1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/audio_coding/neteq/delay_manager.h"
12
13 #include <assert.h>
14 #include <stdio.h>
15 #include <stdlib.h>
16
17 #include <algorithm>
18 #include <memory>
19 #include <numeric>
20 #include <string>
21
22 #include "modules/audio_coding/neteq/histogram.h"
23 #include "modules/include/module_common_types_public.h"
24 #include "rtc_base/checks.h"
25 #include "rtc_base/logging.h"
26 #include "rtc_base/numerics/safe_conversions.h"
27 #include "rtc_base/numerics/safe_minmax.h"
28 #include "system_wrappers/include/field_trial.h"
29
30 namespace {
31
32 constexpr int kMinBaseMinimumDelayMs = 0;
33 constexpr int kMaxBaseMinimumDelayMs = 10000;
34 constexpr int kMaxReorderedPackets =
35 10; // Max number of consecutive reordered packets.
36 constexpr int kMaxHistoryMs = 2000; // Oldest packet to include in history to
37 // calculate relative packet arrival delay.
38 constexpr int kDelayBuckets = 100;
39 constexpr int kBucketSizeMs = 20;
40 constexpr int kDecelerationTargetLevelOffsetMs = 85 << 8; // In Q8.
41
PercentileToQuantile(double percentile)42 int PercentileToQuantile(double percentile) {
43 return static_cast<int>((1 << 30) * percentile / 100.0 + 0.5);
44 }
45
46 struct DelayHistogramConfig {
47 int quantile = 1041529569; // 0.97 in Q30.
48 int forget_factor = 32745; // 0.9993 in Q15.
49 absl::optional<double> start_forget_weight = 2;
50 };
51
GetDelayHistogramConfig()52 DelayHistogramConfig GetDelayHistogramConfig() {
53 constexpr char kDelayHistogramFieldTrial[] =
54 "WebRTC-Audio-NetEqDelayHistogram";
55 DelayHistogramConfig config;
56 if (webrtc::field_trial::IsEnabled(kDelayHistogramFieldTrial)) {
57 const auto field_trial_string =
58 webrtc::field_trial::FindFullName(kDelayHistogramFieldTrial);
59 double percentile = -1.0;
60 double forget_factor = -1.0;
61 double start_forget_weight = -1.0;
62 if (sscanf(field_trial_string.c_str(), "Enabled-%lf-%lf-%lf", &percentile,
63 &forget_factor, &start_forget_weight) >= 2 &&
64 percentile >= 0.0 && percentile <= 100.0 && forget_factor >= 0.0 &&
65 forget_factor <= 1.0) {
66 config.quantile = PercentileToQuantile(percentile);
67 config.forget_factor = (1 << 15) * forget_factor;
68 config.start_forget_weight =
69 start_forget_weight >= 1 ? absl::make_optional(start_forget_weight)
70 : absl::nullopt;
71 }
72 }
73 RTC_LOG(LS_INFO) << "Delay histogram config:"
74 " quantile="
75 << config.quantile
76 << " forget_factor=" << config.forget_factor
77 << " start_forget_weight="
78 << config.start_forget_weight.value_or(0);
79 return config;
80 }
81
82 } // namespace
83
84 namespace webrtc {
85
DelayManager(size_t max_packets_in_buffer,int base_minimum_delay_ms,int histogram_quantile,bool enable_rtx_handling,const TickTimer * tick_timer,std::unique_ptr<Histogram> histogram)86 DelayManager::DelayManager(size_t max_packets_in_buffer,
87 int base_minimum_delay_ms,
88 int histogram_quantile,
89 bool enable_rtx_handling,
90 const TickTimer* tick_timer,
91 std::unique_ptr<Histogram> histogram)
92 : first_packet_received_(false),
93 max_packets_in_buffer_(max_packets_in_buffer),
94 histogram_(std::move(histogram)),
95 histogram_quantile_(histogram_quantile),
96 tick_timer_(tick_timer),
97 base_minimum_delay_ms_(base_minimum_delay_ms),
98 effective_minimum_delay_ms_(base_minimum_delay_ms),
99 base_target_level_(4), // In Q0 domain.
100 target_level_(base_target_level_ << 8), // In Q8 domain.
101 packet_len_ms_(0),
102 last_seq_no_(0),
103 last_timestamp_(0),
104 minimum_delay_ms_(0),
105 maximum_delay_ms_(0),
106 last_pack_cng_or_dtmf_(1),
107 enable_rtx_handling_(enable_rtx_handling) {
108 RTC_CHECK(histogram_);
109 RTC_DCHECK_GE(base_minimum_delay_ms_, 0);
110
111 Reset();
112 }
113
Create(size_t max_packets_in_buffer,int base_minimum_delay_ms,bool enable_rtx_handling,const TickTimer * tick_timer)114 std::unique_ptr<DelayManager> DelayManager::Create(
115 size_t max_packets_in_buffer,
116 int base_minimum_delay_ms,
117 bool enable_rtx_handling,
118 const TickTimer* tick_timer) {
119 DelayHistogramConfig config = GetDelayHistogramConfig();
120 const int quantile = config.quantile;
121 std::unique_ptr<Histogram> histogram = std::make_unique<Histogram>(
122 kDelayBuckets, config.forget_factor, config.start_forget_weight);
123 return std::make_unique<DelayManager>(
124 max_packets_in_buffer, base_minimum_delay_ms, quantile,
125 enable_rtx_handling, tick_timer, std::move(histogram));
126 }
127
~DelayManager()128 DelayManager::~DelayManager() {}
129
Update(uint16_t sequence_number,uint32_t timestamp,int sample_rate_hz)130 absl::optional<int> DelayManager::Update(uint16_t sequence_number,
131 uint32_t timestamp,
132 int sample_rate_hz) {
133 if (sample_rate_hz <= 0) {
134 return absl::nullopt;
135 }
136
137 if (!first_packet_received_) {
138 // Prepare for next packet arrival.
139 packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
140 last_seq_no_ = sequence_number;
141 last_timestamp_ = timestamp;
142 first_packet_received_ = true;
143 return absl::nullopt;
144 }
145
146 // Try calculating packet length from current and previous timestamps.
147 int packet_len_ms;
148 if (!IsNewerTimestamp(timestamp, last_timestamp_) ||
149 !IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
150 // Wrong timestamp or sequence order; use stored value.
151 packet_len_ms = packet_len_ms_;
152 } else {
153 // Calculate timestamps per packet and derive packet length in ms.
154 int64_t packet_len_samp =
155 static_cast<uint32_t>(timestamp - last_timestamp_) /
156 static_cast<uint16_t>(sequence_number - last_seq_no_);
157 packet_len_ms =
158 rtc::saturated_cast<int>(1000 * packet_len_samp / sample_rate_hz);
159 }
160
161 bool reordered = false;
162 absl::optional<int> relative_delay;
163 if (packet_len_ms > 0) {
164 // Cannot update statistics unless |packet_len_ms| is valid.
165
166 // Inter-arrival time (IAT) in integer "packet times" (rounding down). This
167 // is the value added to the inter-arrival time histogram.
168 int iat_ms = packet_iat_stopwatch_->ElapsedMs();
169 // Check for discontinuous packet sequence and re-ordering.
170 if (IsNewerSequenceNumber(sequence_number, last_seq_no_ + 1)) {
171 // Compensate for gap in the sequence numbers. Reduce IAT with the
172 // expected extra time due to lost packets.
173 int packet_offset =
174 static_cast<uint16_t>(sequence_number - last_seq_no_ - 1);
175 iat_ms -= packet_offset * packet_len_ms;
176 } else if (!IsNewerSequenceNumber(sequence_number, last_seq_no_)) {
177 int packet_offset =
178 static_cast<uint16_t>(last_seq_no_ + 1 - sequence_number);
179 iat_ms += packet_offset * packet_len_ms;
180 reordered = true;
181 }
182
183 int iat_delay = iat_ms - packet_len_ms;
184 if (reordered) {
185 relative_delay = std::max(iat_delay, 0);
186 } else {
187 UpdateDelayHistory(iat_delay, timestamp, sample_rate_hz);
188 relative_delay = CalculateRelativePacketArrivalDelay();
189 }
190
191 const int index = relative_delay.value() / kBucketSizeMs;
192 if (index < histogram_->NumBuckets()) {
193 // Maximum delay to register is 2000 ms.
194 histogram_->Add(index);
195 }
196 // Calculate new |target_level_| based on updated statistics.
197 target_level_ = CalculateTargetLevel();
198
199 LimitTargetLevel();
200 } // End if (packet_len_ms > 0).
201
202 if (enable_rtx_handling_ && reordered &&
203 num_reordered_packets_ < kMaxReorderedPackets) {
204 ++num_reordered_packets_;
205 return relative_delay;
206 }
207 num_reordered_packets_ = 0;
208 // Prepare for next packet arrival.
209 packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
210 last_seq_no_ = sequence_number;
211 last_timestamp_ = timestamp;
212 return relative_delay;
213 }
214
UpdateDelayHistory(int iat_delay_ms,uint32_t timestamp,int sample_rate_hz)215 void DelayManager::UpdateDelayHistory(int iat_delay_ms,
216 uint32_t timestamp,
217 int sample_rate_hz) {
218 PacketDelay delay;
219 delay.iat_delay_ms = iat_delay_ms;
220 delay.timestamp = timestamp;
221 delay_history_.push_back(delay);
222 while (timestamp - delay_history_.front().timestamp >
223 static_cast<uint32_t>(kMaxHistoryMs * sample_rate_hz / 1000)) {
224 delay_history_.pop_front();
225 }
226 }
227
CalculateRelativePacketArrivalDelay() const228 int DelayManager::CalculateRelativePacketArrivalDelay() const {
229 // This effectively calculates arrival delay of a packet relative to the
230 // packet preceding the history window. If the arrival delay ever becomes
231 // smaller than zero, it means the reference packet is invalid, and we
232 // move the reference.
233 int relative_delay = 0;
234 for (const PacketDelay& delay : delay_history_) {
235 relative_delay += delay.iat_delay_ms;
236 relative_delay = std::max(relative_delay, 0);
237 }
238 return relative_delay;
239 }
240
241 // Enforces upper and lower limits for |target_level_|. The upper limit is
242 // chosen to be minimum of i) 75% of |max_packets_in_buffer_|, to leave some
243 // headroom for natural fluctuations around the target, and ii) equivalent of
244 // |maximum_delay_ms_| in packets. Note that in practice, if no
245 // |maximum_delay_ms_| is specified, this does not have any impact, since the
246 // target level is far below the buffer capacity in all reasonable cases.
247 // The lower limit is equivalent of |effective_minimum_delay_ms_| in packets.
248 // We update |least_required_level_| while the above limits are applied.
249 // TODO(hlundin): Move this check to the buffer logistics class.
LimitTargetLevel()250 void DelayManager::LimitTargetLevel() {
251 if (packet_len_ms_ > 0 && effective_minimum_delay_ms_ > 0) {
252 int minimum_delay_packet_q8 =
253 (effective_minimum_delay_ms_ << 8) / packet_len_ms_;
254 target_level_ = std::max(target_level_, minimum_delay_packet_q8);
255 }
256
257 if (maximum_delay_ms_ > 0 && packet_len_ms_ > 0) {
258 int maximum_delay_packet_q8 = (maximum_delay_ms_ << 8) / packet_len_ms_;
259 target_level_ = std::min(target_level_, maximum_delay_packet_q8);
260 }
261
262 // Shift to Q8, then 75%.;
263 int max_buffer_packets_q8 =
264 static_cast<int>((3 * (max_packets_in_buffer_ << 8)) / 4);
265 target_level_ = std::min(target_level_, max_buffer_packets_q8);
266
267 // Sanity check, at least 1 packet (in Q8).
268 target_level_ = std::max(target_level_, 1 << 8);
269 }
270
CalculateTargetLevel()271 int DelayManager::CalculateTargetLevel() {
272 int limit_probability = histogram_quantile_;
273
274 int bucket_index = histogram_->Quantile(limit_probability);
275 int target_level = 1;
276 if (packet_len_ms_ > 0) {
277 target_level += bucket_index * kBucketSizeMs / packet_len_ms_;
278 }
279 base_target_level_ = target_level;
280
281 // Sanity check. |target_level| must be strictly positive.
282 target_level = std::max(target_level, 1);
283 // Scale to Q8 and assign to member variable.
284 target_level_ = target_level << 8;
285 return target_level_;
286 }
287
SetPacketAudioLength(int length_ms)288 int DelayManager::SetPacketAudioLength(int length_ms) {
289 if (length_ms <= 0) {
290 RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms;
291 return -1;
292 }
293
294 packet_len_ms_ = length_ms;
295 packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
296 last_pack_cng_or_dtmf_ = 1; // TODO(hlundin): Legacy. Remove?
297 return 0;
298 }
299
Reset()300 void DelayManager::Reset() {
301 packet_len_ms_ = 0; // Packet size unknown.
302 histogram_->Reset();
303 delay_history_.clear();
304 base_target_level_ = 4;
305 target_level_ = base_target_level_ << 8;
306 packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
307 last_pack_cng_or_dtmf_ = 1;
308 }
309
ResetPacketIatCount()310 void DelayManager::ResetPacketIatCount() {
311 packet_iat_stopwatch_ = tick_timer_->GetNewStopwatch();
312 }
313
BufferLimits(int * lower_limit,int * higher_limit) const314 void DelayManager::BufferLimits(int* lower_limit, int* higher_limit) const {
315 BufferLimits(target_level_, lower_limit, higher_limit);
316 }
317
318 // Note that |low_limit| and |higher_limit| are not assigned to
319 // |minimum_delay_ms_| and |maximum_delay_ms_| defined by the client of this
320 // class. They are computed from |target_level| in Q8 and used for decision
321 // making.
BufferLimits(int target_level,int * lower_limit,int * higher_limit) const322 void DelayManager::BufferLimits(int target_level,
323 int* lower_limit,
324 int* higher_limit) const {
325 if (!lower_limit || !higher_limit) {
326 RTC_LOG_F(LS_ERROR) << "NULL pointers supplied as input";
327 assert(false);
328 return;
329 }
330
331 // |target_level| is in Q8 already.
332 *lower_limit = (target_level * 3) / 4;
333
334 if (packet_len_ms_ > 0) {
335 *lower_limit =
336 std::max(*lower_limit, target_level - kDecelerationTargetLevelOffsetMs /
337 packet_len_ms_);
338 }
339
340 int window_20ms = 0x7FFF; // Default large value for legacy bit-exactness.
341 if (packet_len_ms_ > 0) {
342 window_20ms = (20 << 8) / packet_len_ms_;
343 }
344 // |higher_limit| is equal to |target_level|, but should at
345 // least be 20 ms higher than |lower_limit|.
346 *higher_limit = std::max(target_level, *lower_limit + window_20ms);
347 }
348
TargetLevel() const349 int DelayManager::TargetLevel() const {
350 return target_level_;
351 }
352
LastDecodedWasCngOrDtmf(bool it_was)353 void DelayManager::LastDecodedWasCngOrDtmf(bool it_was) {
354 if (it_was) {
355 last_pack_cng_or_dtmf_ = 1;
356 } else if (last_pack_cng_or_dtmf_ != 0) {
357 last_pack_cng_or_dtmf_ = -1;
358 }
359 }
360
RegisterEmptyPacket()361 void DelayManager::RegisterEmptyPacket() {
362 ++last_seq_no_;
363 }
364
IsValidMinimumDelay(int delay_ms) const365 bool DelayManager::IsValidMinimumDelay(int delay_ms) const {
366 return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound();
367 }
368
IsValidBaseMinimumDelay(int delay_ms) const369 bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const {
370 return kMinBaseMinimumDelayMs <= delay_ms &&
371 delay_ms <= kMaxBaseMinimumDelayMs;
372 }
373
SetMinimumDelay(int delay_ms)374 bool DelayManager::SetMinimumDelay(int delay_ms) {
375 if (!IsValidMinimumDelay(delay_ms)) {
376 return false;
377 }
378
379 minimum_delay_ms_ = delay_ms;
380 UpdateEffectiveMinimumDelay();
381 return true;
382 }
383
SetMaximumDelay(int delay_ms)384 bool DelayManager::SetMaximumDelay(int delay_ms) {
385 // If |delay_ms| is zero then it unsets the maximum delay and target level is
386 // unconstrained by maximum delay.
387 if (delay_ms != 0 &&
388 (delay_ms < minimum_delay_ms_ || delay_ms < packet_len_ms_)) {
389 // Maximum delay shouldn't be less than minimum delay or less than a packet.
390 return false;
391 }
392
393 maximum_delay_ms_ = delay_ms;
394 UpdateEffectiveMinimumDelay();
395 return true;
396 }
397
SetBaseMinimumDelay(int delay_ms)398 bool DelayManager::SetBaseMinimumDelay(int delay_ms) {
399 if (!IsValidBaseMinimumDelay(delay_ms)) {
400 return false;
401 }
402
403 base_minimum_delay_ms_ = delay_ms;
404 UpdateEffectiveMinimumDelay();
405 return true;
406 }
407
GetBaseMinimumDelay() const408 int DelayManager::GetBaseMinimumDelay() const {
409 return base_minimum_delay_ms_;
410 }
411
base_target_level() const412 int DelayManager::base_target_level() const {
413 return base_target_level_;
414 }
last_pack_cng_or_dtmf() const415 int DelayManager::last_pack_cng_or_dtmf() const {
416 return last_pack_cng_or_dtmf_;
417 }
418
set_last_pack_cng_or_dtmf(int value)419 void DelayManager::set_last_pack_cng_or_dtmf(int value) {
420 last_pack_cng_or_dtmf_ = value;
421 }
422
UpdateEffectiveMinimumDelay()423 void DelayManager::UpdateEffectiveMinimumDelay() {
424 // Clamp |base_minimum_delay_ms_| into the range which can be effectively
425 // used.
426 const int base_minimum_delay_ms =
427 rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound());
428 effective_minimum_delay_ms_ =
429 std::max(minimum_delay_ms_, base_minimum_delay_ms);
430 }
431
MinimumDelayUpperBound() const432 int DelayManager::MinimumDelayUpperBound() const {
433 // Choose the lowest possible bound discarding 0 cases which mean the value
434 // is not set and unconstrained.
435 int q75 = MaxBufferTimeQ75();
436 q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs;
437 const int maximum_delay_ms =
438 maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs;
439 return std::min(maximum_delay_ms, q75);
440 }
441
MaxBufferTimeQ75() const442 int DelayManager::MaxBufferTimeQ75() const {
443 const int max_buffer_time = max_packets_in_buffer_ * packet_len_ms_;
444 return rtc::dchecked_cast<int>(3 * max_buffer_time / 4);
445 }
446
447 } // namespace webrtc
448