• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Graph-only versions of a few op functions, for internal use only."""
16
17# Must be separate from array_ops to avoid a cyclic dependency.
18
19from __future__ import absolute_import
20from __future__ import division
21from __future__ import print_function
22
23from tensorflow.core.framework import attr_value_pb2
24from tensorflow.python.framework import op_callbacks
25from tensorflow.python.framework import ops
26from tensorflow.python.framework import tensor_shape
27
28
29def graph_placeholder(dtype, shape, name=None):
30  """Graph-only version of tf.compat.v1.placeholder(), for internal use only."""
31  dtype = dtype.base_dtype
32  dtype_value = attr_value_pb2.AttrValue(type=dtype.as_datatype_enum)
33  if isinstance(shape, (list, tuple)):
34    shape = tensor_shape.TensorShape(shape)
35  shape = attr_value_pb2.AttrValue(shape=shape.as_proto())
36  g = ops.get_default_graph()
37  attrs = {"dtype": dtype_value, "shape": shape}
38  op = g._create_op_internal(  # pylint: disable=protected-access
39      "Placeholder", [], [dtype], input_types=[],
40      attrs=attrs, name=name)
41  result, = op.outputs
42  if op_callbacks.should_invoke_op_callbacks():
43    # TODO(b/147670703): Once the special-op creation code paths
44    # are unified. Remove this `if` block.
45    callback_outputs = op_callbacks.invoke_op_callbacks(
46        "Placeholder", tuple(), attrs, tuple(op.outputs),
47        op_name=name, graph=g)
48    if callback_outputs is not None:
49      result, = callback_outputs
50  return result
51