1 //===--------- LoopSimplifyCFG.cpp - Loop CFG Simplification Pass ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Loop SimplifyCFG Pass. This pass is responsible for
10 // basic loop CFG cleanup, primarily to assist other loop passes. If you
11 // encounter a noncanonical CFG construct that causes another loop pass to
12 // perform suboptimally, this is the place to fix it up.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Scalar/LoopSimplifyCFG.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/AssumptionCache.h"
21 #include "llvm/Analysis/BasicAliasAnalysis.h"
22 #include "llvm/Analysis/DependenceAnalysis.h"
23 #include "llvm/Analysis/DomTreeUpdater.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/LoopInfo.h"
26 #include "llvm/Analysis/LoopPass.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
31 #include "llvm/Analysis/TargetTransformInfo.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Transforms/Scalar.h"
36 #include "llvm/Transforms/Scalar/LoopPassManager.h"
37 #include "llvm/Transforms/Utils.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/Transforms/Utils/LoopUtils.h"
41 using namespace llvm;
42
43 #define DEBUG_TYPE "loop-simplifycfg"
44
45 static cl::opt<bool> EnableTermFolding("enable-loop-simplifycfg-term-folding",
46 cl::init(true));
47
48 STATISTIC(NumTerminatorsFolded,
49 "Number of terminators folded to unconditional branches");
50 STATISTIC(NumLoopBlocksDeleted,
51 "Number of loop blocks deleted");
52 STATISTIC(NumLoopExitsDeleted,
53 "Number of loop exiting edges deleted");
54
55 /// If \p BB is a switch or a conditional branch, but only one of its successors
56 /// can be reached from this block in runtime, return this successor. Otherwise,
57 /// return nullptr.
getOnlyLiveSuccessor(BasicBlock * BB)58 static BasicBlock *getOnlyLiveSuccessor(BasicBlock *BB) {
59 Instruction *TI = BB->getTerminator();
60 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
61 if (BI->isUnconditional())
62 return nullptr;
63 if (BI->getSuccessor(0) == BI->getSuccessor(1))
64 return BI->getSuccessor(0);
65 ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
66 if (!Cond)
67 return nullptr;
68 return Cond->isZero() ? BI->getSuccessor(1) : BI->getSuccessor(0);
69 }
70
71 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
72 auto *CI = dyn_cast<ConstantInt>(SI->getCondition());
73 if (!CI)
74 return nullptr;
75 for (auto Case : SI->cases())
76 if (Case.getCaseValue() == CI)
77 return Case.getCaseSuccessor();
78 return SI->getDefaultDest();
79 }
80
81 return nullptr;
82 }
83
84 /// Removes \p BB from all loops from [FirstLoop, LastLoop) in parent chain.
removeBlockFromLoops(BasicBlock * BB,Loop * FirstLoop,Loop * LastLoop=nullptr)85 static void removeBlockFromLoops(BasicBlock *BB, Loop *FirstLoop,
86 Loop *LastLoop = nullptr) {
87 assert((!LastLoop || LastLoop->contains(FirstLoop->getHeader())) &&
88 "First loop is supposed to be inside of last loop!");
89 assert(FirstLoop->contains(BB) && "Must be a loop block!");
90 for (Loop *Current = FirstLoop; Current != LastLoop;
91 Current = Current->getParentLoop())
92 Current->removeBlockFromLoop(BB);
93 }
94
95 /// Find innermost loop that contains at least one block from \p BBs and
96 /// contains the header of loop \p L.
getInnermostLoopFor(SmallPtrSetImpl<BasicBlock * > & BBs,Loop & L,LoopInfo & LI)97 static Loop *getInnermostLoopFor(SmallPtrSetImpl<BasicBlock *> &BBs,
98 Loop &L, LoopInfo &LI) {
99 Loop *Innermost = nullptr;
100 for (BasicBlock *BB : BBs) {
101 Loop *BBL = LI.getLoopFor(BB);
102 while (BBL && !BBL->contains(L.getHeader()))
103 BBL = BBL->getParentLoop();
104 if (BBL == &L)
105 BBL = BBL->getParentLoop();
106 if (!BBL)
107 continue;
108 if (!Innermost || BBL->getLoopDepth() > Innermost->getLoopDepth())
109 Innermost = BBL;
110 }
111 return Innermost;
112 }
113
114 namespace {
115 /// Helper class that can turn branches and switches with constant conditions
116 /// into unconditional branches.
117 class ConstantTerminatorFoldingImpl {
118 private:
119 Loop &L;
120 LoopInfo &LI;
121 DominatorTree &DT;
122 ScalarEvolution &SE;
123 MemorySSAUpdater *MSSAU;
124 LoopBlocksDFS DFS;
125 DomTreeUpdater DTU;
126 SmallVector<DominatorTree::UpdateType, 16> DTUpdates;
127
128 // Whether or not the current loop has irreducible CFG.
129 bool HasIrreducibleCFG = false;
130 // Whether or not the current loop will still exist after terminator constant
131 // folding will be done. In theory, there are two ways how it can happen:
132 // 1. Loop's latch(es) become unreachable from loop header;
133 // 2. Loop's header becomes unreachable from method entry.
134 // In practice, the second situation is impossible because we only modify the
135 // current loop and its preheader and do not affect preheader's reachibility
136 // from any other block. So this variable set to true means that loop's latch
137 // has become unreachable from loop header.
138 bool DeleteCurrentLoop = false;
139
140 // The blocks of the original loop that will still be reachable from entry
141 // after the constant folding.
142 SmallPtrSet<BasicBlock *, 8> LiveLoopBlocks;
143 // The blocks of the original loop that will become unreachable from entry
144 // after the constant folding.
145 SmallVector<BasicBlock *, 8> DeadLoopBlocks;
146 // The exits of the original loop that will still be reachable from entry
147 // after the constant folding.
148 SmallPtrSet<BasicBlock *, 8> LiveExitBlocks;
149 // The exits of the original loop that will become unreachable from entry
150 // after the constant folding.
151 SmallVector<BasicBlock *, 8> DeadExitBlocks;
152 // The blocks that will still be a part of the current loop after folding.
153 SmallPtrSet<BasicBlock *, 8> BlocksInLoopAfterFolding;
154 // The blocks that have terminators with constant condition that can be
155 // folded. Note: fold candidates should be in L but not in any of its
156 // subloops to avoid complex LI updates.
157 SmallVector<BasicBlock *, 8> FoldCandidates;
158
dump() const159 void dump() const {
160 dbgs() << "Constant terminator folding for loop " << L << "\n";
161 dbgs() << "After terminator constant-folding, the loop will";
162 if (!DeleteCurrentLoop)
163 dbgs() << " not";
164 dbgs() << " be destroyed\n";
165 auto PrintOutVector = [&](const char *Message,
166 const SmallVectorImpl<BasicBlock *> &S) {
167 dbgs() << Message << "\n";
168 for (const BasicBlock *BB : S)
169 dbgs() << "\t" << BB->getName() << "\n";
170 };
171 auto PrintOutSet = [&](const char *Message,
172 const SmallPtrSetImpl<BasicBlock *> &S) {
173 dbgs() << Message << "\n";
174 for (const BasicBlock *BB : S)
175 dbgs() << "\t" << BB->getName() << "\n";
176 };
177 PrintOutVector("Blocks in which we can constant-fold terminator:",
178 FoldCandidates);
179 PrintOutSet("Live blocks from the original loop:", LiveLoopBlocks);
180 PrintOutVector("Dead blocks from the original loop:", DeadLoopBlocks);
181 PrintOutSet("Live exit blocks:", LiveExitBlocks);
182 PrintOutVector("Dead exit blocks:", DeadExitBlocks);
183 if (!DeleteCurrentLoop)
184 PrintOutSet("The following blocks will still be part of the loop:",
185 BlocksInLoopAfterFolding);
186 }
187
188 /// Whether or not the current loop has irreducible CFG.
hasIrreducibleCFG(LoopBlocksDFS & DFS)189 bool hasIrreducibleCFG(LoopBlocksDFS &DFS) {
190 assert(DFS.isComplete() && "DFS is expected to be finished");
191 // Index of a basic block in RPO traversal.
192 DenseMap<const BasicBlock *, unsigned> RPO;
193 unsigned Current = 0;
194 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I)
195 RPO[*I] = Current++;
196
197 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
198 BasicBlock *BB = *I;
199 for (auto *Succ : successors(BB))
200 if (L.contains(Succ) && !LI.isLoopHeader(Succ) && RPO[BB] > RPO[Succ])
201 // If an edge goes from a block with greater order number into a block
202 // with lesses number, and it is not a loop backedge, then it can only
203 // be a part of irreducible non-loop cycle.
204 return true;
205 }
206 return false;
207 }
208
209 /// Fill all information about status of blocks and exits of the current loop
210 /// if constant folding of all branches will be done.
analyze()211 void analyze() {
212 DFS.perform(&LI);
213 assert(DFS.isComplete() && "DFS is expected to be finished");
214
215 // TODO: The algorithm below relies on both RPO and Postorder traversals.
216 // When the loop has only reducible CFG inside, then the invariant "all
217 // predecessors of X are processed before X in RPO" is preserved. However
218 // an irreducible loop can break this invariant (e.g. latch does not have to
219 // be the last block in the traversal in this case, and the algorithm relies
220 // on this). We can later decide to support such cases by altering the
221 // algorithms, but so far we just give up analyzing them.
222 if (hasIrreducibleCFG(DFS)) {
223 HasIrreducibleCFG = true;
224 return;
225 }
226
227 // Collect live and dead loop blocks and exits.
228 LiveLoopBlocks.insert(L.getHeader());
229 for (auto I = DFS.beginRPO(), E = DFS.endRPO(); I != E; ++I) {
230 BasicBlock *BB = *I;
231
232 // If a loop block wasn't marked as live so far, then it's dead.
233 if (!LiveLoopBlocks.count(BB)) {
234 DeadLoopBlocks.push_back(BB);
235 continue;
236 }
237
238 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
239
240 // If a block has only one live successor, it's a candidate on constant
241 // folding. Only handle blocks from current loop: branches in child loops
242 // are skipped because if they can be folded, they should be folded during
243 // the processing of child loops.
244 bool TakeFoldCandidate = TheOnlySucc && LI.getLoopFor(BB) == &L;
245 if (TakeFoldCandidate)
246 FoldCandidates.push_back(BB);
247
248 // Handle successors.
249 for (BasicBlock *Succ : successors(BB))
250 if (!TakeFoldCandidate || TheOnlySucc == Succ) {
251 if (L.contains(Succ))
252 LiveLoopBlocks.insert(Succ);
253 else
254 LiveExitBlocks.insert(Succ);
255 }
256 }
257
258 // Sanity check: amount of dead and live loop blocks should match the total
259 // number of blocks in loop.
260 assert(L.getNumBlocks() == LiveLoopBlocks.size() + DeadLoopBlocks.size() &&
261 "Malformed block sets?");
262
263 // Now, all exit blocks that are not marked as live are dead.
264 SmallVector<BasicBlock *, 8> ExitBlocks;
265 L.getExitBlocks(ExitBlocks);
266 SmallPtrSet<BasicBlock *, 8> UniqueDeadExits;
267 for (auto *ExitBlock : ExitBlocks)
268 if (!LiveExitBlocks.count(ExitBlock) &&
269 UniqueDeadExits.insert(ExitBlock).second)
270 DeadExitBlocks.push_back(ExitBlock);
271
272 // Whether or not the edge From->To will still be present in graph after the
273 // folding.
274 auto IsEdgeLive = [&](BasicBlock *From, BasicBlock *To) {
275 if (!LiveLoopBlocks.count(From))
276 return false;
277 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(From);
278 return !TheOnlySucc || TheOnlySucc == To || LI.getLoopFor(From) != &L;
279 };
280
281 // The loop will not be destroyed if its latch is live.
282 DeleteCurrentLoop = !IsEdgeLive(L.getLoopLatch(), L.getHeader());
283
284 // If we are going to delete the current loop completely, no extra analysis
285 // is needed.
286 if (DeleteCurrentLoop)
287 return;
288
289 // Otherwise, we should check which blocks will still be a part of the
290 // current loop after the transform.
291 BlocksInLoopAfterFolding.insert(L.getLoopLatch());
292 // If the loop is live, then we should compute what blocks are still in
293 // loop after all branch folding has been done. A block is in loop if
294 // it has a live edge to another block that is in the loop; by definition,
295 // latch is in the loop.
296 auto BlockIsInLoop = [&](BasicBlock *BB) {
297 return any_of(successors(BB), [&](BasicBlock *Succ) {
298 return BlocksInLoopAfterFolding.count(Succ) && IsEdgeLive(BB, Succ);
299 });
300 };
301 for (auto I = DFS.beginPostorder(), E = DFS.endPostorder(); I != E; ++I) {
302 BasicBlock *BB = *I;
303 if (BlockIsInLoop(BB))
304 BlocksInLoopAfterFolding.insert(BB);
305 }
306
307 // Sanity check: header must be in loop.
308 assert(BlocksInLoopAfterFolding.count(L.getHeader()) &&
309 "Header not in loop?");
310 assert(BlocksInLoopAfterFolding.size() <= LiveLoopBlocks.size() &&
311 "All blocks that stay in loop should be live!");
312 }
313
314 /// We need to preserve static reachibility of all loop exit blocks (this is)
315 /// required by loop pass manager. In order to do it, we make the following
316 /// trick:
317 ///
318 /// preheader:
319 /// <preheader code>
320 /// br label %loop_header
321 ///
322 /// loop_header:
323 /// ...
324 /// br i1 false, label %dead_exit, label %loop_block
325 /// ...
326 ///
327 /// We cannot simply remove edge from the loop to dead exit because in this
328 /// case dead_exit (and its successors) may become unreachable. To avoid that,
329 /// we insert the following fictive preheader:
330 ///
331 /// preheader:
332 /// <preheader code>
333 /// switch i32 0, label %preheader-split,
334 /// [i32 1, label %dead_exit_1],
335 /// [i32 2, label %dead_exit_2],
336 /// ...
337 /// [i32 N, label %dead_exit_N],
338 ///
339 /// preheader-split:
340 /// br label %loop_header
341 ///
342 /// loop_header:
343 /// ...
344 /// br i1 false, label %dead_exit_N, label %loop_block
345 /// ...
346 ///
347 /// Doing so, we preserve static reachibility of all dead exits and can later
348 /// remove edges from the loop to these blocks.
handleDeadExits()349 void handleDeadExits() {
350 // If no dead exits, nothing to do.
351 if (DeadExitBlocks.empty())
352 return;
353
354 // Construct split preheader and the dummy switch to thread edges from it to
355 // dead exits.
356 BasicBlock *Preheader = L.getLoopPreheader();
357 BasicBlock *NewPreheader = llvm::SplitBlock(
358 Preheader, Preheader->getTerminator(), &DT, &LI, MSSAU);
359
360 IRBuilder<> Builder(Preheader->getTerminator());
361 SwitchInst *DummySwitch =
362 Builder.CreateSwitch(Builder.getInt32(0), NewPreheader);
363 Preheader->getTerminator()->eraseFromParent();
364
365 unsigned DummyIdx = 1;
366 for (BasicBlock *BB : DeadExitBlocks) {
367 SmallVector<Instruction *, 4> DeadPhis;
368 for (auto &PN : BB->phis())
369 DeadPhis.push_back(&PN);
370
371 // Eliminate all Phis from dead exits.
372 for (Instruction *PN : DeadPhis) {
373 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
374 PN->eraseFromParent();
375 }
376 assert(DummyIdx != 0 && "Too many dead exits!");
377 DummySwitch->addCase(Builder.getInt32(DummyIdx++), BB);
378 DTUpdates.push_back({DominatorTree::Insert, Preheader, BB});
379 ++NumLoopExitsDeleted;
380 }
381
382 assert(L.getLoopPreheader() == NewPreheader && "Malformed CFG?");
383 if (Loop *OuterLoop = LI.getLoopFor(Preheader)) {
384 // When we break dead edges, the outer loop may become unreachable from
385 // the current loop. We need to fix loop info accordingly. For this, we
386 // find the most nested loop that still contains L and remove L from all
387 // loops that are inside of it.
388 Loop *StillReachable = getInnermostLoopFor(LiveExitBlocks, L, LI);
389
390 // Okay, our loop is no longer in the outer loop (and maybe not in some of
391 // its parents as well). Make the fixup.
392 if (StillReachable != OuterLoop) {
393 LI.changeLoopFor(NewPreheader, StillReachable);
394 removeBlockFromLoops(NewPreheader, OuterLoop, StillReachable);
395 for (auto *BB : L.blocks())
396 removeBlockFromLoops(BB, OuterLoop, StillReachable);
397 OuterLoop->removeChildLoop(&L);
398 if (StillReachable)
399 StillReachable->addChildLoop(&L);
400 else
401 LI.addTopLevelLoop(&L);
402
403 // Some values from loops in [OuterLoop, StillReachable) could be used
404 // in the current loop. Now it is not their child anymore, so such uses
405 // require LCSSA Phis.
406 Loop *FixLCSSALoop = OuterLoop;
407 while (FixLCSSALoop->getParentLoop() != StillReachable)
408 FixLCSSALoop = FixLCSSALoop->getParentLoop();
409 assert(FixLCSSALoop && "Should be a loop!");
410 // We need all DT updates to be done before forming LCSSA.
411 DTU.applyUpdates(DTUpdates);
412 if (MSSAU)
413 MSSAU->applyUpdates(DTUpdates, DT);
414 DTUpdates.clear();
415 formLCSSARecursively(*FixLCSSALoop, DT, &LI, &SE);
416 }
417 }
418
419 if (MSSAU) {
420 // Clear all updates now. Facilitates deletes that follow.
421 DTU.applyUpdates(DTUpdates);
422 MSSAU->applyUpdates(DTUpdates, DT);
423 DTUpdates.clear();
424 if (VerifyMemorySSA)
425 MSSAU->getMemorySSA()->verifyMemorySSA();
426 }
427 }
428
429 /// Delete loop blocks that have become unreachable after folding. Make all
430 /// relevant updates to DT and LI.
deleteDeadLoopBlocks()431 void deleteDeadLoopBlocks() {
432 if (MSSAU) {
433 SmallSetVector<BasicBlock *, 8> DeadLoopBlocksSet(DeadLoopBlocks.begin(),
434 DeadLoopBlocks.end());
435 MSSAU->removeBlocks(DeadLoopBlocksSet);
436 }
437
438 // The function LI.erase has some invariants that need to be preserved when
439 // it tries to remove a loop which is not the top-level loop. In particular,
440 // it requires loop's preheader to be strictly in loop's parent. We cannot
441 // just remove blocks one by one, because after removal of preheader we may
442 // break this invariant for the dead loop. So we detatch and erase all dead
443 // loops beforehand.
444 for (auto *BB : DeadLoopBlocks)
445 if (LI.isLoopHeader(BB)) {
446 assert(LI.getLoopFor(BB) != &L && "Attempt to remove current loop!");
447 Loop *DL = LI.getLoopFor(BB);
448 if (DL->getParentLoop()) {
449 for (auto *PL = DL->getParentLoop(); PL; PL = PL->getParentLoop())
450 for (auto *BB : DL->getBlocks())
451 PL->removeBlockFromLoop(BB);
452 DL->getParentLoop()->removeChildLoop(DL);
453 LI.addTopLevelLoop(DL);
454 }
455 LI.erase(DL);
456 }
457
458 for (auto *BB : DeadLoopBlocks) {
459 assert(BB != L.getHeader() &&
460 "Header of the current loop cannot be dead!");
461 LLVM_DEBUG(dbgs() << "Deleting dead loop block " << BB->getName()
462 << "\n");
463 LI.removeBlock(BB);
464 }
465
466 DetatchDeadBlocks(DeadLoopBlocks, &DTUpdates, /*KeepOneInputPHIs*/true);
467 DTU.applyUpdates(DTUpdates);
468 DTUpdates.clear();
469 for (auto *BB : DeadLoopBlocks)
470 DTU.deleteBB(BB);
471
472 NumLoopBlocksDeleted += DeadLoopBlocks.size();
473 }
474
475 /// Constant-fold terminators of blocks acculumated in FoldCandidates into the
476 /// unconditional branches.
foldTerminators()477 void foldTerminators() {
478 for (BasicBlock *BB : FoldCandidates) {
479 assert(LI.getLoopFor(BB) == &L && "Should be a loop block!");
480 BasicBlock *TheOnlySucc = getOnlyLiveSuccessor(BB);
481 assert(TheOnlySucc && "Should have one live successor!");
482
483 LLVM_DEBUG(dbgs() << "Replacing terminator of " << BB->getName()
484 << " with an unconditional branch to the block "
485 << TheOnlySucc->getName() << "\n");
486
487 SmallPtrSet<BasicBlock *, 2> DeadSuccessors;
488 // Remove all BB's successors except for the live one.
489 unsigned TheOnlySuccDuplicates = 0;
490 for (auto *Succ : successors(BB))
491 if (Succ != TheOnlySucc) {
492 DeadSuccessors.insert(Succ);
493 // If our successor lies in a different loop, we don't want to remove
494 // the one-input Phi because it is a LCSSA Phi.
495 bool PreserveLCSSAPhi = !L.contains(Succ);
496 Succ->removePredecessor(BB, PreserveLCSSAPhi);
497 if (MSSAU)
498 MSSAU->removeEdge(BB, Succ);
499 } else
500 ++TheOnlySuccDuplicates;
501
502 assert(TheOnlySuccDuplicates > 0 && "Should be!");
503 // If TheOnlySucc was BB's successor more than once, after transform it
504 // will be its successor only once. Remove redundant inputs from
505 // TheOnlySucc's Phis.
506 bool PreserveLCSSAPhi = !L.contains(TheOnlySucc);
507 for (unsigned Dup = 1; Dup < TheOnlySuccDuplicates; ++Dup)
508 TheOnlySucc->removePredecessor(BB, PreserveLCSSAPhi);
509 if (MSSAU && TheOnlySuccDuplicates > 1)
510 MSSAU->removeDuplicatePhiEdgesBetween(BB, TheOnlySucc);
511
512 IRBuilder<> Builder(BB->getContext());
513 Instruction *Term = BB->getTerminator();
514 Builder.SetInsertPoint(Term);
515 Builder.CreateBr(TheOnlySucc);
516 Term->eraseFromParent();
517
518 for (auto *DeadSucc : DeadSuccessors)
519 DTUpdates.push_back({DominatorTree::Delete, BB, DeadSucc});
520
521 ++NumTerminatorsFolded;
522 }
523 }
524
525 public:
ConstantTerminatorFoldingImpl(Loop & L,LoopInfo & LI,DominatorTree & DT,ScalarEvolution & SE,MemorySSAUpdater * MSSAU)526 ConstantTerminatorFoldingImpl(Loop &L, LoopInfo &LI, DominatorTree &DT,
527 ScalarEvolution &SE,
528 MemorySSAUpdater *MSSAU)
529 : L(L), LI(LI), DT(DT), SE(SE), MSSAU(MSSAU), DFS(&L),
530 DTU(DT, DomTreeUpdater::UpdateStrategy::Eager) {}
run()531 bool run() {
532 assert(L.getLoopLatch() && "Should be single latch!");
533
534 // Collect all available information about status of blocks after constant
535 // folding.
536 analyze();
537 BasicBlock *Header = L.getHeader();
538 (void)Header;
539
540 LLVM_DEBUG(dbgs() << "In function " << Header->getParent()->getName()
541 << ": ");
542
543 if (HasIrreducibleCFG) {
544 LLVM_DEBUG(dbgs() << "Loops with irreducible CFG are not supported!\n");
545 return false;
546 }
547
548 // Nothing to constant-fold.
549 if (FoldCandidates.empty()) {
550 LLVM_DEBUG(
551 dbgs() << "No constant terminator folding candidates found in loop "
552 << Header->getName() << "\n");
553 return false;
554 }
555
556 // TODO: Support deletion of the current loop.
557 if (DeleteCurrentLoop) {
558 LLVM_DEBUG(
559 dbgs()
560 << "Give up constant terminator folding in loop " << Header->getName()
561 << ": we don't currently support deletion of the current loop.\n");
562 return false;
563 }
564
565 // TODO: Support blocks that are not dead, but also not in loop after the
566 // folding.
567 if (BlocksInLoopAfterFolding.size() + DeadLoopBlocks.size() !=
568 L.getNumBlocks()) {
569 LLVM_DEBUG(
570 dbgs() << "Give up constant terminator folding in loop "
571 << Header->getName() << ": we don't currently"
572 " support blocks that are not dead, but will stop "
573 "being a part of the loop after constant-folding.\n");
574 return false;
575 }
576
577 SE.forgetTopmostLoop(&L);
578 // Dump analysis results.
579 LLVM_DEBUG(dump());
580
581 LLVM_DEBUG(dbgs() << "Constant-folding " << FoldCandidates.size()
582 << " terminators in loop " << Header->getName() << "\n");
583
584 // Make the actual transforms.
585 handleDeadExits();
586 foldTerminators();
587
588 if (!DeadLoopBlocks.empty()) {
589 LLVM_DEBUG(dbgs() << "Deleting " << DeadLoopBlocks.size()
590 << " dead blocks in loop " << Header->getName() << "\n");
591 deleteDeadLoopBlocks();
592 } else {
593 // If we didn't do updates inside deleteDeadLoopBlocks, do them here.
594 DTU.applyUpdates(DTUpdates);
595 DTUpdates.clear();
596 }
597
598 if (MSSAU && VerifyMemorySSA)
599 MSSAU->getMemorySSA()->verifyMemorySSA();
600
601 #ifndef NDEBUG
602 // Make sure that we have preserved all data structures after the transform.
603 #if defined(EXPENSIVE_CHECKS)
604 assert(DT.verify(DominatorTree::VerificationLevel::Full) &&
605 "DT broken after transform!");
606 #else
607 assert(DT.verify(DominatorTree::VerificationLevel::Fast) &&
608 "DT broken after transform!");
609 #endif
610 assert(DT.isReachableFromEntry(Header));
611 LI.verify(DT);
612 #endif
613
614 return true;
615 }
616
foldingBreaksCurrentLoop() const617 bool foldingBreaksCurrentLoop() const {
618 return DeleteCurrentLoop;
619 }
620 };
621 } // namespace
622
623 /// Turn branches and switches with known constant conditions into unconditional
624 /// branches.
constantFoldTerminators(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & IsLoopDeleted)625 static bool constantFoldTerminators(Loop &L, DominatorTree &DT, LoopInfo &LI,
626 ScalarEvolution &SE,
627 MemorySSAUpdater *MSSAU,
628 bool &IsLoopDeleted) {
629 if (!EnableTermFolding)
630 return false;
631
632 // To keep things simple, only process loops with single latch. We
633 // canonicalize most loops to this form. We can support multi-latch if needed.
634 if (!L.getLoopLatch())
635 return false;
636
637 ConstantTerminatorFoldingImpl BranchFolder(L, LI, DT, SE, MSSAU);
638 bool Changed = BranchFolder.run();
639 IsLoopDeleted = Changed && BranchFolder.foldingBreaksCurrentLoop();
640 return Changed;
641 }
642
mergeBlocksIntoPredecessors(Loop & L,DominatorTree & DT,LoopInfo & LI,MemorySSAUpdater * MSSAU)643 static bool mergeBlocksIntoPredecessors(Loop &L, DominatorTree &DT,
644 LoopInfo &LI, MemorySSAUpdater *MSSAU) {
645 bool Changed = false;
646 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
647 // Copy blocks into a temporary array to avoid iterator invalidation issues
648 // as we remove them.
649 SmallVector<WeakTrackingVH, 16> Blocks(L.blocks());
650
651 for (auto &Block : Blocks) {
652 // Attempt to merge blocks in the trivial case. Don't modify blocks which
653 // belong to other loops.
654 BasicBlock *Succ = cast_or_null<BasicBlock>(Block);
655 if (!Succ)
656 continue;
657
658 BasicBlock *Pred = Succ->getSinglePredecessor();
659 if (!Pred || !Pred->getSingleSuccessor() || LI.getLoopFor(Pred) != &L)
660 continue;
661
662 // Merge Succ into Pred and delete it.
663 MergeBlockIntoPredecessor(Succ, &DTU, &LI, MSSAU);
664
665 if (MSSAU && VerifyMemorySSA)
666 MSSAU->getMemorySSA()->verifyMemorySSA();
667
668 Changed = true;
669 }
670
671 return Changed;
672 }
673
simplifyLoopCFG(Loop & L,DominatorTree & DT,LoopInfo & LI,ScalarEvolution & SE,MemorySSAUpdater * MSSAU,bool & isLoopDeleted)674 static bool simplifyLoopCFG(Loop &L, DominatorTree &DT, LoopInfo &LI,
675 ScalarEvolution &SE, MemorySSAUpdater *MSSAU,
676 bool &isLoopDeleted) {
677 bool Changed = false;
678
679 // Constant-fold terminators with known constant conditions.
680 Changed |= constantFoldTerminators(L, DT, LI, SE, MSSAU, isLoopDeleted);
681
682 if (isLoopDeleted)
683 return true;
684
685 // Eliminate unconditional branches by merging blocks into their predecessors.
686 Changed |= mergeBlocksIntoPredecessors(L, DT, LI, MSSAU);
687
688 if (Changed)
689 SE.forgetTopmostLoop(&L);
690
691 return Changed;
692 }
693
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater & LPMU)694 PreservedAnalyses LoopSimplifyCFGPass::run(Loop &L, LoopAnalysisManager &AM,
695 LoopStandardAnalysisResults &AR,
696 LPMUpdater &LPMU) {
697 Optional<MemorySSAUpdater> MSSAU;
698 if (AR.MSSA)
699 MSSAU = MemorySSAUpdater(AR.MSSA);
700 bool DeleteCurrentLoop = false;
701 if (!simplifyLoopCFG(L, AR.DT, AR.LI, AR.SE,
702 MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
703 DeleteCurrentLoop))
704 return PreservedAnalyses::all();
705
706 if (DeleteCurrentLoop)
707 LPMU.markLoopAsDeleted(L, "loop-simplifycfg");
708
709 auto PA = getLoopPassPreservedAnalyses();
710 if (AR.MSSA)
711 PA.preserve<MemorySSAAnalysis>();
712 return PA;
713 }
714
715 namespace {
716 class LoopSimplifyCFGLegacyPass : public LoopPass {
717 public:
718 static char ID; // Pass ID, replacement for typeid
LoopSimplifyCFGLegacyPass()719 LoopSimplifyCFGLegacyPass() : LoopPass(ID) {
720 initializeLoopSimplifyCFGLegacyPassPass(*PassRegistry::getPassRegistry());
721 }
722
runOnLoop(Loop * L,LPPassManager & LPM)723 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
724 if (skipLoop(L))
725 return false;
726
727 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
728 LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
729 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
730 Optional<MemorySSAUpdater> MSSAU;
731 if (EnableMSSALoopDependency) {
732 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
733 MSSAU = MemorySSAUpdater(MSSA);
734 if (VerifyMemorySSA)
735 MSSA->verifyMemorySSA();
736 }
737 bool DeleteCurrentLoop = false;
738 bool Changed = simplifyLoopCFG(
739 *L, DT, LI, SE, MSSAU.hasValue() ? MSSAU.getPointer() : nullptr,
740 DeleteCurrentLoop);
741 if (DeleteCurrentLoop)
742 LPM.markLoopAsDeleted(*L);
743 return Changed;
744 }
745
getAnalysisUsage(AnalysisUsage & AU) const746 void getAnalysisUsage(AnalysisUsage &AU) const override {
747 if (EnableMSSALoopDependency) {
748 AU.addRequired<MemorySSAWrapperPass>();
749 AU.addPreserved<MemorySSAWrapperPass>();
750 }
751 AU.addPreserved<DependenceAnalysisWrapperPass>();
752 getLoopAnalysisUsage(AU);
753 }
754 };
755 }
756
757 char LoopSimplifyCFGLegacyPass::ID = 0;
758 INITIALIZE_PASS_BEGIN(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
759 "Simplify loop CFG", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)760 INITIALIZE_PASS_DEPENDENCY(LoopPass)
761 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
762 INITIALIZE_PASS_END(LoopSimplifyCFGLegacyPass, "loop-simplifycfg",
763 "Simplify loop CFG", false, false)
764
765 Pass *llvm::createLoopSimplifyCFGPass() {
766 return new LoopSimplifyCFGLegacyPass();
767 }
768