
935 Instruction *Shl, const APInt &ShlOp1,
936 const APInt &DemandedMask,
937 KnownBits &Known) {
938 if (!ShlOp1 || !ShrOp1)
939 return nullptr; // No-op.
940
941 Value *VarX = Shr->getOperand(0);
942 Type *Ty = VarX->getType();
943 unsigned BitWidth = Ty->getScalarSizeInBits();
944 if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
945 return nullptr; // Undef.
946
947 unsigned ShlAmt = ShlOp1.getZExtValue();
948 unsigned ShrAmt = ShrOp1.getZExtValue();
949
950 Known.One.clearAllBits();
951 Known.Zero.setLowBits(ShlAmt - 1);
952 Known.Zero &= DemandedMask;
953
954 APInt BitMask1(APInt::getAllOnesValue(BitWidth));
955 APInt BitMask2(APInt::getAllOnesValue(BitWidth));
956
957 bool isLshr = (Shr->getOpcode() == Instruction::LShr);
958 BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
959 (BitMask1.ashr(ShrAmt) << ShlAmt);
960
961 if (ShrAmt <= ShlAmt) {
962 BitMask2 <<= (ShlAmt - ShrAmt);
963 } else {
964 BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
965 BitMask2.ashr(ShrAmt - ShlAmt);
966 }
967
968 // Check if condition-2 (see the comment to this function) is satified.
969 if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
970 if (ShrAmt == ShlAmt)
971 return VarX;
972
973 if (!Shr->hasOneUse())
974 return nullptr;
975
976 BinaryOperator *New;
977 if (ShrAmt < ShlAmt) {
978 Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
979 New = BinaryOperator::CreateShl(VarX, Amt);
980 BinaryOperator *Orig = cast<BinaryOperator>(Shl);
981 New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
982 New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
983 } else {
984 Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
985 New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
986 BinaryOperator::CreateAShr(VarX, Amt);
987 if (cast<BinaryOperator>(Shr)->isExact())
988 New->setIsExact(true);
989 }
990
991 return InsertNewInstWith(New, *Shl);
992 }
993
994 return nullptr;
995 }
996
997 /// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
998 ///
999 /// Note: This only supports non-TFE/LWE image intrinsic calls; those have
1000 /// struct returns.
simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst * II,APInt DemandedElts,int DMaskIdx)1001 Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
1002 APInt DemandedElts,
1003 int DMaskIdx) {
1004
1005 // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported.
1006 if (DMaskIdx < 0 &&
1007 II->getType()->getScalarSizeInBits() != 32 &&
1008 DemandedElts.getActiveBits() == 3)
1009 return nullptr;
1010
1011 unsigned VWidth = II->getType()->getVectorNumElements();
1012 if (VWidth == 1)
1013 return nullptr;
1014
1015 ConstantInt *NewDMask = nullptr;
1016
1017 if (DMaskIdx < 0) {
1018 // Pretend that a prefix of elements is demanded to simplify the code
1019 // below.
1020 DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
1021 } else {
1022 ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
1023 unsigned DMaskVal = DMask->getZExtValue() & 0xf;
1024
1025 // Mask off values that are undefined because the dmask doesn't cover them
1026 DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
1027
1028 unsigned NewDMaskVal = 0;
1029 unsigned OrigLoadIdx = 0;
1030 for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
1031 const unsigned Bit = 1 << SrcIdx;
1032 if (!!(DMaskVal & Bit)) {
1033 if (!!DemandedElts[OrigLoadIdx])
1034 NewDMaskVal |= Bit;
1035 OrigLoadIdx++;
1036 }
1037 }
1038
1039 if (DMaskVal != NewDMaskVal)
1040 NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
1041 }
1042
1043 unsigned NewNumElts = DemandedElts.countPopulation();
1044 if (!NewNumElts)
1045 return UndefValue::get(II->getType());
1046
1047 if (NewNumElts >= VWidth && DemandedElts.isMask()) {
1048 if (NewDMask)
1049 II->setArgOperand(DMaskIdx, NewDMask);
1050 return nullptr;
1051 }
1052
1053 // Determine the overload types of the original intrinsic.
1054 auto IID = II->getIntrinsicID();
1055 SmallVector<Intrinsic::IITDescriptor, 16> Table;
1056 getIntrinsicInfoTableEntries(IID, Table);
1057 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1058
1059 // Validate function argument and return types, extracting overloaded types
1060 // along the way.
1061 FunctionType *FTy = II->getCalledFunction()->getFunctionType();
1062 SmallVector<Type *, 6> OverloadTys;
1063 Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys);
1064
1065 Module *M = II->getParent()->getParent()->getParent();
1066 Type *EltTy = II->getType()->getVectorElementType();
1067 Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
1068
1069 OverloadTys[0] = NewTy;
1070 Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
1071
1072 SmallVector<Value *, 16> Args;
1073 for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
1074 Args.push_back(II->getArgOperand(I));
1075
1076 if (NewDMask)
1077 Args[DMaskIdx] = NewDMask;
1078
1079 IRBuilderBase::InsertPointGuard Guard(Builder);
1080 Builder.SetInsertPoint(II);
1081
1082 CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
1083 NewCall->takeName(II);
1084 NewCall->copyMetadata(*II);
1085
1086 if (NewNumElts == 1) {
1087 return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
1088 DemandedElts.countTrailingZeros());
1089 }
1090
1091 SmallVector<uint32_t, 8> EltMask;
1092 unsigned NewLoadIdx = 0;
1093 for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
1094 if (!!DemandedElts[OrigLoadIdx])
1095 EltMask.push_back(NewLoadIdx++);
1096 else
1097 EltMask.push_back(NewNumElts);
1098 }
1099
1100 Value *Shuffle =
1101 Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
1102
1103 return Shuffle;
1104 }
1105
1106 /// The specified value produces a vector with any number of elements.
1107 /// This method analyzes which elements of the operand are undef and returns
1108 /// that information in UndefElts.
1109 ///
1110 /// DemandedElts contains the set of elements that are actually used by the
1111 /// caller, and by default (AllowMultipleUsers equals false) the value is
1112 /// simplified only if it has a single caller. If AllowMultipleUsers is set
1113 /// to true, DemandedElts refers to the union of sets of elements that are
1114 /// used by all callers.
1115 ///
1116 /// If the information about demanded elements can be used to simplify the
1117 /// operation, the operation is simplified, then the resultant value is
1118 /// returned. This returns null if no change was made.
SimplifyDemandedVectorElts(Value * V,APInt DemandedElts,APInt & UndefElts,unsigned Depth,bool AllowMultipleUsers)1119 Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
1120 APInt &UndefElts,
1121 unsigned Depth,
1122 bool AllowMultipleUsers) {
1123 unsigned VWidth = V->getType()->getVectorNumElements();
1124 APInt EltMask(APInt::getAllOnesValue(VWidth));
1125 assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
1126
1127 if (isa<UndefValue>(V)) {
1128 // If the entire vector is undefined, just return this info.
1129 UndefElts = EltMask;
1130 return nullptr;
1131 }
1132
1133 if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
1134 UndefElts = EltMask;
1135 return UndefValue::get(V->getType());
1136 }
1137
1138 UndefElts = 0;
1139
1140 if (auto *C = dyn_cast<Constant>(V)) {
1141 // Check if this is identity. If so, return 0 since we are not simplifying
1142 // anything.
1143 if (DemandedElts.isAllOnesValue())
1144 return nullptr;
1145
1146 Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1147 Constant *Undef = UndefValue::get(EltTy);
1148 SmallVector<Constant*, 16> Elts;
1149 for (unsigned i = 0; i != VWidth; ++i) {
1150 if (!DemandedElts[i]) { // If not demanded, set to undef.
1151 Elts.push_back(Undef);
1152 UndefElts.setBit(i);
1153 continue;
1154 }
1155
1156 Constant *Elt = C->getAggregateElement(i);
1157 if (!Elt) return nullptr;
1158
1159 if (isa<UndefValue>(Elt)) { // Already undef.
1160 Elts.push_back(Undef);
1161 UndefElts.setBit(i);
1162 } else { // Otherwise, defined.
1163 Elts.push_back(Elt);
1164 }
1165 }
1166
1167 // If we changed the constant, return it.
1168 Constant *NewCV = ConstantVector::get(Elts);
1169 return NewCV != C ? NewCV : nullptr;
1170 }
1171
1172 // Limit search depth.
1173 if (Depth == 10)
1174 return nullptr;
1175
1176 if (!AllowMultipleUsers) {
1177 // If multiple users are using the root value, proceed with
1178 // simplification conservatively assuming that all elements
1179 // are needed.
1180 if (!V->hasOneUse()) {
1181 // Quit if we find multiple users of a non-root value though.
1182 // They'll be handled when it's their turn to be visited by
1183 // the main instcombine process.
1184 if (Depth != 0)
1185 // TODO: Just compute the UndefElts information recursively.
1186 return nullptr;
1187
1188 // Conservatively assume that all elements are needed.
1189 DemandedElts = EltMask;
1190 }
1191 }
1192
1193 Instruction *I = dyn_cast<Instruction>(V);
1194 if (!I) return nullptr; // Only analyze instructions.
1195
1196 bool MadeChange = false;
1197 auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
1198 APInt Demanded, APInt &Undef) {
1199 auto *II = dyn_cast<IntrinsicInst>(Inst);
1200 Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
1201 if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
1202 if (II)
1203 II->setArgOperand(OpNum, V);
1204 else
1205 Inst->setOperand(OpNum, V);
1206 MadeChange = true;
1207 }
1208 };
1209
1210 APInt UndefElts2(VWidth, 0);
1211 APInt UndefElts3(VWidth, 0);
1212 switch (I->getOpcode()) {
1213 default: break;
1214
1215 case Instruction::GetElementPtr: {
1216 // The LangRef requires that struct geps have all constant indices. As
1217 // such, we can't convert any operand to partial undef.
1218 auto mayIndexStructType = [](GetElementPtrInst &GEP) {
1219 for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
1220 I != E; I++)
1221 if (I.isStruct())
1222 return true;;
1223 return false;
1224 };
1225 if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
1226 break;
1227
1228 // Conservatively track the demanded elements back through any vector
1229 // operands we may have. We know there must be at least one, or we
1230 // wouldn't have a vector result to get here. Note that we intentionally
1231 // merge the undef bits here since gepping with either an undef base or
1232 // index results in undef.
1233 for (unsigned i = 0; i < I->getNumOperands(); i++) {
1234 if (isa<UndefValue>(I->getOperand(i))) {
1235 // If the entire vector is undefined, just return this info.
1236 UndefElts = EltMask;
1237 return nullptr;
1238 }
1239 if (I->getOperand(i)->getType()->isVectorTy()) {
1240 APInt UndefEltsOp(VWidth, 0);
1241 simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
1242 UndefElts |= UndefEltsOp;
1243 }
1244 }
1245
1246 break;
1247 }
1248 case Instruction::InsertElement: {
1249 // If this is a variable index, we don't know which element it overwrites.
1250 // demand exactly the same input as we produce.
1251 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1252 if (!Idx) {
1253 // Note that we can't propagate undef elt info, because we don't know
1254 // which elt is getting updated.
1255 simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
1256 break;
1257 }
1258
1259 // The element inserted overwrites whatever was there, so the input demanded
1260 // set is simpler than the output set.
1261 unsigned IdxNo = Idx->getZExtValue();
1262 APInt PreInsertDemandedElts = DemandedElts;
1263 if (IdxNo < VWidth)
1264 PreInsertDemandedElts.clearBit(IdxNo);
1265
1266 simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
1267
1268 // If this is inserting an element that isn't demanded, remove this
1269 // insertelement.
1270 if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
1271 Worklist.Add(I);
1272 return I->getOperand(0);
1273 }
1274
1275 // The inserted element is defined.
1276 UndefElts.clearBit(IdxNo);
1277 break;
1278 }
1279 case Instruction::ShuffleVector: {
1280 auto *Shuffle = cast<ShuffleVectorInst>(I);
1281 assert(Shuffle->getOperand(0)->getType() ==
1282 Shuffle->getOperand(1)->getType() &&
1283 "Expected shuffle operands to have same type");
1284 unsigned OpWidth =
1285 Shuffle->getOperand(0)->getType()->getVectorNumElements();
1286 APInt LeftDemanded(OpWidth, 0), RightDemanded(OpWidth, 0);
1287 for (unsigned i = 0; i < VWidth; i++) {
1288 if (DemandedElts[i]) {
1289 unsigned MaskVal = Shuffle->getMaskValue(i);
1290 if (MaskVal != -1u) {
1291 assert(MaskVal < OpWidth * 2 &&
1292 "shufflevector mask index out of range!");
1293 if (MaskVal < OpWidth)
1294 LeftDemanded.setBit(MaskVal);
1295 else
1296 RightDemanded.setBit(MaskVal - OpWidth);
1297 }
1298 }
1299 }
1300
1301 APInt LHSUndefElts(OpWidth, 0);
1302 simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
1303
1304 APInt RHSUndefElts(OpWidth, 0);
1305 simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
1306
1307 // If this shuffle does not change the vector length and the elements
1308 // demanded by this shuffle are an identity mask, then this shuffle is
1309 // unnecessary.
1310 //
1311 // We are assuming canonical form for the mask, so the source vector is
1312 // operand 0 and operand 1 is not used.
1313 //
1314 // Note that if an element is demanded and this shuffle mask is undefined
1315 // for that element, then the shuffle is not considered an identity
1316 // operation. The shuffle prevents poison from the operand vector from
1317 // leaking to the result by replacing poison with an undefined value.
1318 if (VWidth == OpWidth) {
1319 bool IsIdentityShuffle = true;
1320 for (unsigned i = 0; i < VWidth; i++) {
1321 unsigned MaskVal = Shuffle->getMaskValue(i);
1322 if (DemandedElts[i] && i != MaskVal) {
1323 IsIdentityShuffle = false;
1324 break;
1325 }
1326 }
1327 if (IsIdentityShuffle)
1328 return Shuffle->getOperand(0);
1329 }
1330
1331 bool NewUndefElts = false;
1332 unsigned LHSIdx = -1u, LHSValIdx = -1u;
1333 unsigned RHSIdx = -1u, RHSValIdx = -1u;
1334 bool LHSUniform = true;
1335 bool RHSUniform = true;
1336 for (unsigned i = 0; i < VWidth; i++) {
1337 unsigned MaskVal = Shuffle->getMaskValue(i);
1338 if (MaskVal == -1u) {
1339 UndefElts.setBit(i);
1340 } else if (!DemandedElts[i]) {
1341 NewUndefElts = true;
1342 UndefElts.setBit(i);
1343 } else if (MaskVal < OpWidth) {
1344 if (LHSUndefElts[MaskVal]) {
1345 NewUndefElts = true;
1346 UndefElts.setBit(i);
1347 } else {
1348 LHSIdx = LHSIdx == -1u ? i : OpWidth;
1349 LHSValIdx = LHSValIdx == -1u ? MaskVal : OpWidth;
1350 LHSUniform = LHSUniform && (MaskVal == i);
1351 }
1352 } else {
1353 if (RHSUndefElts[MaskVal - OpWidth]) {
1354 NewUndefElts = true;
1355 UndefElts.setBit(i);
1356 } else {
1357 RHSIdx = RHSIdx == -1u ? i : OpWidth;
1358 RHSValIdx = RHSValIdx == -1u ? MaskVal - OpWidth : OpWidth;
1359 RHSUniform = RHSUniform && (MaskVal - OpWidth == i);
1360 }
1361 }
1362 }
1363
1364 // Try to transform shuffle with constant vector and single element from
1365 // this constant vector to single insertelement instruction.
1366 // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
1367 // insertelement V, C[ci], ci-n
1368 if (OpWidth == Shuffle->getType()->getNumElements()) {
1369 Value *Op = nullptr;
1370 Constant *Value = nullptr;
1371 unsigned Idx = -1u;
1372
1373 // Find constant vector with the single element in shuffle (LHS or RHS).
1374 if (LHSIdx < OpWidth && RHSUniform) {
1375 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
1376 Op = Shuffle->getOperand(1);
1377 Value = CV->getOperand(LHSValIdx);
1378 Idx = LHSIdx;
1379 }
1380 }
1381 if (RHSIdx < OpWidth && LHSUniform) {
1382 if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
1383 Op = Shuffle->getOperand(0);
1384 Value = CV->getOperand(RHSValIdx);
1385 Idx = RHSIdx;
1386 }
1387 }
1388 // Found constant vector with single element - convert to insertelement.
1389 if (Op && Value) {
1390 Instruction *New = InsertElementInst::Create(
1391 Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
1392 Shuffle->getName());
1393 InsertNewInstWith(New, *Shuffle);
1394 return New;
1395 }
1396 }
1397 if (NewUndefElts) {
1398 // Add additional discovered undefs.
1399 SmallVector<Constant*, 16> Elts;
1400 for (unsigned i = 0; i < VWidth; ++i) {
1401 if (UndefElts[i])
1402 Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
1403 else
1404 Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
1405 Shuffle->getMaskValue(i)));
1406 }
1407 I->setOperand(2, ConstantVector::get(Elts));
1408 MadeChange = true;
1409 }
1410 break;
1411 }
1412 case Instruction::Select: {
1413 // If this is a vector select, try to transform the select condition based
1414 // on the current demanded elements.
1415 SelectInst *Sel = cast<SelectInst>(I);
1416 if (Sel->getCondition()->getType()->isVectorTy()) {
1417 // TODO: We are not doing anything with UndefElts based on this call.
1418 // It is overwritten below based on the other select operands. If an
1419 // element of the select condition is known undef, then we are free to
1420 // choose the output value from either arm of the select. If we know that
1421 // one of those values is undef, then the output can be undef.
1422 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1423 }
1424
1425 // Next, see if we can transform the arms of the select.
1426 APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
1427 if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
1428 for (unsigned i = 0; i < VWidth; i++) {
1429 // isNullValue() always returns false when called on a ConstantExpr.
1430 // Skip constant expressions to avoid propagating incorrect information.
1431 Constant *CElt = CV->getAggregateElement(i);
1432 if (isa<ConstantExpr>(CElt))
1433 continue;
1434 // TODO: If a select condition element is undef, we can demand from
1435 // either side. If one side is known undef, choosing that side would
1436 // propagate undef.
1437 if (CElt->isNullValue())
1438 DemandedLHS.clearBit(i);
1439 else
1440 DemandedRHS.clearBit(i);
1441 }
1442 }
1443
1444 simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
1445 simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
1446
1447 // Output elements are undefined if the element from each arm is undefined.
1448 // TODO: This can be improved. See comment in select condition handling.
1449 UndefElts = UndefElts2 & UndefElts3;
1450 break;
1451 }
1452 case Instruction::BitCast: {
1453 // Vector->vector casts only.
1454 VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1455 if (!VTy) break;
1456 unsigned InVWidth = VTy->getNumElements();
1457 APInt InputDemandedElts(InVWidth, 0);
1458 UndefElts2 = APInt(InVWidth, 0);
1459 unsigned Ratio;
1460
1461 if (VWidth == InVWidth) {
1462 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1463 // elements as are demanded of us.
1464 Ratio = 1;
1465 InputDemandedElts = DemandedElts;
1466 } else if ((VWidth % InVWidth) == 0) {
1467 // If the number of elements in the output is a multiple of the number of
1468 // elements in the input then an input element is live if any of the
1469 // corresponding output elements are live.
1470 Ratio = VWidth / InVWidth;
1471 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1472 if (DemandedElts[OutIdx])
1473 InputDemandedElts.setBit(OutIdx / Ratio);
1474 } else if ((InVWidth % VWidth) == 0) {
1475 // If the number of elements in the input is a multiple of the number of
1476 // elements in the output then an input element is live if the
1477 // corresponding output element is live.
1478 Ratio = InVWidth / VWidth;
1479 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1480 if (DemandedElts[InIdx / Ratio])
1481 InputDemandedElts.setBit(InIdx);
1482 } else {
1483 // Unsupported so far.
1484 break;
1485 }
1486
1487 simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
1488
1489 if (VWidth == InVWidth) {
1490 UndefElts = UndefElts2;
1491 } else if ((VWidth % InVWidth) == 0) {
1492 // If the number of elements in the output is a multiple of the number of
1493 // elements in the input then an output element is undef if the
1494 // corresponding input element is undef.
1495 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1496 if (UndefElts2[OutIdx / Ratio])
1497 UndefElts.setBit(OutIdx);
1498 } else if ((InVWidth % VWidth) == 0) {
1499 // If the number of elements in the input is a multiple of the number of
1500 // elements in the output then an output element is undef if all of the
1501 // corresponding input elements are undef.
1502 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1503 APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
1504 if (SubUndef.countPopulation() == Ratio)
1505 UndefElts.setBit(OutIdx);
1506 }
1507 } else {
1508 llvm_unreachable("Unimp");
1509 }
1510 break;
1511 }
1512 case Instruction::FPTrunc:
1513 case Instruction::FPExt:
1514 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1515 break;
1516
1517 case Instruction::Call: {
1518 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1519 if (!II) break;
1520 switch (II->getIntrinsicID()) {
1521 case Intrinsic::masked_gather: // fallthrough
1522 case Intrinsic::masked_load: {
1523 // Subtlety: If we load from a pointer, the pointer must be valid
1524 // regardless of whether the element is demanded. Doing otherwise risks
1525 // segfaults which didn't exist in the original program.
1526 APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
1527 DemandedPassThrough(DemandedElts);
1528 if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
1529 for (unsigned i = 0; i < VWidth; i++) {
1530 Constant *CElt = CV->getAggregateElement(i);
1531 if (CElt->isNullValue())
1532 DemandedPtrs.clearBit(i);
1533 else if (CElt->isAllOnesValue())
1534 DemandedPassThrough.clearBit(i);
1535 }
1536 if (II->getIntrinsicID() == Intrinsic::masked_gather)
1537 simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
1538 simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
1539
1540 // Output elements are undefined if the element from both sources are.
1541 // TODO: can strengthen via mask as well.
1542 UndefElts = UndefElts2 & UndefElts3;
1543 break;
1544 }
1545 case Intrinsic::x86_xop_vfrcz_ss:
1546 case Intrinsic::x86_xop_vfrcz_sd:
1547 // The instructions for these intrinsics are speced to zero upper bits not
1548 // pass them through like other scalar intrinsics. So we shouldn't just
1549 // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
1550 // Instead we should return a zero vector.
1551 if (!DemandedElts[0]) {
1552 Worklist.Add(II);
1553 return ConstantAggregateZero::get(II->getType());
1554 }
1555
1556 // Only the lower element is used.
1557 DemandedElts = 1;
1558 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1559
1560 // Only the lower element is undefined. The high elements are zero.
1561 UndefElts = UndefElts[0];
1562 break;
1563
1564 // Unary scalar-as-vector operations that work column-wise.
1565 case Intrinsic::x86_sse_rcp_ss:
1566 case Intrinsic::x86_sse_rsqrt_ss:
1567 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1568
1569 // If lowest element of a scalar op isn't used then use Arg0.
1570 if (!DemandedElts[0]) {
1571 Worklist.Add(II);
1572 return II->getArgOperand(0);
1573 }
1574 // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
1575 // checks).
1576 break;
1577
1578 // Binary scalar-as-vector operations that work column-wise. The high
1579 // elements come from operand 0. The low element is a function of both
1580 // operands.
1581 case Intrinsic::x86_sse_min_ss:
1582 case Intrinsic::x86_sse_max_ss:
1583 case Intrinsic::x86_sse_cmp_ss:
1584 case Intrinsic::x86_sse2_min_sd:
1585 case Intrinsic::x86_sse2_max_sd:
1586 case Intrinsic::x86_sse2_cmp_sd: {
1587 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1588
1589 // If lowest element of a scalar op isn't used then use Arg0.
1590 if (!DemandedElts[0]) {
1591 Worklist.Add(II);
1592 return II->getArgOperand(0);
1593 }
1594
1595 // Only lower element is used for operand 1.
1596 DemandedElts = 1;
1597 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1598
1599 // Lower element is undefined if both lower elements are undefined.
1600 // Consider things like undef&0. The result is known zero, not undef.
1601 if (!UndefElts2[0])
1602 UndefElts.clearBit(0);
1603
1604 break;
1605 }
1606
1607 // Binary scalar-as-vector operations that work column-wise. The high
1608 // elements come from operand 0 and the low element comes from operand 1.
1609 case Intrinsic::x86_sse41_round_ss:
1610 case Intrinsic::x86_sse41_round_sd: {
1611 // Don't use the low element of operand 0.
1612 APInt DemandedElts2 = DemandedElts;
1613 DemandedElts2.clearBit(0);
1614 simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
1615
1616 // If lowest element of a scalar op isn't used then use Arg0.
1617 if (!DemandedElts[0]) {
1618 Worklist.Add(II);
1619 return II->getArgOperand(0);
1620 }
1621
1622 // Only lower element is used for operand 1.
1623 DemandedElts = 1;
1624 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1625
1626 // Take the high undef elements from operand 0 and take the lower element
1627 // from operand 1.
1628 UndefElts.clearBit(0);
1629 UndefElts |= UndefElts2[0];
1630 break;
1631 }
1632
1633 // Three input scalar-as-vector operations that work column-wise. The high
1634 // elements come from operand 0 and the low element is a function of all
1635 // three inputs.
1636 case Intrinsic::x86_avx512_mask_add_ss_round:
1637 case Intrinsic::x86_avx512_mask_div_ss_round:
1638 case Intrinsic::x86_avx512_mask_mul_ss_round:
1639 case Intrinsic::x86_avx512_mask_sub_ss_round:
1640 case Intrinsic::x86_avx512_mask_max_ss_round:
1641 case Intrinsic::x86_avx512_mask_min_ss_round:
1642 case Intrinsic::x86_avx512_mask_add_sd_round:
1643 case Intrinsic::x86_avx512_mask_div_sd_round:
1644 case Intrinsic::x86_avx512_mask_mul_sd_round:
1645 case Intrinsic::x86_avx512_mask_sub_sd_round:
1646 case Intrinsic::x86_avx512_mask_max_sd_round:
1647 case Intrinsic::x86_avx512_mask_min_sd_round:
1648 simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
1649
1650 // If lowest element of a scalar op isn't used then use Arg0.
1651 if (!DemandedElts[0]) {
1652 Worklist.Add(II);
1653 return II->getArgOperand(0);
1654 }
1655
1656 // Only lower element is used for operand 1 and 2.
1657 DemandedElts = 1;
1658 simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
1659 simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
1660
1661 // Lower element is undefined if all three lower elements are undefined.
1662 // Consider things like undef&0. The result is known zero, not undef.
1663 if (!UndefElts2[0] || !UndefElts3[0])
1664 UndefElts.clearBit(0);
1665
1666 break;
1667
1668 case Intrinsic::x86_sse2_packssdw_128:
1669 case Intrinsic::x86_sse2_packsswb_128:
1670 case Intrinsic::x86_sse2_packuswb_128:
1671 case Intrinsic::x86_sse41_packusdw:
1672 case Intrinsic::x86_avx2_packssdw:
1673 case Intrinsic::x86_avx2_packsswb:
1674 case Intrinsic::x86_avx2_packusdw:
1675 case Intrinsic::x86_avx2_packuswb:
1676 case Intrinsic::x86_avx512_packssdw_512:
1677 case Intrinsic::x86_avx512_packsswb_512:
1678 case Intrinsic::x86_avx512_packusdw_512:
1679 case Intrinsic::x86_avx512_packuswb_512: {
1680 auto *Ty0 = II->getArgOperand(0)->getType();
1681 unsigned InnerVWidth = Ty0->getVectorNumElements();
1682 assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
1683
1684 unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
1685 unsigned VWidthPerLane = VWidth / NumLanes;
1686 unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
1687
1688 // Per lane, pack the elements of the first input and then the second.
1689 // e.g.
1690 // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
1691 // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
1692 for (int OpNum = 0; OpNum != 2; ++OpNum) {
1693 APInt OpDemandedElts(InnerVWidth, 0);
1694 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1695 unsigned LaneIdx = Lane * VWidthPerLane;
1696 for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
1697 unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
1698 if (DemandedElts[Idx])
1699 OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
1700 }
1701 }
1702
1703 // Demand elements from the operand.
1704 APInt OpUndefElts(InnerVWidth, 0);
1705 simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
1706
1707 // Pack the operand's UNDEF elements, one lane at a time.
1708 OpUndefElts = OpUndefElts.zext(VWidth);
1709 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1710 APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
1711 LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
1712 LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
1713 UndefElts |= LaneElts;
1714 }
1715 }
1716 break;
1717 }
1718
1719 // PSHUFB
1720 case Intrinsic::x86_ssse3_pshuf_b_128:
1721 case Intrinsic::x86_avx2_pshuf_b:
1722 case Intrinsic::x86_avx512_pshuf_b_512:
1723 // PERMILVAR
1724 case Intrinsic::x86_avx_vpermilvar_ps:
1725 case Intrinsic::x86_avx_vpermilvar_ps_256:
1726 case Intrinsic::x86_avx512_vpermilvar_ps_512:
1727 case Intrinsic::x86_avx_vpermilvar_pd:
1728 case Intrinsic::x86_avx_vpermilvar_pd_256:
1729 case Intrinsic::x86_avx512_vpermilvar_pd_512:
1730 // PERMV
1731 case Intrinsic::x86_avx2_permd:
1732 case Intrinsic::x86_avx2_permps: {
1733 simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
1734 break;
1735 }
1736
1737 // SSE4A instructions leave the upper 64-bits of the 128-bit result
1738 // in an undefined state.
1739 case Intrinsic::x86_sse4a_extrq:
1740 case Intrinsic::x86_sse4a_extrqi:
1741 case Intrinsic::x86_sse4a_insertq:
1742 case Intrinsic::x86_sse4a_insertqi:
1743 UndefElts.setHighBits(VWidth / 2);
1744 break;
1745 case Intrinsic::amdgcn_buffer_load:
1746 case Intrinsic::amdgcn_buffer_load_format:
1747 case Intrinsic::amdgcn_raw_buffer_load:
1748 case Intrinsic::amdgcn_raw_buffer_load_format:
1749 case Intrinsic::amdgcn_raw_tbuffer_load:
1750 case Intrinsic::amdgcn_struct_buffer_load:
1751 case Intrinsic::amdgcn_struct_buffer_load_format:
1752 case Intrinsic::amdgcn_struct_tbuffer_load:
1753 case Intrinsic::amdgcn_tbuffer_load:
1754 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
1755 default: {
1756 if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
1757 return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
1758
1759 break;
1760 }
1761 } // switch on IntrinsicID
1762 break;
1763 } // case Call
1764 } // switch on Opcode
1765
1766 // TODO: We bail completely on integer div/rem and shifts because they have
1767 // UB/poison potential, but that should be refined.
1768 BinaryOperator *BO;
1769 if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
1770 simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
1771 simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
1772
1773 // Any change to an instruction with potential poison must clear those flags
1774 // because we can not guarantee those constraints now. Other analysis may
1775 // determine that it is safe to re-apply the flags.
1776 if (MadeChange)
1777 BO->dropPoisonGeneratingFlags();
1778
1779 // Output elements are undefined if both are undefined. Consider things
1780 // like undef & 0. The result is known zero, not undef.
1781 UndefElts &= UndefElts2;
1782 }
1783
1784 // If we've proven all of the lanes undef, return an undef value.
1785 // TODO: Intersect w/demanded lanes
1786 if (UndefElts.isAllOnesValue())
1787 return UndefValue::get(I->getType());;
1788
1789 return MadeChange ? I : nullptr;
1790 }
1791