1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `node_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`. However, if you need pointer stability and cannot store
29 // a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
30 // valid alternative. As well, if you are migrating your code from using
31 // `std::unordered_map`, a `node_hash_map` provides a more straightforward
32 // migration, because it guarantees pointer stability. Consider migrating to
33 // `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
34 // upon further review.
35
36 #ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
37 #define ABSL_CONTAINER_NODE_HASH_MAP_H_
38
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42
43 #include "absl/algorithm/container.h"
44 #include "absl/container/internal/container_memory.h"
45 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
46 #include "absl/container/internal/node_hash_policy.h"
47 #include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
48 #include "absl/memory/memory.h"
49
50 namespace absl {
51 ABSL_NAMESPACE_BEGIN
52 namespace container_internal {
53 template <class Key, class Value>
54 class NodeHashMapPolicy;
55 } // namespace container_internal
56
57 // -----------------------------------------------------------------------------
58 // absl::node_hash_map
59 // -----------------------------------------------------------------------------
60 //
61 // An `absl::node_hash_map<K, V>` is an unordered associative container which
62 // has been optimized for both speed and memory footprint in most common use
63 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
64 // the following notable differences:
65 //
66 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
67 // `insert()`, provided that the map is provided a compatible heterogeneous
68 // hashing function and equality operator.
69 // * Contains a `capacity()` member function indicating the number of element
70 // slots (open, deleted, and empty) within the hash map.
71 // * Returns `void` from the `erase(iterator)` overload.
72 //
73 // By default, `node_hash_map` uses the `absl::Hash` hashing framework.
74 // All fundamental and Abseil types that support the `absl::Hash` framework have
75 // a compatible equality operator for comparing insertions into `node_hash_map`.
76 // If your type is not yet supported by the `absl::Hash` framework, see
77 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
78 // types.
79 //
80 // Example:
81 //
82 // // Create a node hash map of three strings (that map to strings)
83 // absl::node_hash_map<std::string, std::string> ducks =
84 // {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
85 //
86 // // Insert a new element into the node hash map
87 // ducks.insert({"d", "donald"}};
88 //
89 // // Force a rehash of the node hash map
90 // ducks.rehash(0);
91 //
92 // // Find the element with the key "b"
93 // std::string search_key = "b";
94 // auto result = ducks.find(search_key);
95 // if (result != ducks.end()) {
96 // std::cout << "Result: " << result->second << std::endl;
97 // }
98 template <class Key, class Value,
99 class Hash = absl::container_internal::hash_default_hash<Key>,
100 class Eq = absl::container_internal::hash_default_eq<Key>,
101 class Alloc = std::allocator<std::pair<const Key, Value>>>
102 class node_hash_map
103 : public absl::container_internal::raw_hash_map<
104 absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
105 Alloc> {
106 using Base = typename node_hash_map::raw_hash_map;
107
108 public:
109 // Constructors and Assignment Operators
110 //
111 // A node_hash_map supports the same overload set as `std::unordered_map`
112 // for construction and assignment:
113 //
114 // * Default constructor
115 //
116 // // No allocation for the table's elements is made.
117 // absl::node_hash_map<int, std::string> map1;
118 //
119 // * Initializer List constructor
120 //
121 // absl::node_hash_map<int, std::string> map2 =
122 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
123 //
124 // * Copy constructor
125 //
126 // absl::node_hash_map<int, std::string> map3(map2);
127 //
128 // * Copy assignment operator
129 //
130 // // Hash functor and Comparator are copied as well
131 // absl::node_hash_map<int, std::string> map4;
132 // map4 = map3;
133 //
134 // * Move constructor
135 //
136 // // Move is guaranteed efficient
137 // absl::node_hash_map<int, std::string> map5(std::move(map4));
138 //
139 // * Move assignment operator
140 //
141 // // May be efficient if allocators are compatible
142 // absl::node_hash_map<int, std::string> map6;
143 // map6 = std::move(map5);
144 //
145 // * Range constructor
146 //
147 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
148 // absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
node_hash_map()149 node_hash_map() {}
150 using Base::Base;
151
152 // node_hash_map::begin()
153 //
154 // Returns an iterator to the beginning of the `node_hash_map`.
155 using Base::begin;
156
157 // node_hash_map::cbegin()
158 //
159 // Returns a const iterator to the beginning of the `node_hash_map`.
160 using Base::cbegin;
161
162 // node_hash_map::cend()
163 //
164 // Returns a const iterator to the end of the `node_hash_map`.
165 using Base::cend;
166
167 // node_hash_map::end()
168 //
169 // Returns an iterator to the end of the `node_hash_map`.
170 using Base::end;
171
172 // node_hash_map::capacity()
173 //
174 // Returns the number of element slots (assigned, deleted, and empty)
175 // available within the `node_hash_map`.
176 //
177 // NOTE: this member function is particular to `absl::node_hash_map` and is
178 // not provided in the `std::unordered_map` API.
179 using Base::capacity;
180
181 // node_hash_map::empty()
182 //
183 // Returns whether or not the `node_hash_map` is empty.
184 using Base::empty;
185
186 // node_hash_map::max_size()
187 //
188 // Returns the largest theoretical possible number of elements within a
189 // `node_hash_map` under current memory constraints. This value can be thought
190 // of as the largest value of `std::distance(begin(), end())` for a
191 // `node_hash_map<K, V>`.
192 using Base::max_size;
193
194 // node_hash_map::size()
195 //
196 // Returns the number of elements currently within the `node_hash_map`.
197 using Base::size;
198
199 // node_hash_map::clear()
200 //
201 // Removes all elements from the `node_hash_map`. Invalidates any references,
202 // pointers, or iterators referring to contained elements.
203 //
204 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
205 // the underlying buffer call `erase(begin(), end())`.
206 using Base::clear;
207
208 // node_hash_map::erase()
209 //
210 // Erases elements within the `node_hash_map`. Erasing does not trigger a
211 // rehash. Overloads are listed below.
212 //
213 // void erase(const_iterator pos):
214 //
215 // Erases the element at `position` of the `node_hash_map`, returning
216 // `void`.
217 //
218 // NOTE: this return behavior is different than that of STL containers in
219 // general and `std::unordered_map` in particular.
220 //
221 // iterator erase(const_iterator first, const_iterator last):
222 //
223 // Erases the elements in the open interval [`first`, `last`), returning an
224 // iterator pointing to `last`.
225 //
226 // size_type erase(const key_type& key):
227 //
228 // Erases the element with the matching key, if it exists.
229 using Base::erase;
230
231 // node_hash_map::insert()
232 //
233 // Inserts an element of the specified value into the `node_hash_map`,
234 // returning an iterator pointing to the newly inserted element, provided that
235 // an element with the given key does not already exist. If rehashing occurs
236 // due to the insertion, all iterators are invalidated. Overloads are listed
237 // below.
238 //
239 // std::pair<iterator,bool> insert(const init_type& value):
240 //
241 // Inserts a value into the `node_hash_map`. Returns a pair consisting of an
242 // iterator to the inserted element (or to the element that prevented the
243 // insertion) and a `bool` denoting whether the insertion took place.
244 //
245 // std::pair<iterator,bool> insert(T&& value):
246 // std::pair<iterator,bool> insert(init_type&& value):
247 //
248 // Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
249 // consisting of an iterator to the inserted element (or to the element that
250 // prevented the insertion) and a `bool` denoting whether the insertion took
251 // place.
252 //
253 // iterator insert(const_iterator hint, const init_type& value):
254 // iterator insert(const_iterator hint, T&& value):
255 // iterator insert(const_iterator hint, init_type&& value);
256 //
257 // Inserts a value, using the position of `hint` as a non-binding suggestion
258 // for where to begin the insertion search. Returns an iterator to the
259 // inserted element, or to the existing element that prevented the
260 // insertion.
261 //
262 // void insert(InputIterator first, InputIterator last):
263 //
264 // Inserts a range of values [`first`, `last`).
265 //
266 // NOTE: Although the STL does not specify which element may be inserted if
267 // multiple keys compare equivalently, for `node_hash_map` we guarantee the
268 // first match is inserted.
269 //
270 // void insert(std::initializer_list<init_type> ilist):
271 //
272 // Inserts the elements within the initializer list `ilist`.
273 //
274 // NOTE: Although the STL does not specify which element may be inserted if
275 // multiple keys compare equivalently within the initializer list, for
276 // `node_hash_map` we guarantee the first match is inserted.
277 using Base::insert;
278
279 // node_hash_map::insert_or_assign()
280 //
281 // Inserts an element of the specified value into the `node_hash_map` provided
282 // that a value with the given key does not already exist, or replaces it with
283 // the element value if a key for that value already exists, returning an
284 // iterator pointing to the newly inserted element. If rehashing occurs due to
285 // the insertion, all iterators are invalidated. Overloads are listed
286 // below.
287 //
288 // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
289 // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
290 //
291 // Inserts/Assigns (or moves) the element of the specified key into the
292 // `node_hash_map`.
293 //
294 // iterator insert_or_assign(const_iterator hint,
295 // const init_type& k, T&& obj):
296 // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
297 //
298 // Inserts/Assigns (or moves) the element of the specified key into the
299 // `node_hash_map` using the position of `hint` as a non-binding suggestion
300 // for where to begin the insertion search.
301 using Base::insert_or_assign;
302
303 // node_hash_map::emplace()
304 //
305 // Inserts an element of the specified value by constructing it in-place
306 // within the `node_hash_map`, provided that no element with the given key
307 // already exists.
308 //
309 // The element may be constructed even if there already is an element with the
310 // key in the container, in which case the newly constructed element will be
311 // destroyed immediately. Prefer `try_emplace()` unless your key is not
312 // copyable or moveable.
313 //
314 // If rehashing occurs due to the insertion, all iterators are invalidated.
315 using Base::emplace;
316
317 // node_hash_map::emplace_hint()
318 //
319 // Inserts an element of the specified value by constructing it in-place
320 // within the `node_hash_map`, using the position of `hint` as a non-binding
321 // suggestion for where to begin the insertion search, and only inserts
322 // provided that no element with the given key already exists.
323 //
324 // The element may be constructed even if there already is an element with the
325 // key in the container, in which case the newly constructed element will be
326 // destroyed immediately. Prefer `try_emplace()` unless your key is not
327 // copyable or moveable.
328 //
329 // If rehashing occurs due to the insertion, all iterators are invalidated.
330 using Base::emplace_hint;
331
332 // node_hash_map::try_emplace()
333 //
334 // Inserts an element of the specified value by constructing it in-place
335 // within the `node_hash_map`, provided that no element with the given key
336 // already exists. Unlike `emplace()`, if an element with the given key
337 // already exists, we guarantee that no element is constructed.
338 //
339 // If rehashing occurs due to the insertion, all iterators are invalidated.
340 // Overloads are listed below.
341 //
342 // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
343 // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
344 //
345 // Inserts (via copy or move) the element of the specified key into the
346 // `node_hash_map`.
347 //
348 // iterator try_emplace(const_iterator hint,
349 // const init_type& k, Args&&... args):
350 // iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args):
351 //
352 // Inserts (via copy or move) the element of the specified key into the
353 // `node_hash_map` using the position of `hint` as a non-binding suggestion
354 // for where to begin the insertion search.
355 //
356 // All `try_emplace()` overloads make the same guarantees regarding rvalue
357 // arguments as `std::unordered_map::try_emplace()`, namely that these
358 // functions will not move from rvalue arguments if insertions do not happen.
359 using Base::try_emplace;
360
361 // node_hash_map::extract()
362 //
363 // Extracts the indicated element, erasing it in the process, and returns it
364 // as a C++17-compatible node handle. Overloads are listed below.
365 //
366 // node_type extract(const_iterator position):
367 //
368 // Extracts the key,value pair of the element at the indicated position and
369 // returns a node handle owning that extracted data.
370 //
371 // node_type extract(const key_type& x):
372 //
373 // Extracts the key,value pair of the element with a key matching the passed
374 // key value and returns a node handle owning that extracted data. If the
375 // `node_hash_map` does not contain an element with a matching key, this
376 // function returns an empty node handle.
377 using Base::extract;
378
379 // node_hash_map::merge()
380 //
381 // Extracts elements from a given `source` node hash map into this
382 // `node_hash_map`. If the destination `node_hash_map` already contains an
383 // element with an equivalent key, that element is not extracted.
384 using Base::merge;
385
386 // node_hash_map::swap(node_hash_map& other)
387 //
388 // Exchanges the contents of this `node_hash_map` with those of the `other`
389 // node hash map, avoiding invocation of any move, copy, or swap operations on
390 // individual elements.
391 //
392 // All iterators and references on the `node_hash_map` remain valid, excepting
393 // for the past-the-end iterator, which is invalidated.
394 //
395 // `swap()` requires that the node hash map's hashing and key equivalence
396 // functions be Swappable, and are exchaged using unqualified calls to
397 // non-member `swap()`. If the map's allocator has
398 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
399 // set to `true`, the allocators are also exchanged using an unqualified call
400 // to non-member `swap()`; otherwise, the allocators are not swapped.
401 using Base::swap;
402
403 // node_hash_map::rehash(count)
404 //
405 // Rehashes the `node_hash_map`, setting the number of slots to be at least
406 // the passed value. If the new number of slots increases the load factor more
407 // than the current maximum load factor
408 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
409 // will be at least `size()` / `max_load_factor()`.
410 //
411 // To force a rehash, pass rehash(0).
412 using Base::rehash;
413
414 // node_hash_map::reserve(count)
415 //
416 // Sets the number of slots in the `node_hash_map` to the number needed to
417 // accommodate at least `count` total elements without exceeding the current
418 // maximum load factor, and may rehash the container if needed.
419 using Base::reserve;
420
421 // node_hash_map::at()
422 //
423 // Returns a reference to the mapped value of the element with key equivalent
424 // to the passed key.
425 using Base::at;
426
427 // node_hash_map::contains()
428 //
429 // Determines whether an element with a key comparing equal to the given `key`
430 // exists within the `node_hash_map`, returning `true` if so or `false`
431 // otherwise.
432 using Base::contains;
433
434 // node_hash_map::count(const Key& key) const
435 //
436 // Returns the number of elements with a key comparing equal to the given
437 // `key` within the `node_hash_map`. note that this function will return
438 // either `1` or `0` since duplicate keys are not allowed within a
439 // `node_hash_map`.
440 using Base::count;
441
442 // node_hash_map::equal_range()
443 //
444 // Returns a closed range [first, last], defined by a `std::pair` of two
445 // iterators, containing all elements with the passed key in the
446 // `node_hash_map`.
447 using Base::equal_range;
448
449 // node_hash_map::find()
450 //
451 // Finds an element with the passed `key` within the `node_hash_map`.
452 using Base::find;
453
454 // node_hash_map::operator[]()
455 //
456 // Returns a reference to the value mapped to the passed key within the
457 // `node_hash_map`, performing an `insert()` if the key does not already
458 // exist. If an insertion occurs and results in a rehashing of the container,
459 // all iterators are invalidated. Otherwise iterators are not affected and
460 // references are not invalidated. Overloads are listed below.
461 //
462 // T& operator[](const Key& key):
463 //
464 // Inserts an init_type object constructed in-place if the element with the
465 // given key does not exist.
466 //
467 // T& operator[](Key&& key):
468 //
469 // Inserts an init_type object constructed in-place provided that an element
470 // with the given key does not exist.
471 using Base::operator[];
472
473 // node_hash_map::bucket_count()
474 //
475 // Returns the number of "buckets" within the `node_hash_map`.
476 using Base::bucket_count;
477
478 // node_hash_map::load_factor()
479 //
480 // Returns the current load factor of the `node_hash_map` (the average number
481 // of slots occupied with a value within the hash map).
482 using Base::load_factor;
483
484 // node_hash_map::max_load_factor()
485 //
486 // Manages the maximum load factor of the `node_hash_map`. Overloads are
487 // listed below.
488 //
489 // float node_hash_map::max_load_factor()
490 //
491 // Returns the current maximum load factor of the `node_hash_map`.
492 //
493 // void node_hash_map::max_load_factor(float ml)
494 //
495 // Sets the maximum load factor of the `node_hash_map` to the passed value.
496 //
497 // NOTE: This overload is provided only for API compatibility with the STL;
498 // `node_hash_map` will ignore any set load factor and manage its rehashing
499 // internally as an implementation detail.
500 using Base::max_load_factor;
501
502 // node_hash_map::get_allocator()
503 //
504 // Returns the allocator function associated with this `node_hash_map`.
505 using Base::get_allocator;
506
507 // node_hash_map::hash_function()
508 //
509 // Returns the hashing function used to hash the keys within this
510 // `node_hash_map`.
511 using Base::hash_function;
512
513 // node_hash_map::key_eq()
514 //
515 // Returns the function used for comparing keys equality.
516 using Base::key_eq;
517
518 ABSL_DEPRECATED("Call `hash_function()` instead.")
hash_funct()519 typename Base::hasher hash_funct() { return this->hash_function(); }
520
521 ABSL_DEPRECATED("Call `rehash()` instead.")
resize(typename Base::size_type hint)522 void resize(typename Base::size_type hint) { this->rehash(hint); }
523 };
524
525 // erase_if(node_hash_map<>, Pred)
526 //
527 // Erases all elements that satisfy the predicate `pred` from the container `c`.
528 template <typename K, typename V, typename H, typename E, typename A,
529 typename Predicate>
erase_if(node_hash_map<K,V,H,E,A> & c,Predicate pred)530 void erase_if(node_hash_map<K, V, H, E, A>& c, Predicate pred) {
531 container_internal::EraseIf(pred, &c);
532 }
533
534 namespace container_internal {
535
536 template <class Key, class Value>
537 class NodeHashMapPolicy
538 : public absl::container_internal::node_hash_policy<
539 std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
540 using value_type = std::pair<const Key, Value>;
541
542 public:
543 using key_type = Key;
544 using mapped_type = Value;
545 using init_type = std::pair</*non const*/ key_type, mapped_type>;
546
547 template <class Allocator, class... Args>
new_element(Allocator * alloc,Args &&...args)548 static value_type* new_element(Allocator* alloc, Args&&... args) {
549 using PairAlloc = typename absl::allocator_traits<
550 Allocator>::template rebind_alloc<value_type>;
551 PairAlloc pair_alloc(*alloc);
552 value_type* res =
553 absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
554 absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
555 std::forward<Args>(args)...);
556 return res;
557 }
558
559 template <class Allocator>
delete_element(Allocator * alloc,value_type * pair)560 static void delete_element(Allocator* alloc, value_type* pair) {
561 using PairAlloc = typename absl::allocator_traits<
562 Allocator>::template rebind_alloc<value_type>;
563 PairAlloc pair_alloc(*alloc);
564 absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
565 absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
566 }
567
568 template <class F, class... Args>
decltype(absl::container_internal::DecomposePair (std::declval<F> (),std::declval<Args> ()...))569 static decltype(absl::container_internal::DecomposePair(
570 std::declval<F>(), std::declval<Args>()...))
571 apply(F&& f, Args&&... args) {
572 return absl::container_internal::DecomposePair(std::forward<F>(f),
573 std::forward<Args>(args)...);
574 }
575
element_space_used(const value_type *)576 static size_t element_space_used(const value_type*) {
577 return sizeof(value_type);
578 }
579
value(value_type * elem)580 static Value& value(value_type* elem) { return elem->second; }
value(const value_type * elem)581 static const Value& value(const value_type* elem) { return elem->second; }
582 };
583 } // namespace container_internal
584
585 namespace container_algorithm_internal {
586
587 // Specialization of trait in absl/algorithm/container.h
588 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
589 struct IsUnorderedContainer<
590 absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
591
592 } // namespace container_algorithm_internal
593
594 ABSL_NAMESPACE_END
595 } // namespace absl
596
597 #endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
598