• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright 2017 The WebRTC Project Authors. All rights reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 // Minimum and maximum
12 // ===================
13 //
14 //   rtc::SafeMin(x, y)
15 //   rtc::SafeMax(x, y)
16 //
17 // (These are both constexpr.)
18 //
19 // Accept two arguments of either any two integral or any two floating-point
20 // types, and return the smaller and larger value, respectively, with no
21 // truncation or wrap-around. If only one of the input types is statically
22 // guaranteed to be able to represent the result, the return type is that type;
23 // if either one would do, the result type is the smaller type. (One of these
24 // two cases always applies.)
25 //
26 //   * The case with one floating-point and one integral type is not allowed,
27 //     because the floating-point type will have greater range, but may not
28 //     have sufficient precision to represent the integer value exactly.)
29 //
30 // Clamp (a.k.a. constrain to a given interval)
31 // ============================================
32 //
33 //   rtc::SafeClamp(x, a, b)
34 //
35 // Accepts three arguments of any mix of integral types or any mix of
36 // floating-point types, and returns the value in the closed interval [a, b]
37 // that is closest to x (that is, if x < a it returns a; if x > b it returns b;
38 // and if a <= x <= b it returns x). As for SafeMin() and SafeMax(), there is
39 // no truncation or wrap-around. The result type
40 //
41 //   1. is statically guaranteed to be able to represent the result;
42 //
43 //   2. is no larger than the largest of the three argument types; and
44 //
45 //   3. has the same signedness as the type of the first argument, if this is
46 //      possible without violating the First or Second Law.
47 //
48 // There is always at least one type that meets criteria 1 and 2. If more than
49 // one type meets these criteria equally well, the result type is one of the
50 // types that is smallest. Note that unlike SafeMin() and SafeMax(),
51 // SafeClamp() will sometimes pick a return type that isn't the type of any of
52 // its arguments.
53 //
54 //   * In this context, a type A is smaller than a type B if it has a smaller
55 //     range; that is, if A::max() - A::min() < B::max() - B::min(). For
56 //     example, int8_t < int16_t == uint16_t < int32_t, and all integral types
57 //     are smaller than all floating-point types.)
58 //
59 //   * As for SafeMin and SafeMax, mixing integer and floating-point arguments
60 //     is not allowed, because floating-point types have greater range than
61 //     integer types, but do not have sufficient precision to represent the
62 //     values of most integer types exactly.
63 //
64 // Requesting a specific return type
65 // =================================
66 //
67 // All three functions allow callers to explicitly specify the return type as a
68 // template parameter, overriding the default return type. E.g.
69 //
70 //   rtc::SafeMin<int>(x, y)  // returns an int
71 //
72 // If the requested type is statically guaranteed to be able to represent the
73 // result, then everything's fine, and the return type is as requested. But if
74 // the requested type is too small, a static_assert is triggered.
75 
76 #ifndef RTC_BASE_NUMERICS_SAFE_MINMAX_H_
77 #define RTC_BASE_NUMERICS_SAFE_MINMAX_H_
78 
79 #include <limits>
80 #include <type_traits>
81 
82 #include "rtc_base/checks.h"
83 #include "rtc_base/numerics/safe_compare.h"
84 #include "rtc_base/type_traits.h"
85 
86 namespace rtc {
87 
88 namespace safe_minmax_impl {
89 
90 // Make the range of a type available via something other than a constexpr
91 // function, to work around MSVC limitations. See
92 // https://blogs.msdn.microsoft.com/vcblog/2015/12/02/partial-support-for-expression-sfinae-in-vs-2015-update-1/
93 template <typename T>
94 struct Limits {
95   static constexpr T lowest = std::numeric_limits<T>::lowest();
96   static constexpr T max = std::numeric_limits<T>::max();
97 };
98 
99 template <typename T, bool is_enum = std::is_enum<T>::value>
100 struct UnderlyingType;
101 
102 template <typename T>
103 struct UnderlyingType<T, false> {
104   using type = T;
105 };
106 
107 template <typename T>
108 struct UnderlyingType<T, true> {
109   using type = typename std::underlying_type<T>::type;
110 };
111 
112 // Given two types T1 and T2, find types that can hold the smallest (in
113 // ::min_t) and the largest (in ::max_t) of the two values.
114 template <typename T1,
115           typename T2,
116           bool int1 = IsIntlike<T1>::value,
117           bool int2 = IsIntlike<T2>::value>
118 struct MType {
119   static_assert(int1 == int2,
120                 "You may not mix integral and floating-point arguments");
121 };
122 
123 // Specialization for when neither type is integral (and therefore presumably
124 // floating-point).
125 template <typename T1, typename T2>
126 struct MType<T1, T2, false, false> {
127   using min_t = typename std::common_type<T1, T2>::type;
128   static_assert(std::is_same<min_t, T1>::value ||
129                     std::is_same<min_t, T2>::value,
130                 "");
131 
132   using max_t = typename std::common_type<T1, T2>::type;
133   static_assert(std::is_same<max_t, T1>::value ||
134                     std::is_same<max_t, T2>::value,
135                 "");
136 };
137 
138 // Specialization for when both types are integral.
139 template <typename T1, typename T2>
140 struct MType<T1, T2, true, true> {
141   // The type with the lowest minimum value. In case of a tie, the type with
142   // the lowest maximum value. In case that too is a tie, the types have the
143   // same range, and we arbitrarily pick T1.
144   using min_t = typename std::conditional<
145       SafeLt(Limits<T1>::lowest, Limits<T2>::lowest),
146       T1,
147       typename std::conditional<
148           SafeGt(Limits<T1>::lowest, Limits<T2>::lowest),
149           T2,
150           typename std::conditional<SafeLe(Limits<T1>::max, Limits<T2>::max),
151                                     T1,
152                                     T2>::type>::type>::type;
153   static_assert(std::is_same<min_t, T1>::value ||
154                     std::is_same<min_t, T2>::value,
155                 "");
156 
157   // The type with the highest maximum value. In case of a tie, the types have
158   // the same range (because in C++, integer types with the same maximum also
159   // have the same minimum).
160   static_assert(SafeNe(Limits<T1>::max, Limits<T2>::max) ||
161                     SafeEq(Limits<T1>::lowest, Limits<T2>::lowest),
162                 "integer types with the same max should have the same min");
163   using max_t = typename std::
164       conditional<SafeGe(Limits<T1>::max, Limits<T2>::max), T1, T2>::type;
165   static_assert(std::is_same<max_t, T1>::value ||
166                     std::is_same<max_t, T2>::value,
167                 "");
168 };
169 
170 // A dummy type that we pass around at compile time but never actually use.
171 // Declared but not defined.
172 struct DefaultType;
173 
174 // ::type is A, except we fall back to B if A is DefaultType. We static_assert
175 // that the chosen type can hold all values that B can hold.
176 template <typename A, typename B>
177 struct TypeOr {
178   using type = typename std::
179       conditional<std::is_same<A, DefaultType>::value, B, A>::type;
180   static_assert(SafeLe(Limits<type>::lowest, Limits<B>::lowest) &&
181                     SafeGe(Limits<type>::max, Limits<B>::max),
182                 "The specified type isn't large enough");
183   static_assert(IsIntlike<type>::value == IsIntlike<B>::value &&
184                     std::is_floating_point<type>::value ==
185                         std::is_floating_point<type>::value,
186                 "float<->int conversions not allowed");
187 };
188 
189 }  // namespace safe_minmax_impl
190 
191 template <
192     typename R = safe_minmax_impl::DefaultType,
193     typename T1 = safe_minmax_impl::DefaultType,
194     typename T2 = safe_minmax_impl::DefaultType,
195     typename R2 = typename safe_minmax_impl::TypeOr<
196         R,
197         typename safe_minmax_impl::MType<
198             typename safe_minmax_impl::UnderlyingType<T1>::type,
199             typename safe_minmax_impl::UnderlyingType<T2>::type>::min_t>::type>
200 constexpr R2 SafeMin(T1 a, T2 b) {
201   static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
202                 "The first argument must be integral or floating-point");
203   static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
204                 "The second argument must be integral or floating-point");
205   return SafeLt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
206 }
207 
208 template <
209     typename R = safe_minmax_impl::DefaultType,
210     typename T1 = safe_minmax_impl::DefaultType,
211     typename T2 = safe_minmax_impl::DefaultType,
212     typename R2 = typename safe_minmax_impl::TypeOr<
213         R,
214         typename safe_minmax_impl::MType<
215             typename safe_minmax_impl::UnderlyingType<T1>::type,
216             typename safe_minmax_impl::UnderlyingType<T2>::type>::max_t>::type>
217 constexpr R2 SafeMax(T1 a, T2 b) {
218   static_assert(IsIntlike<T1>::value || std::is_floating_point<T1>::value,
219                 "The first argument must be integral or floating-point");
220   static_assert(IsIntlike<T2>::value || std::is_floating_point<T2>::value,
221                 "The second argument must be integral or floating-point");
222   return SafeGt(a, b) ? static_cast<R2>(a) : static_cast<R2>(b);
223 }
224 
225 namespace safe_minmax_impl {
226 
227 // Given three types T, L, and H, let ::type be a suitable return value for
228 // SafeClamp(T, L, H). See the docs at the top of this file for details.
229 template <typename T,
230           typename L,
231           typename H,
232           bool int1 = IsIntlike<T>::value,
233           bool int2 = IsIntlike<L>::value,
234           bool int3 = IsIntlike<H>::value>
235 struct ClampType {
236   static_assert(int1 == int2 && int1 == int3,
237                 "You may not mix integral and floating-point arguments");
238 };
239 
240 // Specialization for when all three types are floating-point.
241 template <typename T, typename L, typename H>
242 struct ClampType<T, L, H, false, false, false> {
243   using type = typename std::common_type<T, L, H>::type;
244 };
245 
246 // Specialization for when all three types are integral.
247 template <typename T, typename L, typename H>
248 struct ClampType<T, L, H, true, true, true> {
249  private:
250   // Range of the return value. The return type must be able to represent this
251   // full range.
252   static constexpr auto r_min =
253       SafeMax(Limits<L>::lowest, SafeMin(Limits<H>::lowest, Limits<T>::lowest));
254   static constexpr auto r_max =
255       SafeMin(Limits<H>::max, SafeMax(Limits<L>::max, Limits<T>::max));
256 
257   // Is the given type an acceptable return type? (That is, can it represent
258   // all possible return values, and is it no larger than the largest of the
259   // input types?)
260   template <typename A>
261   struct AcceptableType {
262    private:
263     static constexpr bool not_too_large = sizeof(A) <= sizeof(L) ||
264                                           sizeof(A) <= sizeof(H) ||
265                                           sizeof(A) <= sizeof(T);
266     static constexpr bool range_contained =
267         SafeLe(Limits<A>::lowest, r_min) && SafeLe(r_max, Limits<A>::max);
268 
269    public:
270     static constexpr bool value = not_too_large && range_contained;
271   };
272 
273   using best_signed_type = typename std::conditional<
274       AcceptableType<int8_t>::value,
275       int8_t,
276       typename std::conditional<
277           AcceptableType<int16_t>::value,
278           int16_t,
279           typename std::conditional<AcceptableType<int32_t>::value,
280                                     int32_t,
281                                     int64_t>::type>::type>::type;
282 
283   using best_unsigned_type = typename std::conditional<
284       AcceptableType<uint8_t>::value,
285       uint8_t,
286       typename std::conditional<
287           AcceptableType<uint16_t>::value,
288           uint16_t,
289           typename std::conditional<AcceptableType<uint32_t>::value,
290                                     uint32_t,
291                                     uint64_t>::type>::type>::type;
292 
293  public:
294   // Pick the best type, preferring the same signedness as T but falling back
295   // to the other one if necessary.
296   using type = typename std::conditional<
297       std::is_signed<T>::value,
298       typename std::conditional<AcceptableType<best_signed_type>::value,
299                                 best_signed_type,
300                                 best_unsigned_type>::type,
301       typename std::conditional<AcceptableType<best_unsigned_type>::value,
302                                 best_unsigned_type,
303                                 best_signed_type>::type>::type;
304   static_assert(AcceptableType<type>::value, "");
305 };
306 
307 }  // namespace safe_minmax_impl
308 
309 template <
310     typename R = safe_minmax_impl::DefaultType,
311     typename T = safe_minmax_impl::DefaultType,
312     typename L = safe_minmax_impl::DefaultType,
313     typename H = safe_minmax_impl::DefaultType,
314     typename R2 = typename safe_minmax_impl::TypeOr<
315         R,
316         typename safe_minmax_impl::ClampType<
317             typename safe_minmax_impl::UnderlyingType<T>::type,
318             typename safe_minmax_impl::UnderlyingType<L>::type,
319             typename safe_minmax_impl::UnderlyingType<H>::type>::type>::type>
320 R2 SafeClamp(T x, L min, H max) {
321   static_assert(IsIntlike<H>::value || std::is_floating_point<H>::value,
322                 "The first argument must be integral or floating-point");
323   static_assert(IsIntlike<T>::value || std::is_floating_point<T>::value,
324                 "The second argument must be integral or floating-point");
325   static_assert(IsIntlike<L>::value || std::is_floating_point<L>::value,
326                 "The third argument must be integral or floating-point");
327   RTC_DCHECK_LE(min, max);
328   return SafeLe(x, min)
329              ? static_cast<R2>(min)
330              : SafeGe(x, max) ? static_cast<R2>(max) : static_cast<R2>(x);
331 }
332 
333 }  // namespace rtc
334 
335 #endif  // RTC_BASE_NUMERICS_SAFE_MINMAX_H_
336