• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ADT/SmallPtrSet.cpp - 'Normally small' pointer set ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SmallPtrSet class.  See SmallPtrSet.h for an
11 // overview of the algorithm.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/DenseMapInfo.h"
17 #include "llvm/Support/MathExtras.h"
18 #include <algorithm>
19 #include <cassert>
20 #include <cstdlib>
21 
22 using namespace llvm;
23 
shrink_and_clear()24 void SmallPtrSetImplBase::shrink_and_clear() {
25   assert(!isSmall() && "Can't shrink a small set!");
26   free(CurArray);
27 
28   // Reduce the number of buckets.
29   unsigned Size = size();
30   CurArraySize = Size > 16 ? 1 << (Log2_32_Ceil(Size) + 1) : 32;
31   NumNonEmpty = NumTombstones = 0;
32 
33   // Install the new array.  Clear all the buckets to empty.
34   CurArray = (const void**)malloc(sizeof(void*) * CurArraySize);
35   assert(CurArray && "Failed to allocate memory?");
36   memset(CurArray, -1, CurArraySize*sizeof(void*));
37 }
38 
39 std::pair<const void *const *, bool>
insert_imp_big(const void * Ptr)40 SmallPtrSetImplBase::insert_imp_big(const void *Ptr) {
41   if (LLVM_UNLIKELY(size() * 4 >= CurArraySize * 3)) {
42     // If more than 3/4 of the array is full, grow.
43     Grow(CurArraySize < 64 ? 128 : CurArraySize * 2);
44   } else if (LLVM_UNLIKELY(CurArraySize - NumNonEmpty < CurArraySize / 8)) {
45     // If fewer of 1/8 of the array is empty (meaning that many are filled with
46     // tombstones), rehash.
47     Grow(CurArraySize);
48   }
49 
50   // Okay, we know we have space.  Find a hash bucket.
51   const void **Bucket = const_cast<const void**>(FindBucketFor(Ptr));
52   if (*Bucket == Ptr)
53     return std::make_pair(Bucket, false); // Already inserted, good.
54 
55   // Otherwise, insert it!
56   if (*Bucket == getTombstoneMarker())
57     --NumTombstones;
58   else
59     ++NumNonEmpty; // Track density.
60   *Bucket = Ptr;
61   return std::make_pair(Bucket, true);
62 }
63 
erase_imp(const void * Ptr)64 bool SmallPtrSetImplBase::erase_imp(const void * Ptr) {
65   if (isSmall()) {
66     // Check to see if it is in the set.
67     for (const void **APtr = CurArray, **E = CurArray + NumNonEmpty; APtr != E;
68          ++APtr)
69       if (*APtr == Ptr) {
70         // If it is in the set, replace this element.
71         *APtr = getTombstoneMarker();
72         ++NumTombstones;
73         return true;
74       }
75 
76     return false;
77   }
78 
79   // Okay, we know we have space.  Find a hash bucket.
80   void **Bucket = const_cast<void**>(FindBucketFor(Ptr));
81   if (*Bucket != Ptr) return false;  // Not in the set?
82 
83   // Set this as a tombstone.
84   *Bucket = getTombstoneMarker();
85   ++NumTombstones;
86   return true;
87 }
88 
FindBucketFor(const void * Ptr) const89 const void * const *SmallPtrSetImplBase::FindBucketFor(const void *Ptr) const {
90   unsigned Bucket = DenseMapInfo<void *>::getHashValue(Ptr) & (CurArraySize-1);
91   unsigned ArraySize = CurArraySize;
92   unsigned ProbeAmt = 1;
93   const void *const *Array = CurArray;
94   const void *const *Tombstone = nullptr;
95   while (true) {
96     // If we found an empty bucket, the pointer doesn't exist in the set.
97     // Return a tombstone if we've seen one so far, or the empty bucket if
98     // not.
99     if (LLVM_LIKELY(Array[Bucket] == getEmptyMarker()))
100       return Tombstone ? Tombstone : Array+Bucket;
101 
102     // Found Ptr's bucket?
103     if (LLVM_LIKELY(Array[Bucket] == Ptr))
104       return Array+Bucket;
105 
106     // If this is a tombstone, remember it.  If Ptr ends up not in the set, we
107     // prefer to return it than something that would require more probing.
108     if (Array[Bucket] == getTombstoneMarker() && !Tombstone)
109       Tombstone = Array+Bucket;  // Remember the first tombstone found.
110 
111     // It's a hash collision or a tombstone. Reprobe.
112     Bucket = (Bucket + ProbeAmt++) & (ArraySize-1);
113   }
114 }
115 
116 /// Grow - Allocate a larger backing store for the buckets and move it over.
117 ///
Grow(unsigned NewSize)118 void SmallPtrSetImplBase::Grow(unsigned NewSize) {
119   const void **OldBuckets = CurArray;
120   const void **OldEnd = EndPointer();
121   bool WasSmall = isSmall();
122 
123   // Install the new array.  Clear all the buckets to empty.
124   CurArray = (const void**)malloc(sizeof(void*) * NewSize);
125   assert(CurArray && "Failed to allocate memory?");
126   CurArraySize = NewSize;
127   memset(CurArray, -1, NewSize*sizeof(void*));
128 
129   // Copy over all valid entries.
130   for (const void **BucketPtr = OldBuckets; BucketPtr != OldEnd; ++BucketPtr) {
131     // Copy over the element if it is valid.
132     const void *Elt = *BucketPtr;
133     if (Elt != getTombstoneMarker() && Elt != getEmptyMarker())
134       *const_cast<void**>(FindBucketFor(Elt)) = const_cast<void*>(Elt);
135   }
136 
137   if (!WasSmall)
138     free(OldBuckets);
139   NumNonEmpty -= NumTombstones;
140   NumTombstones = 0;
141 }
142 
SmallPtrSetImplBase(const void ** SmallStorage,const SmallPtrSetImplBase & that)143 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
144                                          const SmallPtrSetImplBase &that) {
145   SmallArray = SmallStorage;
146 
147   // If we're becoming small, prepare to insert into our stack space
148   if (that.isSmall()) {
149     CurArray = SmallArray;
150   // Otherwise, allocate new heap space (unless we were the same size)
151   } else {
152     CurArray = (const void**)malloc(sizeof(void*) * that.CurArraySize);
153     assert(CurArray && "Failed to allocate memory?");
154   }
155 
156   // Copy over the that array.
157   CopyHelper(that);
158 }
159 
SmallPtrSetImplBase(const void ** SmallStorage,unsigned SmallSize,SmallPtrSetImplBase && that)160 SmallPtrSetImplBase::SmallPtrSetImplBase(const void **SmallStorage,
161                                          unsigned SmallSize,
162                                          SmallPtrSetImplBase &&that) {
163   SmallArray = SmallStorage;
164   MoveHelper(SmallSize, std::move(that));
165 }
166 
CopyFrom(const SmallPtrSetImplBase & RHS)167 void SmallPtrSetImplBase::CopyFrom(const SmallPtrSetImplBase &RHS) {
168   assert(&RHS != this && "Self-copy should be handled by the caller.");
169 
170   if (isSmall() && RHS.isSmall())
171     assert(CurArraySize == RHS.CurArraySize &&
172            "Cannot assign sets with different small sizes");
173 
174   // If we're becoming small, prepare to insert into our stack space
175   if (RHS.isSmall()) {
176     if (!isSmall())
177       free(CurArray);
178     CurArray = SmallArray;
179   // Otherwise, allocate new heap space (unless we were the same size)
180   } else if (CurArraySize != RHS.CurArraySize) {
181     if (isSmall())
182       CurArray = (const void**)malloc(sizeof(void*) * RHS.CurArraySize);
183     else {
184       const void **T = (const void**)realloc(CurArray,
185                                              sizeof(void*) * RHS.CurArraySize);
186       if (!T)
187         free(CurArray);
188       CurArray = T;
189     }
190     assert(CurArray && "Failed to allocate memory?");
191   }
192 
193   CopyHelper(RHS);
194 }
195 
CopyHelper(const SmallPtrSetImplBase & RHS)196 void SmallPtrSetImplBase::CopyHelper(const SmallPtrSetImplBase &RHS) {
197   // Copy over the new array size
198   CurArraySize = RHS.CurArraySize;
199 
200   // Copy over the contents from the other set
201   std::copy(RHS.CurArray, RHS.EndPointer(), CurArray);
202 
203   NumNonEmpty = RHS.NumNonEmpty;
204   NumTombstones = RHS.NumTombstones;
205 }
206 
MoveFrom(unsigned SmallSize,SmallPtrSetImplBase && RHS)207 void SmallPtrSetImplBase::MoveFrom(unsigned SmallSize,
208                                    SmallPtrSetImplBase &&RHS) {
209   if (!isSmall())
210     free(CurArray);
211   MoveHelper(SmallSize, std::move(RHS));
212 }
213 
MoveHelper(unsigned SmallSize,SmallPtrSetImplBase && RHS)214 void SmallPtrSetImplBase::MoveHelper(unsigned SmallSize,
215                                      SmallPtrSetImplBase &&RHS) {
216   assert(&RHS != this && "Self-move should be handled by the caller.");
217 
218   if (RHS.isSmall()) {
219     // Copy a small RHS rather than moving.
220     CurArray = SmallArray;
221     std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, CurArray);
222   } else {
223     CurArray = RHS.CurArray;
224     RHS.CurArray = RHS.SmallArray;
225   }
226 
227   // Copy the rest of the trivial members.
228   CurArraySize = RHS.CurArraySize;
229   NumNonEmpty = RHS.NumNonEmpty;
230   NumTombstones = RHS.NumTombstones;
231 
232   // Make the RHS small and empty.
233   RHS.CurArraySize = SmallSize;
234   assert(RHS.CurArray == RHS.SmallArray);
235   RHS.NumNonEmpty = 0;
236   RHS.NumTombstones = 0;
237 }
238 
swap(SmallPtrSetImplBase & RHS)239 void SmallPtrSetImplBase::swap(SmallPtrSetImplBase &RHS) {
240   if (this == &RHS) return;
241 
242   // We can only avoid copying elements if neither set is small.
243   if (!this->isSmall() && !RHS.isSmall()) {
244     std::swap(this->CurArray, RHS.CurArray);
245     std::swap(this->CurArraySize, RHS.CurArraySize);
246     std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
247     std::swap(this->NumTombstones, RHS.NumTombstones);
248     return;
249   }
250 
251   // FIXME: From here on we assume that both sets have the same small size.
252 
253   // If only RHS is small, copy the small elements into LHS and move the pointer
254   // from LHS to RHS.
255   if (!this->isSmall() && RHS.isSmall()) {
256     assert(RHS.CurArray == RHS.SmallArray);
257     std::copy(RHS.CurArray, RHS.CurArray + RHS.NumNonEmpty, this->SmallArray);
258     std::swap(RHS.CurArraySize, this->CurArraySize);
259     std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
260     std::swap(this->NumTombstones, RHS.NumTombstones);
261     RHS.CurArray = this->CurArray;
262     this->CurArray = this->SmallArray;
263     return;
264   }
265 
266   // If only LHS is small, copy the small elements into RHS and move the pointer
267   // from RHS to LHS.
268   if (this->isSmall() && !RHS.isSmall()) {
269     assert(this->CurArray == this->SmallArray);
270     std::copy(this->CurArray, this->CurArray + this->NumNonEmpty,
271               RHS.SmallArray);
272     std::swap(RHS.CurArraySize, this->CurArraySize);
273     std::swap(RHS.NumNonEmpty, this->NumNonEmpty);
274     std::swap(RHS.NumTombstones, this->NumTombstones);
275     this->CurArray = RHS.CurArray;
276     RHS.CurArray = RHS.SmallArray;
277     return;
278   }
279 
280   // Both a small, just swap the small elements.
281   assert(this->isSmall() && RHS.isSmall());
282   unsigned MinNonEmpty = std::min(this->NumNonEmpty, RHS.NumNonEmpty);
283   std::swap_ranges(this->SmallArray, this->SmallArray + MinNonEmpty,
284                    RHS.SmallArray);
285   if (this->NumNonEmpty > MinNonEmpty) {
286     std::copy(this->SmallArray + MinNonEmpty,
287               this->SmallArray + this->NumNonEmpty,
288               RHS.SmallArray + MinNonEmpty);
289   } else {
290     std::copy(RHS.SmallArray + MinNonEmpty, RHS.SmallArray + RHS.NumNonEmpty,
291               this->SmallArray + MinNonEmpty);
292   }
293   assert(this->CurArraySize == RHS.CurArraySize);
294   std::swap(this->NumNonEmpty, RHS.NumNonEmpty);
295   std::swap(this->NumTombstones, RHS.NumTombstones);
296 }
297